Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-07T09:54:34.838Z Has data issue: false hasContentIssue false

Hydration State of Cu2+ in Mixed Cu2+-Hexadecylpyridinium montmorillonit by Electron Spin Resonance

Published online by Cambridge University Press:  02 April 2024

K. Dyrek
Affiliation:
Institute of Chemistry, Jagiellonian University, Cracow, Poland
Z. Kłapyta
Affiliation:
Institute of Geology and Mineral Deposits, Academy of Mining and Metallurgy, Cracow, Poland
Z. Sojka
Affiliation:
Institute of Chemistry, Jagiellonian University, Cracow, Poland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Electron spin resonance (ESR) spectra of Cu2+-hexadecylpyridinium (HDP) montmorillonites were investigated as a function of HDP+ content and the hydration state of Cu2+ at relative humidities of p/p0 = 0.52-8 × 10-7 at 298°K. The symmetry of the Cu2+ ESR spectra and the intensity of the ESR signal increased upon dehydration of the complex. The HDP+ cation caused an increase in the hydration state of Cu2+ at a given p/p0 and an increase in the covalency of the Cu-O bond.

Резюме

Резюме

Спектры Си2+-гексадецилпиридиновых (ГДП) монтмориллонитов, полученные методом электронного спинового резонанса (ЭСР), исследовались как функции содержания ГДП+ и состояния гидратации Cu2+ при относительной влажности р/р0 = 0,52-8 х 10-7 и при температуре 298°К. Симметрия ЭСР лектров Cu2+ и интенсивность ЭСР сигнала увеличивались с дегидратацией комплекса. Катион ГДП+ вызывал увеличение состояния гидратации Cu2+ при данной величине р/р0 и увеличение ковалентности связи Cu-O. [E.G.]

Resümee

Resümee

Die Elektronenspinresonanz (ESR)-Spektren von Cu2+-hexadecylpyridinium (HDP)-Montmorillo-niten wurden in Abhängigkeit vom HDP+-Gehalt und dem Hydratationszustand des Cu2+ bei relativen Feuchtigkeiten von p/p0 = 0,52-8 × 10-7 und einer Temperatur von 298°K untersucht. Die Symmetrie der ESR-Spektren von Cu2+ und die Intensität des ESR-Signals nahm mit der Dehydration des Komplexes zu. Das HDP+-Kation verursachte eine Zunahme des Hydratationszustandes von Cu2+ bei gegebenem p/p0 und eine Zunahme bei der Kovalenz der Cu-O-Bindung. [U.W.]

Résumé

Résumé

Les spectres de résonance à spin d’électrons (ESR) de montmorillonites hexadécylpyridinium-Cu2+ (HDP) ont été investigués en fonction du contenu en HDP+ et de l’état d'hydration de Cu2+ à des humidités relatives de p/p0 = 0,52-8 × 10-7 à 298°K. La Symmétrie des spectres ESR du Cu2+ et l'intensité du signal ESR ont augmenté lors de la déshydration du complex. Le cation HDP+ a causé une augmentation de l’état d'hydration du Cu2+ à un p/p0 donné et une augmentation de la covalence du lien Cu-O. [D. J.]

Type
Research Article
Copyright
Copyright © 1983, The Clay Minerals Society

References

Abragam, A. and Pryce, M. H. L., 1951 The theory of nuclear hyperfine structure of paramagnetic resonance spectra in the copper Tutton salts Proc. Roy. Soc. (London) A 206 164172.Google Scholar
Bassetti, V., Burlamacchi, L. and Martini, G., 1979 Use of paramagnetic probes for the study of liquid adsorbed on porous supports. Copper(II) in water solution J. Amer. Chem. Soc. 101 54715477.CrossRefGoogle Scholar
Clementz, D. M., Mortland, M. M. and Pinnavaia, T. J., 1974 Properties of reduced charge montmorillonites: hydrated Cu(II) ions as a spectroscopic probe Clays & Clay Minerals 22 4957.CrossRefGoogle Scholar
Conesa, J. C. and Soria, J., 1978 Electron spin resonance of undetected copper(II) ions in Y zeolite J. Phys. Chem. 82 18471850.CrossRefGoogle Scholar
Conesa, J. C. and Soria, J., 1979 Electron spin resonance of copper-exchanged Y zeolites. Part 1.—Behaviour of the cation during dehydration J. Chem. Soc. Faraday Trans. I 75 406422.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., 1971 Interlayer complexes in layer silicates J. Chem. Soc. Faraday Trans. I 67 27372749.CrossRefGoogle Scholar
Hasono, H., Kawazoe, H. and Kanazawa, T., 1979 ESR and optical absorption of Cu2+ in Na2O-SiO2 glasses J. Non-Cryst. Solids 33 103115.CrossRefGoogle Scholar
Jacobs, P. A., de Wilde, W., Schoonheydt, R. A., Uytter-hoeven, J. B. and Beyer, H., 1976 Redox behaviour of transition metal ions in zeolites Part 3. Auto-reduction of cupric ions in Y zeolites J. Chem. Soc. Faraday Trans. I 72 12211230.CrossRefGoogle Scholar
Kłapyta, Z. and Żyła, M., 1977 Modification of sorption properties of Cu-montmorillonite with hexadecylpyridinium cations Miner. Polon. 8 4959.Google Scholar
Mank, V. V. and Ovcharenko, F. D., 1978 Stereochemistry and dynamic of the hydrated copper(II) ions on the surface of complex silicates Dokl. Akad. Nauk SSSR 238 13841387.Google Scholar
McBride, M. B., 1976 Hydration structure of exchangeable Cu2+ in vermiculite and smectite Clays & Clay Minerals 24 211212.CrossRefGoogle Scholar
McBride, M. B., 1977 Adsorbed molecules on solvated layer silicates: surface mobility and orientation from ESR studies Clays & Clay Minerals 25 613.CrossRefGoogle Scholar
McBride, M. B., 1979 Cationic spin probes on hectorite surfaces: demixing and mobility as a function of adsorption level Clays & Clay Minerals 27 97104.CrossRefGoogle Scholar
McBride, M. B. and Mortland, M. M., 1974 Copper(II) interactions with montmorillonite. Evidence from physical methods Soil Sci. Soc. Amer. Proc. 38 408415.CrossRefGoogle Scholar
McBride, M. B. and Mortland, M. M., 1975 Surface properties of mixed Cu(II)-tetraalkylammonium montmorillonites Clay Miner. 10 357368.CrossRefGoogle Scholar
McBride, M. B., Mortland, M. M. and Pinnavaia, T. J., 1975 Exchange ion positions in smectite: effects on electron spin resonance of structural ion Clays & Clay Minerals 23 162163.CrossRefGoogle Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M., 1975 Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces J. Phys. Chem. 79 24302435.CrossRefGoogle Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M., 1975 Perturbation of structural Fe3+ in smectites by exchange ions Clays & Clay Minerals 23 103107.CrossRefGoogle Scholar
Mikheikin, I. D., Shvets, V. A. and Kazansky, V. B., 1970 Investigation of the sites of copper ion location in zeolites of type Y with the aid of optical and ESR spectra Kinet. Katal. 11 747752.Google Scholar
Naccache, C. and Ben Taarit, Y., 1971 ESR study of cop-per(II) ions in Y zeolite. Effect of water, ammonia and pyridine absorption Chem. Phys. Lett. 11 1115.CrossRefGoogle Scholar
Neira, J. B., Macias, A. S. and Rios, E. G., 1977 Dehydration of Co-, Cu-, Mg- and K-montmorillonites An. Quim. 73 14151418.Google Scholar
Nicula, A., Stamires, D. and Turkevich, J., 1965 Paramagnetic resonance absorption of copper ions in porous crystals J. Chem. Phys. 42 36843692.CrossRefGoogle Scholar
Turkevich, J., Ono, Y. and Soria, J., 1972 Further electron spin resonance studies of Cu(II) in Linde Y zeolite J. Catal. 25 4454.CrossRefGoogle Scholar
Velghe, F., Schoonheydt, R. A. and Uytterhoeven, J. B., 1977 The coordination of hydrated Cu(II)- and Ni(II)-ions on montmorillonite surface Clays & Clay Minerals 25 375380.CrossRefGoogle Scholar