No CrossRef data available.
Published online by Cambridge University Press: 06 November 2024
The accuracy of electromagnetic (EM) exposure assessments depends mainly on the resolution of a voxel human body model. The resolution of the conventional human body model is limited to a few millimeters. In the millimeter wave (mmWave) frequency range, EM waves are absorbed by the superficial tissues in the human body. Therefore, resolution and skin thickness of the human body model are important for accuracy of the EM wave exposure metrics recommended by international human safety guidelines. Realistic thickness modeling of the skin tissue on the human body may provide greater accuracy in the EM exposure assessment, especially at mmWave frequency range. In this paper, effects of the skin thickness on the EM exposure metrics in one-dimensional multi-layered models obtained from different regions of the body model are investigated using the dispersive algorithm based on the finite-difference time-domain method over the frequency range from 1 to 100 GHz. Furthermore, effects of eyelid tissue in a human eye on the EM exposure metrics are studied over the frequency range. The EM exposure metrics such as absorbed power density, heating factor, and power transmission coefficient are calculated up to 100 GHz to evaluate the limits of EM wave exposure.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.