Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-04-25T00:50:46.019Z Has data issue: false hasContentIssue false

Association between total vitamin C intake and hypothyroidism among Hashimoto thyroiditis: National Health and Nutrition Examination Survey, 2007–2012

Published online by Cambridge University Press:  12 November 2024

Lin Chen*
Affiliation:
Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
Yaqian Mao
Affiliation:
Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital South Branch, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
Gang Chen
Affiliation:
Department of Endocrinology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, People’s Republic of China
*
*Corresponding author: Lin Chen, email fjsljscl@outlook.com

Abstract

Oxidative stress may be involved in the progression of hypothyroidism in patients with Hashimoto thyroiditis (HT). Vitamin C is a well-known powerful antioxidant. To our knowledge, whether vitamin C intake relates to hypothyroidism in patients with HT remains unclear. In this cross-sectional study based on the National Health and Nutrition Examination Survey, 2007–2012, we aimed to explore the relationship between total vitamin C intake and hypothyroidism in patients with HT, using multivariate logistic regression models and restricted cubic spline analyses. Our results showed a significant negative linear association between total vitamin C intake (log10-transformed data) and hypothyroidism in HT. Compared with those with the lowest quartile of total vitamin C intake (log10-transformed), participants with the highest quartile were at lower odds of having hypothyroidism (adjusted OR 0·40, 95 % CI: 0·18, 0·88, Ptrend = 0·027). This association was consistent in subgroups stratified by sex (Pfor interaction = 0·084) and age (≥ 60 years and < 60 years, Pfor interaction = 0·330). This study revealed that total vitamin C intake was inversely associated with hypothyroidism among individuals with HT, indicating that higher vitamin C intakes (4·57–1258·9 mg/d) may be associated with a lower likelihood of hypothyroidism among HT participants.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ragusa, F, Fallahi, P, Elia, G, et al. (2019) Hashimotos’ thyroiditis: epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab 33, 101367.CrossRefGoogle Scholar
Kurien, BT & Scofield, RH (2008) Autoimmunity and oxidatively modified autoantigens. Autoimmunity Rev 7, 567573.CrossRefGoogle ScholarPubMed
Khan, MA, Alam, K, Md Ashraf, G, et al. (2018) Impact of hydroxyl radical modified-human serum albumin autoantigens in systemic lupus erythematosus. Curr Protein Pept Sci 19, 881888.CrossRefGoogle ScholarPubMed
Brezovec, N, Perdan-Pirkmajer, K, Burja, B, et al. (2023) Disturbed antioxidant capacity in patients with systemic sclerosis associates with lung and gastrointestinal symptoms. Biomedicines 11, 2110.CrossRefGoogle ScholarPubMed
Ates, I, Arikan, MF, Altay, M, et al. (2018) The effect of oxidative stress on the progression of Hashimoto’s thyroiditis. Arch Physiol Biochem 124, 351356.CrossRefGoogle ScholarPubMed
Ates, I, Yilmaz, FM, Altay, M, et al. (2015) The relationship between oxidative stress and autoimmunity in Hashimoto’s thyroiditis. Eur J Endocrinol 173, 791799.CrossRefGoogle ScholarPubMed
Burek, CL & Rose, NR (2008) Autoimmune thyroiditis and ROS. Autoimmunity Rev 7, 530537.CrossRefGoogle ScholarPubMed
Monacelli, F, Acquarone, E, Giannotti, C, et al. (2017) Vitamin C, aging and Alzheimer’s disease. Nutrients 9, 670.CrossRefGoogle ScholarPubMed
Marik, PE (2018) Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther 189, 6370.CrossRefGoogle ScholarPubMed
Karimi, F & Omrani, GR (2019) Effects of selenium and vitamin C on the serum level of antithyroid peroxidase antibody in patients with autoimmune thyroiditis. J Endocrinol Investig 42, 481487.CrossRefGoogle ScholarPubMed
El Deib, MM, El-Sharkawy, NI, Beheiry, RR, et al. (2021) Boldenone undecylenate disrupts the immune system and induces autoimmune clinical hypothyroidism in rats: vitamin C ameliorative effects. Int Immunopharmacol 99, 107939.CrossRefGoogle ScholarPubMed
Li, L, Ying, YX, Liang, J, et al. (2020) Urinary iodine and genetic predisposition to Hashimoto’s thyroiditis in a Chinese Han population: a case-control study. Thyroid: Offic J Am Thyroid Assoc 30, 18201830.CrossRefGoogle Scholar
Ou, Y, Qiu, Z, Geng, T, et al. (2023) Associations of serum vitamin C concentrations with risk of all-cause and cause-specific mortality among individuals with and without type 2 diabetes. Eur J Nutr 62, 25552565.CrossRefGoogle ScholarPubMed
Caturegli, P, De Remigis, A & Rose, NR (2014) Hashimoto thyroiditis: clinical and diagnostic criteria. Autoimmunity Rev 13, 391397.CrossRefGoogle ScholarPubMed
Mancini, A, Di Segni, C, Raimondo, S, et al. (2016) Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm 2016, 6757154.CrossRefGoogle ScholarPubMed
Smallwood, MJ, Nissim, A, Knight, AR, et al. (2018) Oxidative stress in autoimmune rheumatic diseases. Free Radical Biol Med 125, 314.CrossRefGoogle ScholarPubMed
Baser, H, Can, U, Baser, S, et al. (2015) Assesment of oxidative status and its association with thyroid autoantibodies in patients with euthyroid autoimmune thyroiditis. Endocrine 48, 916923.CrossRefGoogle ScholarPubMed
Rostami, R, Aghasi, MR, Mohammadi, A, et al. (2013) Enhanced oxidative stress in Hashimoto’s thyroiditis: inter-relationships to biomarkers of thyroid function. Clin Biochem 46, 308312.CrossRefGoogle ScholarPubMed
Das, D, Banerjee, A, Jena, AB, et al. (2022) Essentiality, relevance, and efficacy of adjuvant/combinational therapy in the management of thyroid dysfunctions. Biomed Pharmacother = Biomedecine Pharmacotherapie 146, 112613.CrossRefGoogle ScholarPubMed
Youssef, S & Salah, M (2019) Differential Expression of CD3, TNF-α, and VEGF induced by olanzapine on the spleen of adult male albino rats and the possible protective role of vitamin C. Biomedicines 7, 39.CrossRefGoogle ScholarPubMed
Kietzmann, T (2023) Vitamin C: from nutrition to oxygen sensing and epigenetics. Redox Biol 63, 102753.CrossRefGoogle ScholarPubMed
Spoelstra-de Man, AME, Elbers, PWG & Oudemans-Van Straaten, HM (2018) Vitamin C: should we supplement? Curr Opin Crit Care 24, 248255.CrossRefGoogle ScholarPubMed
Feng, J, Xu, X, Cai, W, et al. (2024) Inhibiting sEH suppresses NF-κB p65 signaling and reduces CXCL10 expression as a potential therapeutic target in HT. J Clin Endocrinol Metab (Epublication ahead of print version 13 March 2024).CrossRefGoogle Scholar
Weetman, AP (2021) An update on the pathogenesis of Hashimoto’s thyroiditis. J Endocrinol Investig 44, 883890.CrossRefGoogle ScholarPubMed
Hu, Y, Zhang, L, Chen, H, et al. (2019) Analysis of regulatory T cell subsets and their expression of helios and PD-1 in patients with Hashimoto thyroiditis. Int J Endocrinol 2019, 5368473.CrossRefGoogle ScholarPubMed
Peng, L, Chen, L, Wan, J, et al. (2023) Single-cell transcriptomic landscape of immunometabolism reveals intervention candidates of ascorbate and aldarate metabolism, fatty-acid degradation and PUFA metabolism of T-cell subsets in healthy controls, psoriasis and psoriatic arthritis. Front Immunol 14, 1179877.CrossRefGoogle ScholarPubMed
Nikolouli, E, Hardtke-Wolenski, M, Hapke, M, et al. (2017) Alloantigen-induced regulatory T cells generated in presence of vitamin C display enhanced stability of Foxp3 expression and promote skin allograft acceptance. Front Immunol 8, 748.CrossRefGoogle ScholarPubMed
Salazar-Viedma, M, Vergaño-Salazar, JG, Pastenes, L, et al. (2021) Simulation model for Hashimoto autoimmune thyroiditis disease. Endocrinology 162, bqab190.CrossRefGoogle ScholarPubMed
Wu, Y, Li, J, Yan, B, et al. (2017) Oral exposure to dibutyl phthalate exacerbates chronic lymphocytic thyroiditis through oxidative stress in female Wistar rats. Sci Rep 7, 15469.CrossRefGoogle ScholarPubMed
Biondi, B, Cappola, AR & Cooper, DS (2019) Subclinical hypothyroidism: a review. JAMA 322, 153160.CrossRefGoogle ScholarPubMed
Tunbridge, WM, Evered, DC, Hall, R, et al. (1977) The spectrum of thyroid disease in a community: the Whickham survey. Clin Endocrinol 7, 481493.CrossRefGoogle Scholar
McLeod, DS & Cooper, DS (2012) The incidence and prevalence of thyroid autoimmunity. Endocrine 42, 252265.CrossRefGoogle ScholarPubMed
Klubo-Gwiezdzinska, J & Wartofsky, L (2022) Hashimoto thyroiditis: an evidence-based guide to etiology, diagnosis and treatment. Pol Arch Intern Med 132, 16222.Google ScholarPubMed
Dietary Guidelines for Americans (2020) Dietary Guidelines for Americans, 2020–2025. 9th Edition. https://www.dietaryguidelines.gov/ (accessed December 2020).Google Scholar
Medicine, IO (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. Washington, DC: National Academies Press.Google Scholar
da Silva, GB, Yamauchi, MA & Bagatini, MD (2023) Oxidative stress in Hashimoto’s thyroiditis: possible adjuvant therapies to attenuate deleterious effects. Mol Cell Biochem 478, 949966.CrossRefGoogle ScholarPubMed
Supplementary material: File

Chen et al. supplementary material

Chen et al. supplementary material
Download Chen et al. supplementary material(File)
File 33 KB