Hostname: page-component-7bb8b95d7b-2h6rp Total loading time: 0 Render date: 2024-09-28T20:17:14.621Z Has data issue: false hasContentIssue false

MULTIPLICATIVE FUNCTIONS k-ADDITIVE ON GENERALISED OCTAGONAL NUMBERS

Published online by Cambridge University Press:  27 August 2024

ELCHIN HASANALIZADE*
Affiliation:
School of IT and Engineering, ADA University, Ahmadbey Aghaoghlu str. 61, Baku AZ1008, Azerbaijan
POO-SUNG PARK
Affiliation:
Department of Mathematics Education, Kyungnam University, Changwon 51767, Republic of Korea e-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Let $k\geq 4$ be an integer. We prove that the set $\mathcal {O}$ of all nonzero generalised octagonal numbers is a k-additive uniqueness set for the set of multiplicative functions. That is, if a multiplicative function $f_k$ satisfies the condition

$$ \begin{align*} f_k(x_1+x_2+\cdots+x_k)=f_k(x_1)+f_k(x_2)+\cdots+f_k(x_k) \end{align*} $$

for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$, then $f_k$ is the identity function $f_k(n)=n$ for all $n\in \mathbb {N}$. We also show that $f_2$ and $f_3$ are not determined uniquely.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

1. Introduction

An arithmetic function $f:\mathbb {N}\to \mathbb {C}$ is called multiplicative if $f(1)=1$ and $f(mn)=f(m)f(n)$ whenever $\text {gcd}(m,n)=1$ . Let $\mathcal {M}$ denote the set of complex-valued multiplicative functions.

A set $E\subseteq \mathbb {N}$ is called an additive uniqueness set of a set of arithmetic functions $\mathcal {F}$ if $f\in \mathcal {F}$ is uniquely determined under the condition

(1.1) $$ \begin{align} f(m+n)=f(m)+f(n) \quad \text{for all } m,n\in E. \end{align} $$

For example, $\mathbb {N}$ and $\{1\}\cup 2\mathbb {N}$ are trivially additive uniqueness sets of $\mathcal {M}$ . This concept was first introduced by Spiro [Reference Spiro12] in 1992. She proved that the set of primes is an additive uniqueness set of $\mathcal {M}_0=\{f\in \mathcal {M} \mid f(p_0)\neq 0 \ \text {for some prime}\ p_0\}$ . Spiro’s work has been extended in many directions.

Let $k\geq 2$ be a fixed integer. If there is only one function $f\in \mathcal {F}$ satisfying $f(x_1+x_2+\cdots +x_k)=f(x_1)+f(x_2)+\cdots +f(x_k)$ for arbitrary $x_i\in E$ , $i\in \{1,2,\ldots ,k\}$ , then E is called a k-additive uniqueness set of $\mathcal {F}$ .

In 2010, Fang [Reference Fang4] proved that the set of primes is a 3-additive uniqueness set of $\mathcal {M}_0$ . In 2013, Dubickas and Šarka [Reference Dubickas and Šarka3] generalised Fang’s result to sums of an arbitrary number of primes. In 1999, Chung and Phong [Reference Chung and Phong2] showed that the set of positive triangular numbers $T_n=\tfrac 12n(n+1)$ , $n\in \mathbb {N}$ , and the set of positive tetrahedral numbers $ \textit {Te}_n=\tfrac 16n(n+1)(n+2)$ , $n\in \mathbb {N}$ , are new additive uniqueness sets for $\mathcal {M}$ and Park [Reference Park10] extended their work to sums of k triangular numbers for $k\geq 3$ . Park [Reference Park9] proved that the set of nonzero squares is a k-additive uniqueness set of $\mathcal {M}$ for every $k\geq 3$ , although it is not a 2-additive uniqueness set (see [Reference Chung1]). Recently, in [Reference Park11], he showed that the set of positive cubes is a k-additive uniqueness set, like the set of positive squares, for multiplicative functions when $k\ge 3$ .

In 2018, Kim et al. [Reference Kim, Kim, Lee and Park6] proved that the set of nonzero generalised pentagonal numbers $\mathcal {P}=\{\tfrac 12n(3n-1) \mid n\in \mathbb {Z}, n \ne 0\}$ , is an additive uniqueness set for $\mathcal {M}$ and the first author [Reference Hasanalizade5] extended their result to sums of k nonzero pentagonal numbers for $k\geq 3$ . Later, Kim et al. [Reference Kim, Kim, Lee and Park7] showed that the set of positive pentagonal numbers and the set of positive hexagonal numbers $\mathcal {H}=\{n(2n-1)\,|\, n\in \mathbb {N}\}$ are new additive uniqueness sets for $\mathcal {M}$ . They also conjectured that among the sets of s-gonal numbers, only the sets of triangular, pentagonal and hexagonal numbers are additive uniqueness sets for $\mathcal {M}$ .

Let $\mathcal {O}=\{\mathcal {O}_m=m(3m-2) \mid m\in \mathbb {Z},m\neq 0\}$ be the set of nonzero generalised octagonal numbers. That is,

$$ \begin{align*} \mathcal{O}=\{1,5,8,16,21,33,40,56,65,85,\ldots\}. \end{align*} $$

The main result of this paper is the following theorem.

Theorem 1.1. Fix $k\ge 4$ . The set $\mathcal {O}$ of nonzero generalised octagonal numbers is a k-additive uniqueness set of $\mathcal {M}$ ; that is, if a multiplicative function $f_k$ satisfies

$$ \begin{align*} f_k(x_1+x_2+\cdots+x_k)=f_k(x_1)+f_k(x_2)+\cdots+f_k(x_k) \end{align*} $$

for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$ , then $f_k$ is the identity function.

In Sections 2 and 3, we will also show that $\mathcal {O}$ is neither an additive nor a $3$ -additive uniqueness set of $\mathcal {M}$ .

2. Non $2$ -additive uniqueness

Theorem 2.1. If a multiplicative function $f_2$ satisfies

$$ \begin{align*} f_2(a+b) = f_2(a)+f_2(b) \quad\text{ for }a,b \in \mathcal{O}, \end{align*} $$

then $f_2(2) = 2$ and $f_2(4)$ can be an arbitrary number. For other n, there are two possibilities for $f_2$ : either $f_2(n) = n$ or

$$ \begin{align*} f_2(n) = \begin{cases} 1 & \text{when}\ n\ \text{is odd},\\ 0 & \text{when}\ 8\mid n. \end{cases} \end{align*} $$

Proof. Trivially, $f_2(2) = 2$ .

Since $8$ and $16$ are generalised octagonal numbers and

$$ \begin{align*} f_2(3) \cdot f_2(8) = f_2(8) + f_2(16) = f_2(8) + f_2(8) + f_2(8), \end{align*} $$

if $f_2(8) \ne 0$ , then $f_2(3) = 3$ . Then, $f_2(5) = 5$ from

$$ \begin{align*} f_2(2)\cdot f_2(3) = f_2(1) + f_2(5) = 1+f_2(5). \end{align*} $$

Note that

$$ \begin{align*} f_2(13) &= f_2(5) + f_2(8) = 5 + f_2(8), \\ f_2(3) \cdot f_2(7) &= f_2(5) + f_2(16) = 5 + 2f_2(8), \\ f_2(2) \cdot f_2(11) &= f_2(1) + f_2(3) \cdot f_2(7) = 6 + 2f_2(8). \end{align*} $$

Thus, $f_2(8) = 8$ by solving

$$ \begin{align*} f_2(2) \cdot f_2(3) \cdot f_2(11) = f_2(1) + f_2(5) \cdot f_2(13) \Longleftrightarrow 3(6+2f_2(8)) = 1 + 5(5+f_2(8)). \end{align*} $$

Now assume that $f_2(8) = 0$ . Then,

$$ \begin{align*} f_2(13) = f_2(5 + 8) = f_2(5)\quad\text{and}\quad f_2(3) \cdot f_2(7) = f_2(5+16) = f_2(5). \end{align*} $$

Since

$$ \begin{align*} f_2(2) \cdot f_2(11) = f_2(1) + f_2(3) \cdot f_2(7) = 1 + f_2(5), \end{align*} $$

we obtain an equation $f_2(3)(1+f_2(5)) = 1 + f_2(5)^2$ from

$$ \begin{align*} f_2(2) \cdot f_2(3) \cdot f_2(11) = f_2(1) + f_2(5) \cdot f_2(13). \end{align*} $$

However, since $f_2(2) \cdot f_2(3) = 1+f_2(5)$ , we can conclude that

$$ \begin{align*} f_2(3) = f_2(5) = 1. \end{align*} $$

Note that if a generalised octagonal number is even, then it is divisible by $8$ . Also, the sum of two odd generalised octagonal numbers is singly even. So we cannot determine $f_2(4)$ . It can be an arbitrary value.

Now, we have two cases for the values of $f_2(n)$ for $n \le 8$ except $n=4$ :

$$ \begin{align*} &f_2(1) = 1, f_2(2) = 2, f_2(3) = 3, f_2(5) = 5, f_2(6) = 6, f_2(7) = 7, f_2(8) = 8;\\ &f_2(1) = 1, f_2(2) = 2, f_2(3) = 1, f_2(5) = 1, f_2(6) = 2, f_2(7) = 1, f_2(8) = 0. \end{align*} $$

Consider the first case. That is, let us show that $f_2(n)=n$ for all n except for  $4$ . We use induction on n. Suppose that $f_2(n)=n$ for $4\neq n<N$ . If N is not a prime power, then $N=ab$ with $\text {gcd}(a,b)=1$ and $f_2(N) = f_2(a) \cdot f_2(b) = ab =N$ by the multiplicativity of $f_2$ and the induction hypothesis. Thus, we may assume that $N=p^k$ is a prime power.

If $N = 2^r$ with $r \ge 4$ , then $f_2(N) = N$ from the equations

$$ \begin{align*} f_2(\mathcal{O}_{2^{r-2}} + \mathcal{O}_{2^{r-2}}) &= f_2( 2^{r-1}(3\cdot2^{r-3} - 1) + 2^{r-1}(3\cdot2^{r-3} - 1) ) \\ &= f_2(2^r) \cdot f_2(3\cdot2^{r-3} - 1) \\ &= f_2(2^r)\,(3\cdot2^{r-3} - 1) \end{align*} $$

and

$$ \begin{align*}f_2(\mathcal{O}_{2^{r-2}}) + f_2(\mathcal{O}_{2^{r-2}}) = 2 f_2( 2^{r-1} ) \cdot f_2(3\cdot2^{r-3} - 1) = 2^r (3\cdot2^{r-3} - 1),\end{align*} $$

since $3\cdot 2^{r-3}-1 < 2^r$ .

Now, suppose $N = 3^{2r+1}$ with $r \ge 1$ . In this case,

$$ \begin{align*} \mathcal{O}_{3^r} + \mathcal{O}_{-3^r} = 3^r(3\cdot3^r-2) + 3^r(3\cdot3^r+2) = 2 \cdot 3^{2r+1} \end{align*} $$

gives $f_2(3^{2r+1}) \kern1.3pt{=}\kern1.3pt 3^{2r+1}$ . Next, let us consider $N \kern1.3pt{=}\kern1.3pt 3^{2r}$ with $r \kern1.3pt{\ge}\kern1.3pt 2$ . Since ${3^2 \kern1.3pt{\equiv}\kern1.3pt -1 \pmod {5}}$ , we have $3^{2r} = 5m\pm 1$ with m even. Note that

$$ \begin{align*} \mathcal{O}_{-2m} + \mathcal{O}_{m+1} &= 4m(3m+1) + (m+1)(3m+1) = (3m+1)(5m+1), \\ \mathcal{O}_{-m+1} + \mathcal{O}_{2m} &= (m-1)(3m-1) + 4m(3m-1) = (3m-1)(5m-1). \end{align*} $$

Since $\gcd (m,3m+1) = \gcd (m+1,3m+1) = \gcd (3m+1,5m+1) = 1$ , and both of $4m$ and $3m+1$ are less than $5m+1$ , we can conclude that $f_2(5m+1) = 5m+1$ . Also, $f_2(5m-1) = 5m-1$ by the same method. Thus, $f_2(3^{2r}) = 3^{2r}$ .

The final case is $N = p^r$ with $p \ne 2,3$ . Note that $p^r = 6m\pm 1$ with $m \ge 2$ and

(*) $$ \begin{align} \begin{aligned} \mathcal{O}_{-4m} + \mathcal{O}_{-2m} = 8m(6m+1) + 4m(3m+1) = 12m(5m+1), \\ \mathcal{O}_{2m} + \mathcal{O}_{4m} = 8m(6m-1) + 4m(3m-1) = 12m(5m-1). \end{aligned} \end{align} $$

If $\gcd (8,m) = \gcd (4,3m\pm 1) = \gcd (4,5m\pm 1) = \gcd (3,5m\pm 1)$ , then (*) yields $f_2(6m\pm 1) = 6m\pm 1$ . However, otherwise, we must split each factor carefully. This part is complicated, so we break it into several cases. The proofs for $6m+1$ and $6m-1$ are similar, so we only treat $6m+1$ .

Case (i). $8m$ is a power of $2$ . In this case, letting $m = 2^r$ , $8m = 2^{r+3}$ is greater than $6m+1$ . So, we cannot apply the induction hypothesis to $f_2(8m)$ . However, note that

$$ \begin{align*} \mathcal{O}_{2^{r+1}} + \mathcal{O}_{2^{r+1}} = 2^{r+2}(3\cdot2^r-1) + 2^{r+2}(3\cdot2^r-1) = 2^{r+3}(3\cdot2^r-1) \end{align*} $$

and

$$ \begin{align*} 2^{r+2} = 4m < 6m+1 \quad\text{and}\quad 3\cdot2^r-1 = 3m-1 < 6m+1. \end{align*} $$

Thus, $f_2$ fixes $2^{r+3} = 8m$ .

Case (ii). $4(3m+1)$ is a power of $2$ . If we let $3m+1 = 2^r$ , then $4(3m+1) = 2^{r+2}$ and

$$ \begin{align*} \mathcal{O}_{2^r} + \mathcal{O}_{2^r} = 2^{r+1}(3\cdot2^{r-1}-1) + 2^{r+1}(3\cdot2^{r-1}-1) = 2^{r+2}(3\cdot2^{r-1}-1). \end{align*} $$

However, in this equation, $2^{r+1} = 2(3m+1)$ is not less than $6m+1$ . So, we apply this method again to verify $f_2(2^{r+1}) = 2^{r+1}$ .

Case (iii). The divisor $4(5m+1)$ of $12m(5m+1)$ is a power of $2$ . We can show that $f_2(4(5m+1)) = 4(5m+1)$ by applying the previous method twice.

Case (iv). The divisor $3(5m+1)$ of $12m(5m+1)$ is a power of $3$ . Since $\operatorname {ord}_5{3} = 4$ , we have $3(5m+1) = 3^{4r+1}$ . Thus,

$$ \begin{align*} \mathcal{O}_{3^{2r}} + \mathcal{O}_{-3^{2r}} = 3^{2r}(3\cdot3^{2r}-2) + 3^{2r}(3\cdot3^{2r}+2) = 2 \cdot 3^{4r+1}. \end{align*} $$

We can conclude that $f_2$ fixes $3(5m+1)$ .

Case (v). $4(5m+1) = 2^{a+2}\cdot 3$ with $a \ge 1$ . Since $\tfrac 134(5m+1)> 6m+1$ , we should check this case. Note that $5m+1$ is divisible by $2\cdot 3$ when $m = 6n+1$ with $n \ge 1$ . Then,

$$ \begin{align*} 5(6n+1)+1 = 2^a\cdot3 \Longleftrightarrow 5n+1 = 2^{a-1}. \end{align*} $$

If we take both sides modulo $5$ , we deduce that $a-1 = 4k$ . That is, $5n = 16^k-1$ with $k \ge 1$ . Calculating $6m+1$ :

$$ \begin{align*} 6m+1 &= 6(6n+1)+1 = 6^2 \times \frac{16^k-1}{5} + 7 \\ &= \frac{(6\cdot4^k)^2-1}{5} = \frac{1}{5}(6\cdot4^k+1)(6\cdot4^k-1). \end{align*} $$

Thus, $6m+1$ cannot be a power of a prime.

Case (vi). $3(5m+1) = 2\cdot 3^{b+1}$ with $b \ge 1$ . Note that $\tfrac 123(5m+1)> 6m+1$ . However, $m = 6n+1$ with $n \ge 1$ . Then,

$$ \begin{align*} 5(6n+1)+1 = 2\cdot3^b \Longleftrightarrow 5n+1 = 3^{b-1} \end{align*} $$

and thus $5n = 3^{4k} - 1$ with $k \ge 1$ . Thus,

$$ \begin{align*} 6m+1 = \tfrac{1}{5}(6\cdot9^k+1)(6\cdot9^k-1) \end{align*} $$

and this cannot be a power of p.

From (*) and Cases (i)–(vi), we can conclude that $f_2(6m+1) = 6m+1$ . Similarly, $f_2$ also fixes $6m-1$ . Hence, $f_2(n) = n$ except for $n=4$ .

By the same process, we can deduce the alternative with $f_2(2^r) = 0$ for $r \ge 3$ and $f_2(n) = 1$ if n is odd.

3. Non $3$ -additive uniqueness

Theorem 3.1. If a multiplicative function $f_3$ satisfies

$$ \begin{align*} f_3(a+b+c)=f_3(a)+f_3(b)+f_3(c) \end{align*} $$

for $a,b,c\in \mathcal {O}$ , then $f_3(n)=n$ for $n\neq 4$ , and $f_3(4)$ can be an arbitrary number.

Proof of Theorem 3.1.

Trivially, $f_3(3) = 3$ . Note that

$$ \begin{align*} f_3(7) &= f_3(5+1+1) = f_3(5) + 2,\\ f_3(11) &= f_3(5+5+1) = 2f_3(5)+1,\\ f_3(5)\cdot f_3(7) &= f_3(3)\cdot f_3(11) + f_3(1)+f_3(1). \end{align*} $$

If we set $a = f_3(5)$ , then $a(a+2) = 3(2a+1)+2$ . We obtain two solutions $a = -1$ and $a = 5$ .

If $f_3(5) = -1$ , then $f_3(8) = 2$ from

$$ \begin{align*} f_3(3) \cdot f_3(7) = 3 \cdot 1 = f_3(8+8+5) = 2f_3(8) -1. \end{align*} $$

However, this leads to a contradiction:

$$ \begin{align*} f_3(2) \cdot (-1) = f_3(2) \cdot f_3(5) &= f_3(8+1+1) = f_3(8) + 2 = 4, \\ f_3(2) = f_3(2) \cdot f_3(7) &= f_3(8+5+1) = f_3(8) = 2. \end{align*} $$

Thus, we can conclude that $f_3(5)=5$ . Then $f_3(n)=n$ for $n\le 8$ except $n=4$ . We can also find $f(9) = 9$ and $f(16) = 16$ from

$$ \begin{align*} f(2)\cdot f(9) = f(8+5+5) = 18, \quad f(2)\cdot f(9) = f(16+1+1) = f(16) + 2. \end{align*} $$

Let us show that $f_3(n)=n$ for all n except $n=4$ . We use induction on n. Suppose that $f_3(n)=n$ for $4\neq n<N$ . If N is not a prime power, then $N=ab$ with $\text {gcd}(a,b)=1$ and $f_3(N)=N$ by the multiplicativity of $f_3$ and the induction hypothesis. Thus, we may assume that N is a prime power.

If $N=3^r$ , then from the equalities

$$ \begin{align*} f_3(3\mathcal{O}_{3^{r-1}})&=3f_3(\mathcal{O}_{3^{r-1}})=3f_3(3^{r-1}(3^r-2))=3f_3(3^{r-1}) \cdot f_3(3^r-2)\\ &=f_3(3^r(3^r-2))=f_3(3^r) \cdot f_3(3^r-2), \end{align*} $$

we conclude that $f_3(3^r)=3^r$ since $f_3(3^r-2)=3^r-2$ by the induction hypothesis.

Now suppose that $N=2^{2s+1}$ with $s\ge 2$ . In this case,

$$ \begin{align*} \mathcal{O}_{2^s}+\mathcal{O}_{2^s}+\mathcal{O}_{-2^{s+1}}=2^{s+1}(3\cdot2^{s-1}-1)+2^{s+1}(3\cdot2^{s-1}-1)+2^{s+2}(3\cdot2^s+1)=9\cdot2^{2s+1} \end{align*} $$

yields $f_3(2^{2s+1})=2^{2s+1}$ since $3\cdot 2^{s-1}-1<2^{2s+1}$ , $3\cdot 2^s+1<2^{2s+1}$ . Next, assume that s is even and $N=2^{s+2}$ with $s\ge 4$ . In this case, from

$$ \begin{align*} \mathcal{O}_{2^{s-1}}+\mathcal{O}_{-2^{s-1}}+\mathcal{O}_{2^{s+1}} &=2^s(3\cdot2^{s-2}-1)+2^s(3\cdot2^{s-2}+1)+2^{s+2}(3\cdot2^s-1)\\ &=2^{s+2}(27\cdot2^{s-3}-1), \end{align*} $$

we have $f_3(2^{s+2})=2^{s+2}$ since $3\cdot 2^{s-2}\pm 1<2^{s+2}$ , $3\cdot 2^s-1<2^{s+2}$ and $27\cdot 2^{s-3}-1<2^{s+2}$ .

Now consider $N = p^r$ with $p \ne 2,3$ . Assume $N = p^r = 6m-1$ with $m \ge 1$ and $f_3(n) = n$ for all $n < N$ .

Note that

$$ \begin{align*} \mathcal{O}_m + \mathcal{O}_m + \mathcal{O}_{4m} &= m(3m-2) + m(3m-2) + 8m(6m-1) = 6m(9m-2), \\ \mathcal{O}_{2m} + \mathcal{O}_{2m} + \mathcal{O}_{4m} &= 4m(3m-1) + 4m(3m-1) + 8m(6m-1) = 8m(9m-2). \end{align*} $$

To calculate $f_3(6m-1)$ , we consider two cases.

Case (i). m is odd. In this case, $\gcd (m,3m-2) = \gcd (2,m) = \gcd (m,9m-2) = 1$ and every factor of the above two equations is less than $6m-1$ except $9m-2$ or a power of $2$ or $3$ . So, letting $x = f_3(6m-1)$ and $y = f_3(9m-2)$ , we can write

$$ \begin{align*} m(3m-2) + m(3m-2) + 8m\,x = 6m\,y, \\ 4m(3m-1) + 4m(3m-1) + 8m\,x = 8m\,y, \end{align*} $$

and these equations yield $x = f_3(6m-1) = 6m-1$ and $y = f_3(9m-2) = 9m-2$ .

Case (ii). m is even. Let $m = 2n$ . Then, we should check $f_3(12n-1)$ . Note that

$$ \begin{align*} \mathcal{O}_m + \mathcal{O}_m + \mathcal{O}_{4m} = 4n(3n-1) + 4n(3n-1) + 16n(12n-1) = 12n(9n-1) \end{align*} $$

and $\gcd (n,3n-1) \kern1.4pt{=}\kern1.4pt \gcd (2,12n-1) \kern1.4pt{=}\kern1.4pt \gcd (n,12n-1) \kern1.4pt{=}\kern1.4pt \gcd (n,9n-1) \kern1.4pt{=}\kern1.4pt 1$ , and every factor is less than $12n-1$ or a power of $2$ or $3$ . However, we have an exceptional case to check: $16n$ is a power of $2$ greater than $12n-1$ . In this case, we can use the equalities for $f_3(2^r)$ . So, $f_3$ fixes every factor. Thus, if we rearrange the equality

$$ \begin{align*} 4n(3n-1) + 4n(3n-1) + 16n\,f_3(12n-1) = 12n(9n-1), \end{align*} $$

we obtain $f_3(6m-1) = f_3(12n-1) = 12n-1$ .

For the case $N = p^r = 6m+1$ , we can use $\mathcal {O}_{-m} = m(3m+2)$ .

4. $4$ -additive uniqueness

Theorem 4.1. If a multiplicative function $f_4$ satisfies

$$ \begin{align*} f_4(a+b+c+d)=f_4(a)+f_4(b)+f_4(c)+f_4(d) \end{align*} $$

for $a,b,c,d\in \mathcal {O}$ , then $f_4$ is the identity function.

We will need the following lemma.

Lemma 4.2 (Kim et al. [Reference Kim, Lee and Oh8, Theorem 4.7]).

For any integer $k\ge 4$ , any positive integer n is a sum of k nonzero generalised octagonal numbers, except for $n=1,2,\ldots ,k-1$ and $k+b$ , where $b\in B=\{1,2,3,5,6,9,10,13,17\}$ .

Proof of Theorem 4.1.

By Lemma 4.2, every positive integer can be represented as a sum of four nonzero generalised octagonal numbers except for $1,2,3,5,6,7,9,10,13$ , $14,17,21$ . Note that it is sufficient to determine $f_4(n)$ for $n=2,3,5,7,9,13,17$ .

Trivially, $f_4(1)=1$ and $f_4(4)=4$ . Note that $f_4(12)=4f_4(3)=f_4(5+5+1+1)=2f_4(5)+2$ . Thus, $f_4(3)=\tfrac 12(f_4(5)+1)$ . Moreover,

$$ \begin{align*} f_4(8) &=f_4(5+1+1+1)=f_4(5)+3,\\ f_4(11) &=f_4(8+1+1+1)=f_4(5)+6. \end{align*} $$

Now observe that

$$ \begin{align*} f_4(40)&=f_4(8) \cdot f_4(5)=(f_4(5)+3) \cdot f_4(5)\\ &=f_4(33+5+1+1)=f_4(3) \cdot f_4(11)+f_4(5)+2=f_4(3)(f_4(5)+6)+f_4(5)+2. \end{align*} $$

After simplification,

$$ \begin{align*} f_4(5)^2+2f_4(5)=f_4(3)(f_4(5)+6)+2. \end{align*} $$

For convenience, let $f_4(5)=a$ . Then $2a^2+4a=(a+1)(a+6)+4$ and we obtain two solutions $f_4(5)=-2$ and $f_4(5)=5$ . The first solution yields $f_4(3)=-\tfrac 12$ and

$$ \begin{align*} f_4(16) &=3f_4(5)+1=-5,\\ f_4(21) &=f_4(3)(f_4(5)+3)-3=-\tfrac{7}{2}. \end{align*} $$

However, this leads to a contradiction:

$$ \begin{align*} f_4(48)& =f_4(21+21+5+1)=2f_4(21)+f_4(5)+1=-8\\ & =f_4(16) \cdot f_4(3)=\tfrac{5}{2}. \end{align*} $$

Thus, we can conclude that $f_4(3)=3$ , $f_4(5)=5$ and $f_4(7)=7$ . Since

$$ \begin{align*} f_4(30) &=f_4(2)\cdot f_4(3)\cdot f_4(5)=f_4(1+5+8+16),\\ f_4(18) &=f_4(2)\cdot f_4(9)=f_4(8+8+1+1),\\ f_4(26) &=f_4(13)\cdot f_4(2)=f_4(16+8+1+1),\\ f_4(34) &=f_4(17)\cdot f_4(2)=f_4(16+16+1+1), \end{align*} $$

we find $f_4(2)=2$ , $f_4(9)=9$ , $f_4(13)=13$ and $f_4(17)=17$ .

Since other numbers can be expressed as sums of four positive generalised octagonal numbers, we can conclude that $f_4$ is the identity function by induction.

5. $5$ -additive uniqueness

Theorem 5.1. If a multiplicative function $f_5$ satisfies

$$ \begin{align*} f_5(a+b+c+d+e)=f_5(a)+f_5(b)+f_5(c)+f_5(d)+f_5(e) \end{align*} $$

for $a,b,c,d,e\in \mathcal {O}$ , then $f_5$ is the identity function.

Proof of Theorem 5.1.

By Lemma 4.2, the exceptional set is

$$ \begin{align*}\{1,2,3,4\}\cup\{6,7,8,10,11,14,15,18,22\}.\end{align*} $$

Note that $f_5(5)=5$ and $f_5(9)=f_5(5+1+1+1+1)=f_5(5)+4=9$ . So it is sufficient to determine $f_5(n)$ for $n=2,3,4,7,8,11$ . Note that

$$ \begin{align*} f_5(16)=f_5(8+5+1+1+1)=f_5(8)+8. \end{align*} $$

Then

$$ \begin{align*} f_5(72)=9f_5(8)=f_5(16+16+16+16+8)=4f_5(16)+f_5(8)=5f_5(8)+32. \end{align*} $$

Therefore, $f_5(8)=8$ and from $f_5(24)=f_5(3) \cdot f_5(8)=f_5(8+5+5+5+1)= 16+f_5(8)$ , we get $f_5(3)=3$ . Similarly, from

$$ \begin{align*} f_5(30)&=5f_5(2) \cdot f_5(3)=f_5(8+8+8+5+1)=3f_5(8)+6,\\ f_5(36)&=9f_5(4)=f_5(5+5+5+5+16)=20+f_5(16),\\ f_5(21)&=f_5(3)\cdot f_5(7)=f_5(5+5+5+5+1)=21,\\ f_5(33)&=f_5(3)\cdot f_5(11)=f_5(8+8+8+8+1)=4f_5(8)+1, \end{align*} $$

we deduce that $f_5(2)=2$ , $f_5(4)=4$ , $f_5(7)=7$ and $f_5(11)=11$ , respectively.

Since other numbers can be represented as sums of five positive generalised octagonal numbers, we can conclude that $f_5$ is the identity function by induction.

6. Proof for k-additivity with $k\ge 6$

Let $k\geq 6$ and $f_k$ be k-additive on positive generalised octagonal numbers. That is, $f_k(x_1+x_2+\dotsb +x_k)=f_k(x_1)+f_k(x_2)+\dotsb +f_k(x_k)$ for arbitrary $x_1,\ldots ,x_k\in \mathcal {O}$ . Trivially, $f_k(1)=1$ and $f_k(k)=k$ .

Note that

$$ \begin{align*} (k-3)+18&=(k-3)\cdot1+5+5+8\\ &=(k-3)\cdot1+1+1+16,\\ (k-3)+37&=(k-3)\cdot1+8+8+21\\ &=(k-3)\cdot1+5+16+16,\\ (k-3)+42&=(k-3)\cdot1+5+16+21\\ &=(k-3)\cdot1+40+1+1,\\ (k-5)+64&=(k-5)\cdot1+8+8+16+16+16\\ &=(k-5)\cdot1+1+1+1+21+40. \end{align*} $$

Let $x=f_k(5)$ , $y=f_k(8)$ , $z=f_k(16)$ and $w=f_k(21)$ . The above equalities give rise to the system of equations

$$ \begin{align*} \begin{cases} 2x+y=2+z,\\ 2y+w=x+2z,\\ x+z+w=2+xy,\\ 2y+3z=3+xy+w. \end{cases} \end{align*} $$

The solutions are

$$ \begin{gather*} f_k(5)=f_k(8)=f_k(16)=f_k(21)=1,\\ f_k(5)=5, f_k(8)=8, f_k(16)=16, f_k(21)=21. \end{gather*} $$

Consider the first solution set $f_k(5)=f_k(8)=f_k(16)=f_k(21)=1$ . Arrange the positive generalised octagonal numbers into an increasing sequence and let $O_n$ denote the nth term. Then $f_k(O_1)=f_k(O_2)=f_k(O_3)=f_k(O_4)=f_k(O_5)=1$ . As seen in Section 5, every $O_n$ with $n\geq 6$ can be written as a sum of five positive generalised octagonal numbers. From the equality

(6.1) $$ \begin{align} (k-6)+1+1+1+16+21+O_f =(k-6)+40+O_a+O_b+O_c+O_d+O_e \end{align} $$

with $a,b,c,d,e<f$ , we infer that $f_k(O_n)=1$ for all $n\geq 6$ inductively. However, for sufficiently large n, $O_n$ can be represented as a sum of k positive generalised octagonal numbers. So $f_k(O_n)=k$ , which is a contradiction.

Hence, we conclude that $f_k(5)=5$ , $f_k(8)=8$ , $f_k(16)=16$ and $f_k(21)=21$ . Moreover, (6.1) yields $f_k(O_n)=O_n$ for every $n\geq 1$ .

If N is a sum of k positive generalised octagonal numbers, then $f_k(N)=N$ . Otherwise, choose an integer $M>k+17$ such that $\text {gcd}(M,N)=1$ . Then M and $MN$ can be represented as sums of k positive generalised octagonal numbers by Lemma 4.2. By the multiplicativity of $f_k$ , $Mf_k(N)=f_k(M) \cdot f_k(N)=f_k(MN)=MN$ . Therefore, $f_k(N)=N$ and this completes the proof.

Footnotes

This research was supported by ADA University Faculty Research and Development Funds and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1A2C1092930).

References

Chung, P. V., ‘Multiplicative functions satisfying the equation $f({m}^2+{n}^2)=f({m}^2)+f({n}^2)$ ’, Math. Slovaca 46(2–3) (1996), 165171.Google Scholar
Chung, P. V. and Phong, B. M., ‘Additive uniqueness sets for multiplicative functions’, Publ. Math. Debrecen 55(3–4) (1999), 237243.CrossRefGoogle Scholar
Dubickas, A. and Šarka, P., ‘On multiplicative functions which are additive on sums of primes’, Aequationes Math. 86(1–2) (2013), 8189.CrossRefGoogle Scholar
Fang, J.-H., ‘A characterization of the identity function with equation $f(p+q+r)=f(p)+f(q)+f(r)$ ’, Combinatorica 31(6) (2011), 697701.CrossRefGoogle Scholar
Hasanalizade, E., ‘Multiplicative functions $k$ -additive on generalized pentagonal numbers’, Integers 22 (2022), Article no. A43.Google Scholar
Kim, B., Kim, J. Y., Lee, C. G. and Park, P.-S., ‘Multiplicative functions additive on generalized pentagonal numbers’, C. R. Math. Acad. Sci. Paris 356(2) (2018), 125128.CrossRefGoogle Scholar
Kim, B., Kim, J. Y., Lee, C. G. and Park, P.-S., ‘Multiplicative functions additive on polygonal numbers’, Aequationes Math. 95 (2021), 601621.CrossRefGoogle Scholar
Kim, D., Lee, J. and Oh, B.-H., ‘A sum of three nonzero triangular numbers’, Int. J. Number Theory 17(10) (2021), 22792300.CrossRefGoogle Scholar
Park, P.-S., ‘On $k$ -additive uniqueness of the set of squares for multiplicative functions’, Aequationes Math. 92(3) (2018), 487495.CrossRefGoogle Scholar
Park, P.-S., ‘Multiplicative functions which are additive on triangular numbers’, Bull. Korean Math. Soc. 58(3) (2021), 603608.Google Scholar
Park, P.-S., ‘On multiplicative functions which are additive on positive cubes’, Preprint, 2023, arXiv:2302.07461.Google Scholar
Spiro, C. A., ‘Additive uniqueness sets for arithmetic functions’, J. Number Theory 42(2) (1992), 232246.CrossRefGoogle Scholar