Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-20T09:00:25.564Z Has data issue: false hasContentIssue false

Large-eddy simulation-based shape optimization for mitigating turbulent wakes of a bluff body using the regularized ensemble Kalman method

Published online by Cambridge University Press:  12 December 2024

Xin-Lei Zhang
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100049, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
Fengshun Zhang
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100049, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
Zhaobin Li
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100049, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
Xiaolei Yang
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100049, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
Guowei He*
Affiliation:
The State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100049, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
*
Email address for correspondence: [email protected]

Abstract

In this work, the shape of a bluff body is optimized to mitigate velocity fluctuations of turbulent wake flows based on large-eddy simulations (LES). The Reynolds-averaged Navier–Stokes method fails to capture velocity fluctuations, while direct numerical simulations are computationally prohibitive. This necessitates using the LES method for shape optimization given its scale-resolving capability and relatively affordable computational cost. However, using LES for optimization faces challenges in sensitivity estimation as the chaotic nature of turbulent flows can lead to the blowup of the conventional adjoint-based gradient. Here, we propose using the regularized ensemble Kalman method for the LES-based optimization. The method is a statistical optimization approach that uses the sample covariance between geometric parameters and LES predictions to estimate the model gradient, circumventing the blowup issue of the adjoint method for chaotic systems. Moreover, the method allows for the imposition of smoothness constraints with one additional regularization step. The ensemble-based gradient is first evaluated for the Lorenz system, demonstrating its accuracy in the gradient calculation of the chaotic problem. Further, with the proposed method, the cylinder is optimized to be an asymmetric oval, which significantly reduces turbulent kinetic energy and meander amplitudes in the wake flows. The spectral analysis methods are used to characterize the flow field around the optimized shape, identifying large-scale flow structures responsible for the reduction in velocity fluctuations. Furthermore, it is found that the velocity difference in the shear layer is decreased with the shape change, which alleviates the Kelvin–Helmholtz instability and the wake meandering.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ancell, B. & Hakim, G.J. 2007 Comparing adjoint- and ensemble-sensitivity analysis with applications to observation targeting. Mon. Weath. Rev. 135 (12), 41174134.CrossRefGoogle Scholar
Bae, H.J. & Koumoutsakos, P. 2022 Scientific multi-agent reinforcement learning for wall-models of turbulent flows. Nat. Commun. 13 (1), 1443.CrossRefGoogle ScholarPubMed
Blonigan, P.J., Fernandez, P., Murman, S.M., Wang, Q., Rigas, G. & Magri, L. 2016 Toward a chaotic adjoint for LES. In Proceedings of the Summer Program, Center for Turbulence Research, Stanford University.Google Scholar
Bloor, M.S. 1964 The transition to turbulence in the wake of a circular cylinder. J. Fluid Mech. 19 (2), 290304.CrossRefGoogle Scholar
Bodony, D.J. & Lele, S.K. 2005 On using large-eddy simulation for the prediction of noise from cold and heated turbulent jets. Phys. Fluids 17 (8), 085103.Google Scholar
Cattafesta, L.N. III & Sheplak, M. 2011 Actuators for active flow control. Annu. Rev. Fluid Mech. 43, 247272.CrossRefGoogle Scholar
Chandramoorthy, N., Fernandez, P., Talnikar, C. & Wang, Q. 2019 Feasibility analysis of ensemble sensitivity computation in turbulent flows. AIAA J. 57 (10), 45144526.CrossRefGoogle Scholar
Chen, Y., Oliver, D.S. & Zhang, D. 2009 Efficient ensemble-based closed-loop production optimization. SPE J. 14 (4), 634645.CrossRefGoogle Scholar
Choi, H., Jeon, W.-P. & Kim, J. 2008 Control of flow over a bluff body. Annu. Rev. Fluid Mech. 40, 113139.CrossRefGoogle Scholar
Colburn, C.H., Cessna, J.B. & Bewley, T.R. 2011 State estimation in wall-bounded flow systems. Part 3. The ensemble Kalman filter. J. Fluid Mech. 682, 289303.CrossRefGoogle Scholar
Dhert, T., Ashuri, T. & Martins, J.R.R.A. 2017 Aerodynamic shape optimization of wind turbine blades using a Reynolds-averaged Navier–Stokes model and an adjoint method. Wind Energy 20 (5), 909926.CrossRefGoogle Scholar
Ernst, O.G., Sprungk, B. & Starkloff, H.-J. 2015 Analysis of the ensemble and polynomial chaos Kalman filters in Bayesian inverse problems. SIAM/ASA J. Uncertainty Quant. 3 (1), 823851.CrossRefGoogle Scholar
Evensen, G. 2009 Data Assimilation: The Ensemble Kalman Filter. Springer.CrossRefGoogle Scholar
Evensen, G. 2018 Analysis of iterative ensemble smoothers for solving inverse problems. Comput. Geosci. 22 (3), 885908.CrossRefGoogle Scholar
Ge, L. & Sotiropoulos, F. 2007 A numerical method for solving the 3D unsteady incompressible Navier–Stokes equations in curvilinear domains with complex immersed boundaries. J. Comput. Phys. 225 (2), 17821809.CrossRefGoogle ScholarPubMed
Germano, M., Piomelli, U., Moin, P. & Cabot, W.H. 1991 A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3 (7), 17601765.CrossRefGoogle Scholar
Gilmanov, A. & Sotiropoulos, F. 2005 A hybrid Cartesian/immersed boundary method for simulating flows with 3D, geometrically complex, moving bodies. J. Comput. Phys. 207 (2), 457492.CrossRefGoogle Scholar
Holst, T. & Pulliam, T. 2001 Aerodynamic shape optimization using a real-number-encoded genetic algorithm. In 19th AIAA Applied Aerodynamics Conference, 2001-2473.Google Scholar
Huang, D.Z., Schneider, T. & Stuart, A.M. 2022 Iterated Kalman methodology for inverse problems. J. Comput. Phys. 463, 111262.CrossRefGoogle Scholar
Hunt, B.R., Kostelich, E.J. & Szunyogh, I. 2007 Efficient data assimilation for spatiotemporal chaos: a local ensemble transform Kalman filter. Phys. D: Nonlinear Phenom. 230 (1–2), 112126.CrossRefGoogle Scholar
Iglesias, M.A., Law, K.J.H. & Stuart, A.M. 2013 Ensemble Kalman methods for inverse problems. Inverse Probl. 29 (4), 045001.CrossRefGoogle Scholar
Jahanbakhshi, R. & Zaki, T.A. 2023 Optimal two-dimensional roughness for transition delay in high-speed boundary layer. J. Fluid Mech. 968, A24.CrossRefGoogle Scholar
Kiefer, J. & Wolfowitz, J. 1952 Stochastic estimation of the maximum of a regression function. Ann. Math. Stat. 23 (3), 462466.CrossRefGoogle Scholar
Knoll, D.A. & Keyes, D.E. 2004 Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193 (2), 357397.CrossRefGoogle Scholar
Kovachki, N.B. & Stuart, A.M. 2019 Ensemble Kalman inversion: a derivative-free technique for machine learning tasks. Inverse Probl. 35 (9), 095005.CrossRefGoogle Scholar
Labahn, J.W., Wu, H., Harris, S.R., Coriton, B., Frank, J.H. & Ihme, M. 2020 Ensemble Kalman filter for assimilating experimental data into large-eddy simulations of turbulent flows. Flow Turbul. Combust. 104, 861893.CrossRefGoogle Scholar
Lai, T.L. 2003 Stochastic approximation. Ann. Stat. 31 (2), 391406.CrossRefGoogle Scholar
Lea, D.J., Allen, M.R. & Haine, T.W.N. 2000 Sensitivity analysis of the climate of a chaotic system. Tellus A: Dyn. Meteorol. Oceanogr. 52 (5), 523532.CrossRefGoogle Scholar
Li, G. & Reynolds, A.C. 2011 Uncertainty quantification of reservoir performance predictions using a stochastic optimization algorithm. Comput. Geosci. 15, 451462.CrossRefGoogle Scholar
Lorente-Macias, J., Bengana, Y. & Hwang, Y. 2023 Shape optimisation for a stochastic two-dimensional cylinder wake using ensemble variation. J. Fluid Mech. 959, A7.CrossRefGoogle Scholar
Luo, X. 2021 Novel iterative ensemble smoothers derived from a class of generalized cost functions. Comput. Geosci. 25 (3), 11591189.CrossRefGoogle Scholar
MacArt, J.F., Sirignano, J. & Freund, J.B. 2021 Embedded training of neural-network subgrid-scale turbulence models. Phys. Rev. Fluids 6 (5), 050502.CrossRefGoogle Scholar
Mani, K. & Mavriplis, D.J. 2008 Unsteady discrete adjoint formulation for two-dimensional flow problems with deforming meshes. AIAA J. 46 (6), 13511364.CrossRefGoogle Scholar
Marsden, A.L., Wang, M., Dennis, J.E. & Moin, P. 2007 Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 572, 1336.CrossRefGoogle Scholar
Michelén-Ströfer, C.A., Zhang, X.-L. & Xiao, H. 2021 a DAFI: an open-source framework for ensemble-based data assimilation and field inversion. Commun. Comput. Phys. 29 (5), 15831622.CrossRefGoogle Scholar
Michelén-Ströfer, C.A., Zhang, X.-L. & Xiao, H. 2021 b Ensemble gradient for learning turbulence models from indirect observations. Commun. Comput. Phys. 30 (5), 12691292.CrossRefGoogle Scholar
Min, C. & Choi, H. 1999 Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123156.CrossRefGoogle Scholar
Mohammadi, B. & Pironneau, O. 2009 Applied Shape Optimization for Fluids. Oxford University Press.CrossRefGoogle Scholar
Moldovan, G., Lehnasch, G., Cordier, L. & Meldi, M. 2021 A multigrid/ensemble Kalman filter strategy for assimilation of unsteady flows. J. Comput. Phys. 443, 110481.CrossRefGoogle Scholar
Mons, V., Du, Y. & Zaki, T.A. 2021 Ensemble-variational assimilation of statistical data in large-eddy simulation. Phys. Rev. Fluids 6 (10), 104607.CrossRefGoogle Scholar
Nadarajah, S.K. & Jameson, A. 2007 Optimum shape design for unsteady flows with time-accurate continuous and discrete adjoint method. AIAA J. 45 (7), 14781491.CrossRefGoogle Scholar
Ni, A. & Wang, Q. 2017 Sensitivity analysis on chaotic dynamical systems by non-intrusive least squares shadowing (NILSS). J. Comput. Phys. 347, 5677.CrossRefGoogle Scholar
Norberg, C. 1993 Pressure forces on a circular cylinder in cross flow. In Bluff-Body Wakes, Dynamics and Instabilities: IUTAM Symposium, Göttingen, Germany September 7–11, 1992, pp. 275–278. Springer.CrossRefGoogle Scholar
Novati, G., de Laroussilhe, H.L. & Koumoutsakos, P. 2021 Automating turbulence modelling by multi-agent reinforcement learning. Nat. Mach. Intell. 3 (1), 8796.CrossRefGoogle Scholar
Parnaudeau, P., Carlier, J., Heitz, D. & Lamballais, E. 2008 Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20 (8), 085101.CrossRefGoogle Scholar
Patnaik, B.S.V. & Wei, G.W. 2002 Controlling wake turbulence. Phys. Rev. Lett. 88 (5), 054502.CrossRefGoogle ScholarPubMed
Prasad, A. & Williamson, C.H.K. 1997 The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375402.CrossRefGoogle Scholar
Rackauckas, C. & Nie, Q. 2017 DifferentialEquations.jl – a performant and feature-rich ecosystem for solving differential equations in Julia. J. Open Res. Softw. 5 (1), 15.CrossRefGoogle Scholar
Rashidi, S., Hayatdavoodi, M. & Esfahani, J.A. 2016 Vortex shedding suppression and wake control: a review. Ocean Engng 126, 5780.CrossRefGoogle Scholar
Saad, Y. 1993 A flexible inner–outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14 (2), 461469.CrossRefGoogle Scholar
Schillings, C. & Stuart, A.M. 2017 Analysis of the ensemble Kalman filter for inverse problems. SIAM J. Numer. Anal. 55 (3), 12641290.CrossRefGoogle Scholar
Schmidt, O.T. & Colonius, T. 2020 Guide to spectral proper orthogonal decomposition. AIAA J. 58 (3), 10231033.CrossRefGoogle Scholar
Schmidt, O.T., Towne, A., Rigas, G., Colonius, T. & Bres, G.A. 2018 Spectral analysis of jet turbulence. J. Fluid Mech. 855, 953982.CrossRefGoogle Scholar
Schneider, T., Stuart, A.M. & Wu, J.-L. 2022 Ensemble Kalman inversion for sparse learning of dynamical systems from time-averaged data. J. Comput. Phys. 470, 111559.CrossRefGoogle Scholar
Sieber, M., Paschereit, C.O. & Oberleithner, K. 2016 Spectral proper orthogonal decomposition. J. Fluid Mech. 792, 798828.CrossRefGoogle Scholar
Smagorinsky, J. 1963 General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weath. Rev. 91 (3), 99164.2.3.CO;2>CrossRefGoogle Scholar
Spall, J.C. 1992 Multivariate stochastic approximation using a simultaneous perturbation gradient approximation. IEEE Trans. Autom. Control 37 (3), 332341.CrossRefGoogle Scholar
Strogatz, S.H. 2018 Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. CRC Press.CrossRefGoogle Scholar
Torn, R.D. & Hakim, G.J. 2008 Ensemble-based sensitivity analysis. Mon. Weath. Rev. 136 (2), 663677.CrossRefGoogle Scholar
Wang, Q., Hu, R. & Blonigan, P. 2014 Least squares shadowing sensitivity analysis of chaotic limit cycle oscillations. J. Comput. Phys. 267, 210224.CrossRefGoogle Scholar
Wang, Q., Moin, P. & Iaccarino, G. 2009 Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM J. Sci. Comput. 31 (4), 25492567.CrossRefGoogle Scholar
Xiao, H. & Cinnella, P. 2019 Quantification of model uncertainty in RANS simulations: a review. Prog. Aerosp. Sci. 108, 131.CrossRefGoogle Scholar
Yang, X., Sotiropoulos, F., Conzemius, R.J., Wachtler, J.N. & Strong, M.B. 2015 Large-eddy simulation of turbulent flow past wind turbines/farms: the virtual wind simulator (VWIS). Wind Energy 18 (12), 20252045.CrossRefGoogle Scholar
Zhang, X.-L., Michelén-Ströfer, C. & Xiao, H. 2020 Regularized ensemble Kalman methods for inverse problems. J. Comput. Phys. 416, 109517.CrossRefGoogle Scholar
Zhang, X.-L., Xiao, H. & He, G. 2022 a Assessment of regularized ensemble Kalman method for inversion of turbulence quantity fields. AIAA J. 60 (1), 313.Google Scholar
Zhang, X.-L., Xiao, H., Luo, X. & He, G. 2022 b Ensemble Kalman method for learning turbulence models from indirect observation data. J. Fluid Mech. 949, A26.CrossRefGoogle Scholar
Zhang, X.-L., Zhang, L. & He, G. 2024 Parallel ensemble Kalman method with total variation regularization for large-scale field inversion. J. Comput. Phys. 509, 113059.CrossRefGoogle Scholar
Zhou, Z., Li, Z., He, G. & Yang, X. 2022 Towards multi-fidelity simulation of flows around an underwater vehicle with appendages and propeller. Theor. Appl. Mech. Lett. 12, 100318.CrossRefGoogle Scholar
Zhu, L., Wu, T. & He, G. 2022 Large-eddy simulation for the aero-vibro-acoustic analysis: plate–cavity system excited by turbulent channel flow. Acta Mechanica Sin. 38 (10), 322019.CrossRefGoogle Scholar