Hostname: page-component-6587cd75c8-cpvbf Total loading time: 0 Render date: 2025-04-23T16:16:08.588Z Has data issue: false hasContentIssue false

Stable laws for random dynamical systems

Published online by Cambridge University Press:  14 February 2024

ROMAIN AIMINO
Affiliation:
Departamento de Matemática, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal (e-mail: romain.aimino@fc.up.pt)
MATTHEW NICOL*
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA
ANDREW TÖRÖK
Affiliation:
Department of Mathematics, University of Houston, Houston, TX 77204, USA Institute of Mathematics of the Romanian Academy, Bucharest, Romania (e-mail: torok@math.uh.edu)

Abstract

In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $. We consider a class of non-square-integrable observables $\phi $, mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$, where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$. The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdelkader, M. andAimino, R.. On thequenched central limit theorem for random dynamical systems. J. Phys. A 49(24) (2016), 244002, 13pp.Google Scholar
Aaronson, J.,Denker, M.,Sarig, O. andZweimüller, R..Aperiodicity of cocycles and conditional local limit theorems.Stoch. Dyn. 4(1) (2004),3162.10.1142/S0219493704000936CrossRefGoogle Scholar
Aytaç, H., Freitas, J.M. and Vaienti, S.. Laws of rare events for deterministic and randomdynamical systems. Trans. Amer. Math. Soc. 367(11) (2015),82298278.10.1090/S0002-9947-2014-06300-9CrossRefGoogle Scholar
Aimino, R.,Hu, H.,Nicol, M.,Török, A. andVaienti, S..Polynomial loss of memory for maps of the interval with a neutral fixedpoint. Discrete Contin. Dyn. Syst. 35(3)(2015), 793806.10.3934/dcds.2015.35.793CrossRefGoogle Scholar
Aimino, R.,Nicol, M. andVaienti, S..Annealed and quenched limit theorems for random expanding dynamical systems.Probab. Theory Related Fields 162(1–2)(2015), 233274.10.1007/s00440-014-0571-yCrossRefGoogle Scholar
Aimino, R. andRousseau, J..Concentration inequalities for sequential dynamical systems of the unitinterval. Ergod. Th. & Dynam. Sys. 36(8) (2016),23842407.10.1017/etds.2015.19CrossRefGoogle Scholar
Bahsoun, W. andBose, C..Corrigendum: Mixing rates and limit theorems for random intermittent maps (2016 Nonlinearity29 1417). Nonlinearity 29(12)(2016), C4.10.1088/0951-7715/29/12/C4CrossRefGoogle Scholar
Boyarsky, A. andGóra, P.. Laws ofChaos: Invariant Measures and Dynamical Systems in One Dimension (Probability and ItsApplications). Birkhäuser Boston, Inc.,Boston, MA, 1997.10.1007/978-1-4612-2024-4CrossRefGoogle Scholar
Bingham, N. H., Goldie, C.M. and Teugels, J. L.. Regular Variation (Encyclopedia ofMathematics and Its Applications, 27). Cambridge UniversityPress, Cambridge, 1987.10.1017/CBO9780511721434CrossRefGoogle Scholar
Crimmins, H. andFroyland, G..Fourier approximation of the statistical properties of Anosov maps on tori.Nonlinearity 33(11) (2020),62446296.10.1088/1361-6544/ab987eCrossRefGoogle Scholar
Conze, J.-P. andRaugi, A.. Limit theorems for sequential expanding dynamical systems on   $\left[0,1\right]$ . ErgodicTheory and Related Fields (Contemporary Mathematics, 430). Ed.Assani, I.. American Mathematical Society, Providence,RI, 2007, pp. 89121.10.1090/conm/430/08253CrossRefGoogle Scholar
Dragičević, D.,Froyland, G.,González-Tokman, C. andVaienti, S.. Aspectral approach for quenched limit theorems for random hyperbolic dynamical systems.Trans. Amer. Math. Soc. 373(1) (2020),629664.10.1090/tran/7943CrossRefGoogle Scholar
Eagleson, G. K.. Some simpleconditions for limit theorems to be mixing. Teor. Veroyatn. Primen. 21(3) (1976),653660.Google Scholar
Feller, W.. An Introduction toProbability Theory and Its Applications. Volume II, 2nd edn. John Wiley &Sons, Inc., New York, 1971.Google Scholar
Freitas, A. C. M., Freitas, J.M. and Vaienti, S.. Extreme value laws for non stationary processesgenerated by sequential and random dynamical systems. Ann. Inst. HenriPoincaré Probab. Stat. 53(3) (2017),13411370.Google Scholar
Gouëzel, S.. Stable laws for the doublingmap. Preprint, 2008, https://www.math.sciences.univ-nantes.fr/~gouezel/articles/DoublingStable.pdf.Google Scholar
Gouëzel, S.. Central limittheorem and stable laws for intermittent maps. Probab. Theory RelatedFields 128(1) (2004),82122.10.1007/s00440-003-0300-4CrossRefGoogle Scholar
Gouëzel, S.. Statisticalproperties of a skew product with a curve of neutral points. Ergod. Th. &Dynam. Sys. 27(1) (2007),123151.10.1017/S0143385706000617CrossRefGoogle Scholar
Holland, M.,Nicol, M. andTörök, A..Extreme value theory for non-uniformly expanding dynamical systems.Trans. Amer. Math. Soc. 364(2) (2012),661688.10.1090/S0002-9947-2011-05271-2CrossRefGoogle Scholar
Haydn, N.,Nicol, M.,Török, A. andVaienti, S.. Almostsure invariance principle for sequential and non-stationary dynamical systems.Trans. Amer. Math. Soc. 369(8) (2017),52935316.10.1090/tran/6812CrossRefGoogle Scholar
Haydn, N. T. A.,Rousseau, J. andYang, F..Exponential law for random maps on compact manifolds.Nonlinearity 33(12) (2020),67606789.10.1088/1361-6544/aba88aCrossRefGoogle Scholar
Hirata, M.,Saussol, B. andVaienti, S..Statistics of return times: a general framework and new applications.Comm. Math. Phys. 206(1) (1999),3355.10.1007/s002200050697CrossRefGoogle Scholar
Kallenberg, O.. RandomMeasures. Akademie-Verlag, Berlin,1976.Google Scholar
Kifer, Y.. Limit theorems forrandom transformations and processes in random environments. Trans. Amer. Math.Soc. 350(4) (1998),14811518.10.1090/S0002-9947-98-02068-6CrossRefGoogle Scholar
Korepanov, A. andLeppänen, J..Loss of memory and moment bounds for nonstationary intermittent dynamicalsystems. Comm. Math. Phys. 385(2)(2021), 905935.10.1007/s00220-021-04071-5CrossRefGoogle Scholar
Kounias, E. G. andWeng, T.-s.. Aninequality and almost sure convergence. Ann. Math. Stat. 40 (1969), 10911093.10.1214/aoms/1177697615CrossRefGoogle Scholar
Liverani, C.,Saussol, B. andVaienti, S.. Aprobabilistic approach to intermittency. Ergod. Th. & Dynam. Sys. 19(3) (1999),671685.10.1017/S0143385799133856CrossRefGoogle Scholar
Melbourne, I. andZweimüller, R..Weak convergence to stable Lévy processes for nonuniformly hyperbolic dynamicalsystems. Ann. Inst. Henri Poincaré Probab. Stat. 51(2) (2015),545556.10.1214/13-AIHP586CrossRefGoogle Scholar
Nicol, M., Pereira, F.P. and Török, A.. Large deviations and central limittheorems for sequential and random systems of intermittent maps. Ergod. Th.& Dynam. Sys. 41(9) (2021),28052832.10.1017/etds.2020.90CrossRefGoogle Scholar
Nicol, M.,Török, A. andVaienti, S.. Centrallimit theorems for sequential and random intermittent dynamical systems. Ergod. Th.& Dynam. Sys. 38(3) (2018),11271153.10.1017/etds.2016.69CrossRefGoogle Scholar
Resnick, S. I.. Extreme Values, RegularVariation, and Point Processes (Applied Probability. A Series of the Applied ProbabilityTrust, 4). Springer-Verlag, NewYork, 1987.10.1007/978-0-387-75953-1CrossRefGoogle Scholar
Rousseau, J.,Saussol, B. andVarandas, P..Exponential law for random subshifts of finite type. StochasticProcess. Appl. 124(10) (2014),32603276.Google Scholar
Rousseau, J. andTodd, M.. Hittingtimes and periodicity in random dynamics. J. Stat. Phys. 161(1) (2015),131150.10.1007/s10955-015-1325-7CrossRefGoogle Scholar
Rudin, W.. Real and ComplexAnalysis, 3rd edn. McGraw-Hill Book Co., NewYork, 1987.Google Scholar
Tyran-Kamińska, M..Convergence to Lévy stable processes under some weak dependenceconditions. Stochastic Process. Appl. 120(9) (2010),16291650.10.1016/j.spa.2010.05.010CrossRefGoogle Scholar
Tyran-Kamińska, M.. Weakconvergence to Lévy stable processes in dynamical systems. Stoch.Dyn. 10(2) (2010),263289.10.1142/S0219493710002942CrossRefGoogle Scholar
Zweimüller, R.. Mixinglimit theorems for ergodic transformations. J. Theoret. Probab. 20(4) (2007),10591071.10.1007/s10959-007-0085-yCrossRefGoogle Scholar