Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T11:05:21.570Z Has data issue: false hasContentIssue false

Hydrogen technologies for energy storage: A perspective

Published online by Cambridge University Press:  09 December 2020

Marika Wieliczko
Affiliation:
KeyLogic Systems, Morgantown, West Virginia26505, USA Contractor to the US Department of Energy, Hydrogen and Fuel Cell Technologies Office, Office of Energy Efficiency and Renewable Energy, Washington, District of Columbia20585, USA
Ned Stetson*
Affiliation:
US Department of Energy, Hydrogen and Fuel Cell Technologies Office, Office of Energy Efficiency and Renewable Energy, Washington, District of Columbia20585, USA
*
Address all correspondence to Ned Stetson at [email protected]
Get access

Abstract

Hydrogen is a versatile energy storage medium with significant potential for integration into the modernized grid.

Advanced materials for hydrogen energy storage technologies including adsorbents, metal hydrides, and chemical carriers play a key role in bringing hydrogen to its full potential.

The U.S. Department of Energy Hydrogen and Fuel Cell Technologies Office leads a portfolio of hydrogen and fuel cell research, development, and demonstration activities, including hydrogen energy storage to enable resiliency and optimal use of diverse domestic energy resources.

Today, the technology around generating and storing efficient and sustainable energy is rapidly evolving and hydrogen technologies offer versatile options. This perspective provides an overview of the U.S. Department of Energy's (DOE) Hydrogen and Fuel Cell Technologies Office's R&D activities in hydrogen storage technologies within the Office of Energy Efficiency and Renewable Energy, with a focus on their relevance and adaptation to the evolving energy storage needs of a modernized grid, as well as discussion of identified R&D needs and challenges. The role of advanced materials research programs focused on addressing energy storage challenges is framed in the context of DOE's H2@Scale initiative, which will enable innovations to generate cost-competitive hydrogen as an energy carrier, coupling renewables, as well as nuclear, fossil fuels, and the grid, to enhance the economics of both baseload power plants and intermittent solar and wind, to enhance resiliency and avoid curtailment. Continued growth and engagement of domestic and international policy stakeholders, industry partnerships, and economic coalitions supports a positive future outlook for hydrogen in the global energy system.

Type
Perspective
Copyright
Copyright © The Author(s), 2020, published on behalf of Materials Research Society by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

U.S. Department of Energy, Energy Information Agency: Annual Energy Outlook 2020 with Projections to 2050. Available at: https://www.eia.gov/outlooks/aeo/pdf/AEO2020%20Full%20Report.pdf (accessed July 6, 2020).Google Scholar
Wood Mackenzie Power & Renewables/U.S. Energy Storage Association: U.S. Energy Storage Monitor, Q2 2020 Executive Summary, June 2020.Google Scholar
Verma, H., Gambhir, J., and Goyal, S.: Energy storage: A review. IJITEE 3, 6369 (2013).Google Scholar
Trahey, L., Brushett, F.R., Balsara, N.P., Ceder, G., Cheng, L., Chiang, Y., Hahn, N.T., Ingram, B.J., Minteer, S.D., Moore, J.S., Mueller, K.T., Nazar, L.F., Persson, K.A., Siegel, D.J., Xu, K., Zavadil, K.R., Srinivasan, V., and Crabtree, G.W.: Energy storage emerging: A perspective from the joint center for energy storage research. Proc. Natl. Acad. Sci. 117, 1255012557 (2020). doi:10.1073/pnas.1821672117Google ScholarPubMed
Karatairi, E. and Sartori, S.: Reviving hydrogen as an energy carrier. MRS Bull. 45, 424426 (2020). doi:10.1557/mrs.2020.157Google Scholar
U.S. Department of Energy, Energy Information Administration: Electric Power Monthly with Data for April 2019 (June 2019). Available at: https://www.eia.gov/todayinenergy/detail.php?id=39992 (accessed July 6, 2020).Google Scholar
Staffell, I., Scamman, D., Abad, A.V., Balcombe, P., Dodds, P.E., Ekins, P., Shah, N., and Ward, K.R.: The role of hydrogen and fuel cells in the global energy system. Energy Environ. Sci. 12, 463491 (2019). doi:10.1039/C8EE01157EGoogle Scholar
Office of Energy Efficiency & Renewable Energy: Hydrogen Storage (2011). Available at: https://www.energy.gov/eere/fuelcells/hydrogen-storage (accessed November 9, 2020).Google Scholar
Department of Energy Research and Innovation Act. H.R.589 — 115th Congress (2017–2018).Google Scholar
U.S. Department of Energy: About the Energy Storage Grand Challenge (2020). Available at: https://www.energy.gov/energy-storage-grand-challenge/about-energy-storage-grand-challenge (accessed June 16, 2020).Google Scholar
Pivovar, B., Rustagi, N., and Sutyapal, S.: Hydrogen at scale (H2@scale): Key to a clean, economic, and sustainable energy system. Electrochem. Soc. Interface 27, 4752 (2018). doi:10.1149/2.F04181ifGoogle Scholar
Walker, S.B., Mukherjee, U., Fowler, M., and Elkamel, A.: Benchmarking and selection of power-to-gas utilizing electrolytic hydrogen as an energy storage alternative. Int. J. Hydrogen Energy 41, 77177731 (2016). doi:10.1016/j.ijhydene.2015.09.008Google Scholar
Valenti, G.: Compendium of hydrogen energy. In Hydrogen Storage, Distribution and Infrastructure, Vol. 2, Gupta, R.B., Basile, A. and Nejat Veziroglu, T., eds. (Woodhead Publishing, Cambridge, UK, 2016); p. 47. doi:10.1016/B978-1-78242-362-1.00002-XGoogle Scholar
Andersson, J. and Gronkvist, S.: Large-scale storage of hydrogen. Int. J. Hydrogen Energy 44, 1190111919 (2019). doi:10.1016/j.ijhydene.2019.03.063Google Scholar
HySTRA: Hydrogen Energy Supply Chain Pilot Project Between Australia and Japan. Available at: http://www.hystra.or.jp/en/project/ (accessed July 8, 2020).Google Scholar
ACIL Allen Consulting for ARENA: Opportunities for Australia from Hydrogen Exports, ACIL Allen Consulting for ARENA, 2018, p. 48. Available at: https://arena.gov.au/assets/2018/08/opportunities-for-australia-from-hydrogen-exports.pdf (accessed August 11, 2020).Google Scholar
Lemmon, E.W., McLinden, M.O., and Friend, D.G.: Thermophysical properties of fluid systems. In NIST Chemistry WebBook, NIST Standard Reference Database Number 69, Linstrom, P.J. and Mallard, W.G., eds. (National Institute of Standards and Technology, Gaithersburg, MD); p. 20899. Available at: doi:10.18434/T4D303 (accessed July 8, 2020).Google Scholar
FIBA Technologies, Inc. Superjumbo Tube Trailers. Available at: https://www.fibatech.com/products/tube-trailers-and-skids/superjumbo-tube-trailers/ (accessed July 8, 2020).Google Scholar
NPROXX. Hydrogen Storage for Filling Stations. Available at: https://www.nproxx.com/hydrogen-storage-transport/hydrogen-refuelling-stations/ (accessed July 7, 2020).Google Scholar
Hexagon. Hydrogen Storage and Distribution – Lightweight High-Pressure Systems for Hydrogen Storage & Distribution. Available at: https://hexagongroup.com/solutions/storage-distribution/hydrogen/ (accessed July 7, 2020).Google Scholar
Composite Advanced Technologies, LLC. Highway to Hydrogen. Available at: https://www.catecgases.com/hydrogen (accessed July 7, 2020).Google Scholar
Lord, A.S., Kobos, P.H., and Borns, D.J.: Geologic storage of hydrogen: Scaling up to meet city transportation demands. Int. J. Hydrogen Energy 39, 1557015582 (2014). doi:10.1016/j.ijhydene.2014.07.121Google Scholar
Ahluwalia, R.K., Peng, J-K, Roh, H.S., Papadias, D.. System Analysis of Physical and Materials-Based Hydrogen Storage, 2019 Annual Progress Report to the DOE Hydrogen and Fuel Cells Program. Available at: https://www.hydrogen.energy.gov/pdfs/progress19/h2f_st001_ahluwalia_2019.pdf (accessed July 7, 2020).Google Scholar
Züttel, A.: Hydrogen storage methods. Naturwissenschaften 91, 157172 (2004). doi:10.1007/s00114-004-0516-xGoogle ScholarPubMed
Hirscher, M., Yartys, V.A., Baricco, M., Bellosta von Colbe, J., Blanchard, D., Bowman, R.C., Broom, D.P., Buckley, C.E., Chang, F., Chen, P., Whan Cho, Y., Crivello, J., Cuevas, F., David, W.I.F., de Jongh, P.E., Denys, R.V., Dornheim, M., Felderhoff, M., Filinchuk, Y., Froudakis, G.E., Grant, D.M., Gray, E.M., Hauback, B.C., He, T., Humphries, T.D., Jensen, T.R., Kim, S., Kojima, Y., Latroche, M., Li, H., Lototskyy, M.V., Makepeace, J.W., Møller, K.T., Naheed, L., Ngene, P., Noréus, D., Nygård, M.M., Orimo, S., Paskevicius, M., Pasquini, L., Ravnsbæk, D.B., Sofianos, M.V., Udovic, T.J., Vegge, T., Walker, G.S., Webb, C.J., Weidenthaler, C., and Zlotea, C.: Materials for hydrogen-based energy storage – Past, recent progress and future outlook. J. Alloys Compd. 827, 153548 (2020). doi:10.1016/j.jallcom.2019.153548.Google Scholar
U.S. Department of Energy: Hydrogen Materials Advanced Research Consortium website: https://www.hymarc.org/ (accessed July 9, 2020).Google Scholar
U.S. Department of Energy: DOE Hydrogen Carriers Workshop: Novel Pathways for Optimized Hydrogen Transport and Stationary Storage (2019) https://www.energy.gov/eere/fuelcells/doe-hydrogen-carriers-workshop-novel-pathways-optimized-hydrogen-transport-and (accessed July 9, 2020).Google Scholar
He, T., Pachfule, P., Wu, H., Xu, Q., and Chen, P.: Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016). doi:10.1038/natrevmats.2016.59Google Scholar
Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z., and Tan, H.: Current technology development for CO2 utilization into solar fuels and chemicals: A review. J. Energy Chem. 49, 96123 (2020). doi:10.1016/j.jechem.2020.01.023Google Scholar
Crabtree, R.H.: Hydrogen storage in liquid organic heterocycles. Energy Environ. Sci. 1, 134138 (2008). doi:10.1039/b805644gGoogle Scholar
Chiyoda Corporation: Performance of 10,000 Hours of Operation in Chiyoda's Demo Plant (2017). Available at: https://www.chiyodacorp.com/en/service/spera-hydrogen/demo-plant/ (accessed June 22, 2020).Google Scholar
Chemical Engineering: Chiyoda and Mitsubishi Join Consortium for Singapore's Hydrogen Economy (2020). Available at: https://www.chemengonline.com/chiyoda-and-mitsubishi-join-consortium-for-singapores-hydrogen-economy/ (accessed June 22, 2020).Google Scholar
Air Products and Chemicals: Breakthrough for Hydrogen Fuel Storage Is Like a “Liquid Battery” (2010). Available at: http://www.airproducts.com/Company/technology-partnerships/technology-licensing/energy/~/media/7256308528564099A26B4AF8F9B76112.pdf (accessed August 12, 2020).Google Scholar
Preuster, P., Papp, C., and Wasserscheid, P.: Liquid organic hydrogen carriers (LOHCs): Toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 7485 (2017). doi:10.1021/acs.accounts.6b00474.Google Scholar
Iguchi, M., Himeda, Y., Manaka, Y., Matsuoka, K., and Kawanami, H.: Simple continuous high-pressure hydrogen production and separation system from formic acid under mild temperatures. ChemCatChem 8, 886 (2016). doi:10.1002/cctc.201501296Google Scholar
Muller, K., Brooks, K., and Autrey, T.: Releasing hydrogen at high pressures from liquid carriers: Aspects for the H2 delivery to fueling stations. Energy Fuels 32, 10008100015 (2018). doi:10.1021/acs.energyfuels.8b01724.Google Scholar
Autrey, T., and Ahluwalia, R.. Hydrogen Carriers for Bulk Storage and Transport of Hydrogen. U.S. Department of Energy: Hydrogen Carriers for Bulk Storage and Transport of Hydrogen Webinar (2018). Available at: https://www.energy.gov/eere/fuelcells/downloads/hydrogen-carriers-bulk-storage-and-transport-hydrogen-webinar (accessed August 11, 2020).Google Scholar
Muller, K., Brooks, K., and Autrey, T.: Hydrogen storage in formic acid: A comparison of process options. Energy Fuels 31, 1260312611 (2017). doi:10.1021/acs.energyfuels.7b02997Google Scholar
Sandrock, G.: A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293–295, 877888 (1999). doi:10.1016/S0925-8388(99)00384-9Google Scholar
Ley, M.B., Jepsen, L.H., Lee, Y., Cho, Y.W., M, J., von Colbe, B., Dornheim, M., Rokni, M., Jensen, J.O., Sloth, M., Filinchuk, Y., Jørgensen, J.E., Besenbacher, F., and Jensen, T.R.: Complex hydrides for hydrogen storage – New perspectives. Mat. Today 17, 122128 (2014). doi:10.1016/j.mattod.2014.02.013Google Scholar
Orimo, S., Nakamori, Y., Eliseo, J.R., Züttel, A., and Jensen, C.M.: Complex hydrides for energy storage. Chem. Rev. 107, 41114132 (2007). doi:10.1021/cr0501846Google Scholar
Bellosta von Colbe, J., Ares, J., Barale, J., Baricco, M., Buckley, C., Capurso, G., Gallandat, N., Grant, D.M., Guzik, M.N., Jacob, I., Jensen, E.H., Jensen, T., Jepsen, J., Klassen, T., Lototskyy, M.V., Manickam, K., Montone, A., Puszkiel, J., Sartori, S., Sheppard, D.A., Stuart, A., Walker, G., Webb, C.J., Yang, H., Yartys, V., Züttel, A., and Dornheim, M.: Application of hydrides in hydrogen storage and compression: Achievements, outlook and perspectives. Int. J. Hydrogen Energy 44, 77807808 (2019). doi:10.1016/j.ijhydene.2019.01.104Google Scholar
Lototskyy, M., Tolj, I., Klochko, Y., Davids, M.W., Swanepoel, D., and Linkov, V.: Metal hydride hydrogen storage tank for fuel cell utility vehicles. Int. J. Hydrogen Energy 45, 79587967 (2020). doi:10.1016/j.ijhydene.2019.04.124.Google Scholar
Allendorf, M.D., Hulvey, Z., Gennett, T., Ahmed, A., Autrey, T., Camp, J., Seon Cho, E., Furukawa, H., Haranczyk, M., Head-Gordon, M., Jeong, S., Karkamkar, A., Liu, D., Long, J.R., Meihaus, K., Nayyar, I.H., Nazarov, R., Siegel, D.J., Stavila, V., Urban, J.J., Veccham, S.P., and Wood, B.C.: An assessment of strategies for the development of solid-state adsorbents for vehicular hydrogen storage. Energy Environ. Sci. 11, 2784–1812 (2018). doi:10.1039/C8EE01085DGoogle Scholar
Long, J. and Gennett, T.. HyMARC Core Activity: Sorbents, Presentation to the DOE Hydrogen and Fuel Cell Program's 2020 Annual Merit Review. Available at: https://www.hydrogen.energy.gov/pdfs/review20/st202_gennett_2020_p.pdf (accessed July 9, 2020).Google Scholar
Zhang, X., Lin, R-B, Wang, J., Wang, B., Liang, B., Yildirim, T., Zhang, J., Zhou, W., and Chen, B.: Optimization of the pore structures of MOFs for record high hydrogen volumetric working capacity. Adv. Mater. 32, 1907995 (2020). doi:10.1002/adma.201907995Google ScholarPubMed
Chen, Z., Li, P., Anderson, R., Wang, X., Zhang, X., Robison, L., Redfern, L.R., Moribe, S., Islamoglu, T., Gómez-Gualdrón, D.A., Yildirim, T., Stoddart, J.F., and Farha, O.K.: Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297303 (2020). doi:10.1126/science.aaz8881Google ScholarPubMed
Ahmed, A., Yiyang, L., Purewal, J., Tran, L.D., Wong-Foy, A.G., Veenstra, M., Matzger, A.J., and Siegel, D.J.: Balancing gravimetric and volumetric hydrogen density in MOFs. Energy Environ. Sci. 10, 24592471 (2017). doi:10.1039/C7EE02477KGoogle Scholar
E4tech: The Fuel Cell Industry Review 2019. Available at http://www.fuelcellindustryreview.com/ (accessed August 11, 2020).Google Scholar
California Fuel Cell Partnership: By the Numbers – FCEV Sales, FCEB, & Hydrogen Station. Available at: https://cafcp.org/by_the_numbers (accessed July 10, 2020).Google Scholar
Plug Power: Plug Power to Host Conference Call on June 23, 2020 to Discuss Recent Acquisition and Vertical Integration Activity. Available at: https://www.ir.plugpower.com/Press-Releases/Press-Release-Details/2020/Plug-Power-to-Host-Conference-Call-on-June-23-2020-to-Discuss-Recent-Acquisition-and-Vertical-Integration-Activity/default.aspx (accessed August 11, 2020).Google Scholar
Hydrogen Council: The Hydrogen Council – An Introduction. Available at: https://hydrogencouncil.com/en/ (accessed August 11, 2020).Google Scholar
Hydrogen Council Press Release: https://hydrogencouncil.com/en/new-hydrogen-council-launches-in-davos/ (accessed September 18, 2020).Google Scholar
Center for Hydrogen Safety: Member Companies. Available at: https://www.aiche.org/chs/member-companies (accessed September 22, 2020).Google Scholar
European Commission: A Hydrogen Strategy for a Climate Neutral Europe (2020). Available at: https://ec.europa.eu/energy/sites/ener/files/hydrogen_strategy.pdf (accessed August 11, 2020).Google Scholar
International Energy Agency: The Future of Hydrogen (2019). Available at: https://www.iea.org/reports/the-future-of-hydrogen (accessed June 15, 2020).Google Scholar
International Partnership for Hydrogen and Fuel Cells in the Economy. Available at: https://www.iphe.net (accessed August 12, 2020).Google Scholar