Hostname: page-component-f554764f5-qhdkw Total loading time: 0 Render date: 2025-04-20T18:57:03.179Z Has data issue: false hasContentIssue false

Beyond the ice: exploring Antarctic soils research through spatial and scientometrics analysis

Published online by Cambridge University Press:  09 September 2024

Ícaro Vieira*
Affiliation:
Institute of Geosciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6.627 - Pampulha CEP: 31270-901, Belo Horizonte, MG, Brazil
Fábio Oliveira
Affiliation:
Institute of Geosciences, Federal University of Minas Gerais, Av. Antônio Carlos, 6.627 - Pampulha CEP: 31270-901, Belo Horizonte, MG, Brazil
Roberto Ferreira Machado Michel
Affiliation:
Department of Agrarian and Environmental Sciences, Santa Cruz State University, Rod. Jorge Amado, Km 16 CEP: 45662-900, Ilhéus, BA, Brazil
Marcio Rocha Francelino
Affiliation:
Soil Department of Federal University of Viçosa, Av. Peter Henry Rolfs, s/n, Campus Universitário CEP: 36570-900, Viçosa, MG, Brazil

Abstract

This spatial-scientometric study addresses research on Antarctic soils from 1958 to 2021. Through the review of 553 publications in the Web of Science and Scopus databases, geographical distribution, productivity, coauthorship and research topics were analysed. The results highlight the high productivity and interaction between researchers and institutions around the world, with a focus on microbiology, pollution, bioremediation, biogeochemistry and thermal and water monitoring of the soil and permafrost. This study provides insights into the importance of polar soils as global environmental indicators. The scientometric and spatial approach contributes to understanding the social and conceptual structure in this research area in addition to the development of the subject in time and space.

Type
Earth Sciences
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Antarctic Science Ltd

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abakumov, E.V. 2010a. Particle-size distribution in soils of West Antarctica. Eurasian Soil Science, 43, 10.1134/S1064229310030075.CrossRefGoogle Scholar
Abakumov, E.V. 2010b. The sources and composition of humus in some soils of West Antarctica. Eurasian Soil Science, 43, 10.1134/S1064229310050030.CrossRefGoogle Scholar
Abakumov, E.V., Lodygin, E.D., Gabov, D.A. & Krylenkov, V.A. 2014a. [Polycyclic aromatic hydrocarbons content in Antarctica soils as exemplified by the Russian polar stations]. Gigiena i sanitariia, 1, 3135.Google Scholar
Abakumov, E.V, Trubetskoj, O., Demin, D. & Trubetskaya, O. 2014b. Electrophoretic evaluation of initial humification in organic horizons of soils of western Antarctica. Polarforschung, 83, 7382.Google Scholar
Adriaenssens, E.M., Kramer, R., van Goethem, M.W., Makhalanyane, T.P., Hogg, I. & Cowan, D.A. 2017. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome, 5, 10.1186/s40168-017-0301-7.CrossRefGoogle ScholarPubMed
Aislabie, J.M., Chhour, K.-L., Saul, D.J., Miyauchi, S., Ayton, J., Paetzold, R.F. & Balks, M.R. 2006. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria Land, Antarctica. Soil Biology and Biochemistry, 38, 10.1016/j.soilbio.2006.02.018.CrossRefGoogle Scholar
Allen, S.E. & Heal, O.W. 1970. Soils of the Maritime Antarctic zone. In Holdgate, M.W., ed., Antarctic ecology. Vol. 2. SCAR Symposium on Antarctic biology. London: Academic Press, 693696.Google Scholar
Amaro, E., Padeiro, A., Mão de Ferro, A., Mota, A.M., Leppe, M., Verkulich, S., et al. 2015. Assessing trace element contamination in Fildes Peninsula (King George Island) and Ardley Island, Antarctic. Marine Pollution Bulletin, 97, 10.1016/j.marpolbul.2015.05.018.CrossRefGoogle Scholar
Andriuzzi, W.S., Adams, B.J., Barrett, J.E., Virginia, R.A. & Wall, D.H. 2018. Observed trends of soil fauna in the Antarctic Dry Valleys: early signs of shifts predicted under climate change. Ecology, 99, 10.1002/ecy.2090.CrossRefGoogle ScholarPubMed
Arenz, B.E., Held, B.W., Jurgens, J.A., Farrell, R.L. & Blanchette, R.A. 2006. Fungal diversity in soils and historic wood from the Ross Sea Region of Antarctica. Soil Biology and Biochemistry, 38, 10.1016/j.soilbio.2006.01.016.CrossRefGoogle Scholar
Bajerski, F. & Wagner, D. 2013. Bacterial succession in Antarctic soils of two glacier forefields on Larsemann Hills, East Antarctica. FEMS Microbiology Ecology, 85, 10.1111/1574-6941.12105.CrossRefGoogle ScholarPubMed
Beyer, L., Sorge, C., Blume, H.-P. & Schulten, H.-R. 1995. Soil organic matter composition and transformation in gelic histosols of coastal continental antarctica. Soil Biology and Biochemistry, 27, 10.1016/0038-0717(95)00054-I.CrossRefGoogle Scholar
Blakemore, L.C. & Swindale, L.D. 1958. Chemistry and clay mineralogy of a soil sample from Antarctica. Nature, 182, 10.1038/182047b0.CrossRefGoogle Scholar
Bockheim, J.B. 1979. Relative age and origin of soils in eastern Wright Valley, Antarctica. Soil Science, 128, 10.1097/00010694-197909000-00003.CrossRefGoogle Scholar
Bockheim, J.G. 1990. Soil development rates in the Transantarctic Mountains. Geoderma, 47, 10.1016/0016-7061(90)90047-D.CrossRefGoogle Scholar
Bockheim, J.G. 2014. Cryopedology. Cham: Springer Briefs, 247 pp., 10.1007/978-3-319-08485-5.Google Scholar
Bockheim, J.G., ed. 2015. The soils of Antarctica. Cham: Springer International Publishing, 328 pp., 10.1007/978-3-319-05497-1.CrossRefGoogle Scholar
Bockheim, J.G. & Leide, J.E. 1980. Soil development and rock weathering in the Ellsworth Mountains, Antarctica. Antarctic Journal of the United States, 15, 3334.Google Scholar
Bockheim, J.G. & McLeod, M. 2006. Soil formation in Wright Valley, Antarctica since the late Neogene. Geoderma, 137, 10.1016/j.geoderma.2006.08.028.CrossRefGoogle Scholar
Bockheim, J., Vieira, G., Ramos, M., López-Martínez, J., Serrano, E., Guglielmin, M., et al. 2013. Climate warming and permafrost dynamics in the Antarctic Peninsula region. Global and Planetary Change, 100, 10.1016/j.gloplacha.2012.10.018.CrossRefGoogle Scholar
Bölter, M. 1990. Evaluation - by cluster analysis - of descriptors for the establishment of significant subunits in antartic soils. Ecological Modelling, 50, 10.1016/0304-3800(90)90043-G.CrossRefGoogle Scholar
Boyd, W.L. & Boyd, J.W. 1963. Soil microorganisms of the McMurdo Sound area, Antarctica. Applied Microbiology, 11, 10.1128/aem.11.2.116-121.1963.CrossRefGoogle ScholarPubMed
Brevik, E. 2013. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3, 10.3390/agriculture3030398.CrossRefGoogle Scholar
Burkins, M.B., Virginia, R.A. & Wall, D.H. 2001. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration. Global Change Biology, 7, 10.1046/j.1365-2486.2001.00393.x.CrossRefGoogle Scholar
Callon, M., Courtial, J.P., Penan, H. & Arenas, V. 1995. Cienciometría: la medición de la actividad científica: de la bibliometría a la vigilancia tecnológica. Vigo: Trea, 110 pp.Google Scholar
Cameron, R.E., King, J. & David, C.N. 1970. Soil microbial ecology of Wheeler Valley, Antarctica. Soil Science, 109, 10.1097/00010694-197002000-00006.CrossRefGoogle Scholar
Campbell, I.B. & Claridge, G.G.C. 1969. A classification of frigic soils - the zonal soils of the Antarctic continent. Soil Science, 107, 10.1097/00010694-196902000-00001.CrossRefGoogle Scholar
Chong, C.W., Pearce, D.A., Convey, P., Tan, G.Y.A., Wong, R.C.S. & Tan, I.K.P. 2010. High levels of spatial heterogeneity in the biodiversity of soil prokaryotes on Signy Island, Antarctica. Soil Biology and Biochemistry, 42, 10.1016/j.soilbio.2009.12.009.CrossRefGoogle Scholar
Claridge, G.G.C. 1965. The clay mineralogy and chemistry of some soils from the Ross Dependency, Antarctica. New Zealand Journal of Geology and Geophysics, 8, 10.1080/00288306.1965.10428107.CrossRefGoogle Scholar
Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E. & Herrera, F. 2011. Science mapping software tools: review, analysis, and cooperative study among tools. Journal of the American Society for Information Science and Technology, 62, 10.1002/asi.21525.CrossRefGoogle Scholar
Cocks, M.P., Harris, J.M., Steele, W.K. & Balfour, D.A. 1999. The influence of ornithogenic products on the nutrient status of soils surrounding nests on nunataks in Dronning Maud Land, Antarctica. Polar Research, 18, 10.1111/j.1751-8369.1999.tb00274.x.CrossRefGoogle Scholar
Courtright, E.M., Wall, D.H. & Virginia, R.A. 2001. Determining habitat suitability for soil invertebrates in an extreme environment: the McMurdo Dry Valleys, Antarctica. Antarctic Science, 13, 10.1017/S0954102001000037.CrossRefGoogle Scholar
de Pablo, M.A., Blanco, J.J., Molina, A., Ramos, M., Quesada, A. & Vieira, G. 2013. Interannual active layer variability at the Limnopolar Lake CALM site on Byers Peninsula, Livingston Island, Antarctica. Antarctic Science, 25, 10.1017/S0954102012000818.CrossRefGoogle Scholar
Delpupo, C., Schaefer, C.E.G.R., Roque, M.B., de Faria, A.L.L., da Rosa, K.K., Thomazini, A. & de Paula, M.D. 2017. Soil and landform interplay in the dry valley of Edson Hills, Ellsworth Mountains, Continental Antarctica. Geomorphology, 295, 10.1016/j.geomorph.2017.07.002.CrossRefGoogle Scholar
Dennis, P.G., Rushton, S.P., Newsham, K.K., Lauducina, V.A., Ord, V.J., Daniell, T.J., et al. 2012. Soil fungal community composition does not alter along a latitudinal gradient through the Maritime and sub-Antarctic. Fungal Ecology, 5, 10.1016/j.funeco.2011.12.002.Google Scholar
Diaz, M.A., Gardner, C.B., Welch, S.A., Andrew Jackson, W., Adams, B.J., Wall, D.H., et al. 2021. Geochemical zones and environmental gradients for soils from the central Transantarctic Mountains, Antarctica. Biogeosciences, 18, 10.5194/bg-18-1629-2021.CrossRefGoogle Scholar
Dragone, N.B., Diaz, M.A., Hogg, I.D., Lyons, W.B., Jackson, W.A., Wall, D.H., et al. 2021. Exploring the boundaries of microbial habitability in soil. Journal of Geophysical Research: Biogeosciences, 126, 10.1029/2020JG006052.Google Scholar
Everett, K.R. 1976. A survey of the soils in the region of the South Shetland Islands and adjacent parts of the Antarctic Peninsula. Research Foundation and the Institute of Polar Studies, Report No. 58. Columbus, OH: The Ohio State University, 44 pp.Google Scholar
Ferguson, S.H., Franzmann, P.D., Revill, A.T., Snape, I. & Rayner, J.L. 2003. The effects of nitrogen and water on mineralisation of hydrocarbons in diesel-contaminated terrestrial Antarctic soils. Cold Regions Science and Technology, 37, 10.1016/S0165-232X(03)00041-7.CrossRefGoogle Scholar
Flint, E.A. & Stout, J.D. 1960. Microbiology of some soils from Antarctica. Nature, 188, 10.1038/188767b0.CrossRefGoogle ScholarPubMed
Francelino, M.R., Schaefer, C.E.G.R., Simas, F.N.B., Filho, E.I.F., de Souza, J.J.L.L. & da Costa, L.M. 2011. Geomorphology and soils distribution under paraglacial conditions in an ice-free area of Admiralty Bay, King George Island, Antarctica. Catena, 85, 10.1016/j.catena.2010.12.007.CrossRefGoogle Scholar
Freckman, D.W. & Virginia, R.A. 1997. Low-diversity antarctic soil nematode communities: distribution and response to disturbance. Ecology, 78, 10.1890/0012-9658(1997)078[0363:LDASNC]2.0.CO;2.CrossRefGoogle Scholar
Frenken, K., Hardeman, S. & Hoekman, J. 2009. Spatial scientometrics: towards a cumulative research program. Journal of Informetrics, 3, 10.1016/j.joi.2009.03.005.CrossRefGoogle Scholar
Gibson, E.K., Wentworth, S.J. & McKay, D.S. 1983. Chemical weathering and diagenesis of a cold desert soil from Wright Valley, Antarctica: an analog of Martian weathering processes. Journal of Geophysical Research, 88, 10.1029/jb088is02p0a912.CrossRefGoogle Scholar
Green, G. & Nichols, P.D. 1995. Hydrocarbons and sterols in marine sediments and soils at Davis Station, Antarctica: a survey for human-derived contaminants. Antarctic Science, 7, 10.1017/S0954102095000198.CrossRefGoogle Scholar
Gregorich, E.G., Turchenek, L.W., Carter, M.R. & Angers, D.A., eds. 2001. Soil and environmental science dictionary. Boca Raton, FL: CRC Press, 577 pp.CrossRefGoogle Scholar
Guglielmin, M. 2006. Ground surface temperature (GST), active layer and permafrost monitoring in Continental Antarctica. Permafrost and Periglacial Processes, 17, 10.1002/ppp.553.CrossRefGoogle Scholar
Guglielmin, M., Worland, M.R. & Cannone, N. 2012. Spatial and temporal variability of ground surface temperature and active layer thickness at the margin of maritime Antarctica, Signy Island. Geomorphology, 155–156, 10.1016/j.geomorph.2011.12.016.Google Scholar
He, Y., Lan, Y., Zhang, H. & Ye, S. 2022. Research characteristics and hotspots of the relationship between soil microorganisms and vegetation: a bibliometric analysis. Ecological Indicators, 141, 10.1016/j.ecolind.2022.109145.CrossRefGoogle Scholar
Heatwole, H., Saenger, P., Spain, A., Kerry, E. & Donelan, J. 1989. Biotic and chemical characteristics of some soils from Wilkes Land, Antarctica. Antarctic Science, 1, 10.1017/S0954102089000349.CrossRefGoogle Scholar
Heine, J.C. & Speir, T.W. 1989. Ornithogenic soils of the cape bird adelie penguin rookeries, Antarctica. Polar Biology, 10, 10.1007/BF00239153.CrossRefGoogle Scholar
Hogg, I.D., Craig Cary, S., Convey, P., Newsham, K.K., O'Donnell, A.G., Adams, B.J., et al. 2006. Biotic interactions in Antarctic terrestrial ecosystems: are they a factor? Soil Biology and Biochemistry, 38, 10.1016/j.soilbio.2006.04.026.CrossRefGoogle Scholar
Hrbáček, F., Láska, K. & Engel, Z. 2016. Effect of snow cover on the active-layer thermal regime - a case study from James Ross Island, Antarctic Peninsula: active layer monitoring on James Ross Island. Permafrost and Periglacial Processes, 27, 10.1002/ppp.1871.CrossRefGoogle Scholar
Ino, Y. & Nakatsubo, T. 1986. Distribution of carbon, nitrogen and phosphorus in a moss community-soil system developed on a cold desert in Antarctica. Ecological Research, 1, 10.1007/BF02361205.CrossRefGoogle Scholar
Ino, Y., Oshima, Y., Kanda, H. & Matsuda, T. 1980. Soil respiration in the vicinity of Syowa Station, Antarctica. 1. Relationships between soil respiration rate and water content or nitrogen content. Antarctic Record, 70, 3139.Google Scholar
Jensen, H. 1916. Report on antarctic soils. In Reports on the scientific investigations Geology v. II Contributions to the paleontology and petrology of South Victoria Land. London: Expedition by William Heinemann, 340 pp.Google Scholar
Jojo, P.J., Kumar, A., Ramachandran, T.V. & Prasad, R. 1995. Microanalysis of uranium in Antarctica soil samples using fission track method. Journal of Radioanalytical and Nuclear Chemistry Articles, 191, 10.1007/BF02038234.CrossRefGoogle Scholar
Kerry, E. 1993. Bioremediation of experimental petroleum spills on mineral soils in the Vestfold Hills, Antarctica. Polar Biology, 13, 10.1007/BF00238926.CrossRefGoogle Scholar
Kiernan, K. & McConnell, A. 2001. Impacts of geoscience research on the physical environment of the Vestfold Hills, Antarctica. Australian Journal of Earth Sciences, 48, 10.1046/j.1440-0952.2001.485897.x.CrossRefGoogle Scholar
Klánová, J., Matykiewiczová, N., Máčka, Z., Prošek, P., Láska, K. & Klán, P. 2008. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica. Environmental Pollution, 152, 10.1016/j.envpol.2007.06.026.CrossRefGoogle Scholar
Kochkina, G.A., Ozerskaya, S.M., Ivanushkina, N.E., Chigineva, N.I., Vasilenko, O.V., Spirina, E.V. & Gilichinskii, D.A. 2014. Fungal diversity in the Antarctic active layer. Microbiology, 83, 10.1134/S002626171402012X.CrossRefGoogle ScholarPubMed
Lee, C.K., Barbier, B.A., Bottos, E.M., McDonald, I.R. & Cary, S.C. 2012. The inter-valley soil comparative survey: the ecology of dry valley edaphic microbial communities. ISME Journal, 6, 10.1038/ismej.2011.170.CrossRefGoogle ScholarPubMed
Leishman, M.R. & Wild, C. 2001. Vegetation abundance and diversity in relation to soil nutrients and soil water content in Vestfold hills, East Antarctica. Antarctic Science, 13, 10.1017/S0954102001000207.CrossRefGoogle Scholar
Lewis, P.J., McGrath, T.J., Emmerson, L., Allinson, G. & Shimeta, J. 2020. Adélie penguin colonies as indicators of brominated flame retardants (BFRs) in East Antarctica. Chemosphere, 250, 10.1016/j.chemosphere.2020.126320.CrossRefGoogle ScholarPubMed
Line, M.A. 1988. Microbial flora of some soils of Mawson Base and the Vestfold Hills, Antarctica. Polar Biology, 8, 10.1007/BF00264718.CrossRefGoogle Scholar
Linkletter, G.O. 1970. Weathering and soil formation in dry valleys of Victoria-Land, Antarctica. Antarctic Journal of the United States, 5, 104.Google Scholar
López-Martínez, J., Serrano, E., Schmid, T., Mink, S. & Linés, C. 2012. Periglacial processes and landforms in the South Shetland Islands (northern Antarctic Peninsula region). Geomorphology, 155–156, 10.1016/j.geomorph.2011.12.018.Google Scholar
Lupachev, A.V. & Abakumov, E.V. 2013. Soils of Marie Byrd Land, West Antarctica. Eurasian Soil Science, 46, 10.1134/S1064229313100049.CrossRefGoogle Scholar
Lupachev, A.V., Gubin, S.V. & Abakumov, E.V. 2020. Levels of biogenic-abiogenic interaction and structural organization of soils and soil-like bodies in Antarctica. In Frank-Kamenetskaya, O.V., Vlasov, D.Yu., Panova, E.G. & Lessovaia, S.N., eds, Processes and phenomena on the boundary between biogenic and abiogenic nature. Lecture Notes in Earth System Sciences. Cham: Springer International Publishing, 10.1007/978-3-030-21614-6_26.Google Scholar
Lyons, W.B., Deuerling, K., Welch, K.A., Welch, S.A., Michalski, G., Walters, W.W., et al. 2016. The soil geochemistry in the Beardmore Glacier region, Antarctica: implications for terrestrial ecosystem history. Scientific Reports, 6, 10.1038/srep26189.CrossRefGoogle ScholarPubMed
MacNamara, E.E. 1969a. Active layer development and soil moisture dynamics in enderby land, east antarctica. Soil Science, 108, 10.1097/00010694-196911000-00006.CrossRefGoogle Scholar
MacNamara, E.E. 1969b. Pedology of Enderby Land, Antarctica. Antarctic Journal of the United States, 4, 208209.Google Scholar
MacNamara, E.E. 1969c. Soils and geomorphic surfaces in Antarctica. Biuletyn Peryglacjalny, 20, 299320.Google Scholar
Martin, P.J. & Peel, D.A. 1978. The spatial distribution of 10 m temperatures in the Antarctic Peninsula. Journal of Glaciology, 20, 10.3189/S0022143000013861.CrossRefGoogle Scholar
Matsumoto, G.I., Akiyama, M., Watanuki, K. & Torii, T. 1990a. Unusual distributions of long-chain n-alkanes and n-alkenes in Antarctic soil. Organic Geochemistry, 15, 10.1016/0146-6380(90)90167-X.CrossRefGoogle Scholar
Matsumoto, G.I., Hirai, A., Hirota, K. & Watanuki, K. 1990b. Organic geochemistry of the McMurdo Dry Valleys soil, Antarctica. Organic Geochemistry, 16, 10.1016/0146-6380(90)90117-I.CrossRefGoogle Scholar
Matsuoka, N. & Hirakawa, K. 2006. High-centered polygons in the Sør Rondane Mountains, East Antarctica: possible effect of ice wedge sublimation. Polar Geosciences, 19, 189201.Google Scholar
McCraw, J.D. 1967. Soils of Taylor Dry Valley, Victoria Land, Antarctica, with notes on soils from other localities in Victoria Land. New Zealand Journal of Geology and Geophysics, 10, 10.1080/00288306.1967.10426754.CrossRefGoogle Scholar
Michel, R.F.M., Reynaud Schaefer, C.E.G., Dias, L.H., Bello Simas, F.N., De Melo Benites, V. & De Sá Mendonça, E. 2006. Ornithogenic Gelisols (Cryosols) from Maritime Antarctica: pedogenesis, vegetation, and carbon studies. Soil Science Society of America Journal, 70, 10.2136/sssaj2005.0178.CrossRefGoogle Scholar
Michel, R.F.M., Schaefer, C.E.G.R., López-Martínez, J., Simas, F.N.B., Haus, N.W., Serrano, E. & Bockheim, J.G. 2014. Soils and landforms from Fildes Peninsula and Ardley Island, Maritime Antarctica. Geomorphology, 225, 10.1016/j.geomorph.2014.03.041.CrossRefGoogle Scholar
Miwa, T. 1975. Clostridia in soil of the Antarctica. Japanese Journal of Medical Science and Biology, 28, 10.7883/yoken1952.28.201.CrossRefGoogle ScholarPubMed
Moura, P.A., Francelino, M.R., Schaefer, C.E.G.R., Simas, F.N.B. & de Mendonça, B.A.F. 2012. Distribution and characterization of soils and landform relationships in Byers Peninsula, Livingston Island, Maritime Antarctica. Geomorphology, 155–156, 10.1016/j.geomorph.2011.12.011.Google Scholar
Navas, A., López-Martínez, J., Casas, J., Machín, J., Durán, J.J., Serrano, E., et al. 2008. Soil characteristics on varying lithological substrates in the South Shetland Islands, Maritime Antarctica. Geoderma, 144, 10.1016/j.geoderma.2007.10.011.CrossRefGoogle Scholar
Negoita, T.G., Stefanic, G., Irimescu-Orzan, M.E., Oprea, G. & Palanciuc, V. 2001. Chemical and biological characterization of soils from the Antarctic east coast. Polar Biology, 24, 10.1007/s003000100241.Google Scholar
Nikitin, D.A., Marfenina, O.E., Kudinova, A.G., Lysak, L.V., Mergelov, N.S., Dolgikh, A.V. & Lupachev, A.V. 2017. Microbial biomass and biological activity of soils and soil-like bodies in coastal oases of Antarctica. Eurasian Soil Science, 50, 10.1134/S1064229317070079.CrossRefGoogle Scholar
Nizamutdinov, T., Andreev, M. & Abakumov, E. 2021. The role of the ornithogenic factor in soil formation on the Antarctic oasis territory Bunger Hills (East Antarctica). Eurasian Journal of Soil Science, 10, 10.18393/ejss.962538.Google Scholar
Oliva, M., Hrbacek, F., Ruiz-Fernández, J., de Pablo, M.Á., Vieira, G., Ramos, M. & Antoniades, D. 2017. Active layer dynamics in three topographically distinct lake catchments in Byers Peninsula (Livingston Island, Antarctica). Catena, 149, 10.1016/j.catena.2016.07.011.CrossRefGoogle Scholar
Oliveira Filho, J.d.S. 2020. A bibliometric analysis of soil research in Brazil 1989–2018. Geoderma Regional, 23, 10.1016/j.geodrs.2020.e00345.CrossRefGoogle Scholar
Parker, B.C., Boyer, S., Allnutt, F.C.T., Seaburg, K.G., Wharton, R.A. Jr & Simmons, G.M. Jr 1982. Soils from the Pensacola Mountains, Antarctica: physical, chemical and biological characteristics. Soil Biology and Biochemistry, 14, 10.1016/0038-0717(82)90036-0.CrossRefGoogle Scholar
Parsons, A.N., Barrett, J.E., Wall, D.H. & Virginia, R.A. 2004. Soil carbon dioxide flux in antarctic dry valley ecosystems. Ecosystems, 7, 10.1007/s10021-003-0132-1.CrossRefGoogle Scholar
Poage, M.A., Barrett, J.E., Virginia, R.A. & Wall, D.H. 2008. The influence of soil geochemistry on nematode distribution, Mcmurdo Dry Valleys, Antarctica. Arctic, Antarctic, and Alpine Research, 40, 10.1657/1523-0430(06-051)[POAGE]2.0.CO;2.CrossRefGoogle Scholar
Polito, M., Emslie, S.D. & Walker, W. 2002. A 1000-year record of Adélie penguin diets in the southern Ross Sea. Antarctic Science, 14, 10.1017/S0954102002000184.CrossRefGoogle Scholar
Retallack, G.J. 1997. Early forest soils and their role in Devonian global change. Science, 276, 10.1126/science.276.5312.583.CrossRefGoogle ScholarPubMed
Roser, D.J., Seppelt, R.D. & Ashbolt, N. 1993. Microbiology of ornithogenic soils from the Windmill Islands, Budd Coast, Continental Antarctica: microbial biomass distribution. Soil Biology and Biochemistry, 25, 10.1016/0038-0717(93)90023-5.Google Scholar
Rout, R.P., Sahoo, B.K., Pal, R., Dhabekar, B.S., Bakshi, A.K. & Datta, D. 2020. Investigation of 220Rn emanation and exhalation from soil samples of Larsemann Hills region, Antarctica. Journal of Environmental Radioactivity, 214–215, 10.1016/j.jenvrad.2020.106175.Google ScholarPubMed
Santos, I.R., Silva-Filho, E.V., Schaefer, C.E.G.R., Albuquerque-Filho, M.R. & Campos, L.S. 2005. Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Marine Pollution Bulletin, 50, 10.1016/j.marpolbul.2004.10.009.CrossRefGoogle ScholarPubMed
Saul, D., Aislabie, J., Brown, C., Harris, L. & Foght, J. 2005. Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiology Ecology, 53, 10.1016/j.femsec.2004.11.007.CrossRefGoogle ScholarPubMed
Schaefer, C.E.G.R., Michel, R.F.M., Delpupo, C., Senra, E.O., Bremer, U.F. & Bockheim, J.G. 2017. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica. Catena, 149, 10.1016/j.catena.2016.07.020.CrossRefGoogle Scholar
Schaefer, C.E.G.R., Simas, F.N.B., Gilkes, R.J., Mathison, C., da Costa, L.M. & Albuquerque, M.A. 2008. Micromorphology and microchemistry of selected Cryosols from Maritime Antarctica. Geoderma, 144, 10.1016/j.geoderma.2007.10.018.CrossRefGoogle Scholar
Shivaji, S., Reddy, G.S., Aduri, R.P., Kutty, R. & Ravenschlag, K. 2004. Bacterial diversity of a soil sample from Schirmacher Oasis, Antarctica. Cellular and Molecular Biology (Noisy-le-Grand, France), 50, 525536.Google ScholarPubMed
Simas, F.N.B., Schaefer, C.E.G.R., Filho, M.R.A., Francelino, M.R., Filho, E.I.F. & da Costa, L.M. 2008. Genesis, properties and classification of Cryosols from Admiralty Bay, Maritime Antarctica. Geoderma, 144, 10.1016/j.geoderma.2007.10.019.CrossRefGoogle Scholar
Simas, F.N.B., Schaefer, C.E.G.R., Melo, V.F., Albuquerque-Filho, M.R., Michel, R.F.M., Pereira, V.V., et al. 2007. Ornithogenic Cryosols from Maritime Antarctica: phosphatization as a soil forming process. Geoderma, 138, 10.1016/j.geoderma.2006.11.011.CrossRefGoogle Scholar
Sletten, R.S. 2003. Resurfacing time of terrestrial surfaces by the formation and maturation of polygonal patterned ground. Journal of Geophysical Research, 108, 10.1029/2002JE001914.CrossRefGoogle Scholar
Smith, J.J., Tow, L.A., Stafford, W., Cary, C. & Cowan, D.A. 2006. Bacterial diversity in three different Antarctic cold desert mineral soils. Microbial Ecology, 51, 10.1007/s00248-006-9022-3.CrossRefGoogle ScholarPubMed
Tahon, G., Tytgat, B., Stragier, P. & Willems, A. 2016. Analysis of cbbL, nifH, and pufLM in soils from the Sør Rondane Mountains, Antarctica, reveals a large diversity of autotrophic and phototrophic bacteria. Microbial Ecology, 71, 10.1007/s00248-015-0704-6.CrossRefGoogle ScholarPubMed
Teixeira, L.C.R.S., Peixoto, R.S., Cury, J.C., Sul, W.J., Pellizari, V.H., Tiedje, J. & Rosado, A.S. 2010. Bacterial diversity in rhizosphere soil from Antarctic vascular plants of Admiralty Bay, Maritime Antarctica. ISME Journal, 4, 10.1038/ismej.2010.35.CrossRefGoogle ScholarPubMed
van Dorst, J., Bissett, A., Palmer, A.S., Brown, M., Snape, I., Stark, J.S., et al. 2014. Community fingerprinting in a sequencing world. FEMS Microbiology Ecology, 89, 10.1111/1574-6941.12308.CrossRefGoogle Scholar
Van Goethem, M.W., Pierneef, R., Bezuidt, O.K.I., Van De Peer, Y., Cowan, D.A. & Makhalanyane, T.P. 2018. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome, 6, 10.1186/s40168-018-0424-5.CrossRefGoogle ScholarPubMed
Velasco-Castrillón, A., Schultz, M.B., Colombo, F., Gibson, J.A.E., Davies, K.A., Austin, A.D. & Stevens, M.I. 2014. Distribution and diversity of soil microfauna from East Antarctica: assessing the link between biotic and abiotic factors. PLoS ONE, 9, 10.1371/journal.pone.0087529.CrossRefGoogle ScholarPubMed
Vennum, W.R. & Nejedly, J.W. 1990. Claymineralogy of soils developed on weathered igneous rocks, West Antarctica. New Zealand Journal of Geology and Geophysics, 33, 10.1080/00288306.1990.10421376.CrossRefGoogle Scholar
Vieira, G., Bockheim, J., Guglielmin, M., Balks, M., Abramov, A.A., Boelhouwers, J., et al. 2010. Thermal state of permafrost and active-layer monitoring in the Antarctic: advances during the International Polar Year 2007–2009. Permafrost and Periglacial Processes, 21, 10.1002/ppp.685.CrossRefGoogle Scholar
Wang, N.F., Zhang, T., Zhang, F., Wang, E.T., He, J.F., Ding, H., et al. 2015. Diversity and structure of soil bacterial communities in the Fildes Region (Maritime Antarctica) as revealed by 454 pyrosequencing. Frontiers in Microbiology, 6, 10.3389/fmicb.2015.01188.CrossRefGoogle ScholarPubMed
Warrier, A., Mahesh, B., Sebastian, J. & Mohan, R. 2021. How strong was pedogenesis in Schirmacher Oasis during the Late Quaternary? Polar Science, 30, 10.1016/j.polar.2021.100636.CrossRefGoogle Scholar
Xuemei, W., Mingguo, M. & Xin, L. 2011. Research trend analysis of study areas in Qinghai-Tibet Plateau based on the spatial information mining from scientific literatures. In Michel, U. & Civco, D.L., eds, Earth resources and environmental remote sensing/GIS applications II. SPIE, 17, 10.1117/12.897852.Google Scholar
Xuemei, W., Mingguo, M., Xin, L. & Zhiqiang, Z. 2014. Applications and researches of geographic information system technologies in bibliometrics. Earth Science Informatics, 7, 10.1007/s12145-013-0132-4.CrossRefGoogle Scholar
Zazovskaya, E.P., Fedorov-Davydov, D.G., Alekseeva, T.V. & Dergacheva, M.I. 2015. Soils of Queen Maud Land. In Bockheim, J.G., ed., The soils of Antarctica. World Soils Book Series. Cham: Springer International Publishing, 21–44, 10.1007/978-3-319-05497-1_3.Google Scholar
Zazovskaya, E., Mergelov, N., Shishkov, V., Dolgikh, A., Miamin, V., Cherkinsky, A. & Goryachkin, S. 2017. Radiocarbon age of soils in oases of East Antarctica. Radiocarbon, 59, 10.1017/RDC.2016.75.CrossRefGoogle Scholar
Zhang, Q., Chen, Z., Li, Y., Wang, P., Zhu, C., Gao, G., et al. 2015. Occurrence of organochlorine pesticides in the environmental matrices from King George Island, West Antarctica. Environmental Pollution, 206, 10.1016/j.envpol.2015.06.025.CrossRefGoogle Scholar
Zhu, R., Sun, J., Liu, Y., Gong, Z. & Sun, L. 2011. Potential ammonia emissions from penguin guano, ornithogenic soils and seal colony soils in coastal Antarctica: effects of freezing-thawing cycles and selected environmental variables. Antarctic Science, 23, 10.1017/S0954102010000623.CrossRefGoogle Scholar
Zhuang, Y., Du, C., Zhang, L., Du, Y. & Li, S. 2015. Research trends and hotspots in soil erosion from 1932 to 2013: a literature review. Scientometrics, 105, 10.1007/s11192-015-1706-3.CrossRefGoogle Scholar
Zupic, I. & Čater, T. 2015. Bibliometric methods in management and organization. Organizational Research Methods, 18, 10.1177/1094428114562629.CrossRefGoogle Scholar
Supplementary material: File

Vieira et al. supplementary material

Vieira et al. supplementary material
Download Vieira et al. supplementary material(File)
File 264 KB