Hostname: page-component-669899f699-8p65j Total loading time: 0 Render date: 2025-04-24T23:36:15.152Z Has data issue: false hasContentIssue false

Semiabelian varieties and transcendence on Weierstrass sigma functions

Published online by Cambridge University Press:  25 November 2024

Duc Hiep Pham*
Affiliation:
University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam

Abstract

We establish new results on complex and $p$-adic linear independence on a class of semiabelian varieties. As applications, we obtain transcendence results concerning complex and $p$-adic Weierstrass sigma functions associated with elliptic curves.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

Footnotes

Dedicated to my Father-in-law, Dr. Ngoc Quang Le on the occasion of his 65th birthday.

References

Bertolin, C., Philippon, P., Saha, B. and Saha, E., Semi-abelian analogues of schanuel conjecture and applications, J. Algebra 596 (2022), 250288.CrossRefGoogle Scholar
Bertrand, D., Sous-groupes à un paramètre p-adique de variétés de groupe, Invent. Math. 40(2) (1977), 171193.CrossRefGoogle Scholar
Bourbaki, N., Elements of Mathematics. Lie groups and Lie algebras. Part I: Chapters 1–3. English translantion., Actualities scientifiques et industrielles, Herman, Adiwes International Series in Mathematics, (Hermann, Publishers in Arts and Science; Reading, Mass.: Addison-Wesley Publishing Company, Paris, 1975), XVII.Google Scholar
Chandrasekharan, K., Elliptic functions. (Springer-Verlag, Berlin, 1985).CrossRefGoogle Scholar
Conrad, B., A modern proof of chevalley’s theorem on algebraic groups, J. Ramanujan Math. Soc. 17 (2002), 118.Google Scholar
Fuchs, C. and Pham, D. H., The p-adic analytic subgroup theorem revisited, p-Adic Num. Ultrametr. Anal. Appl. 7 (2015), 143156.CrossRefGoogle Scholar
Lang, S., Transcendental points on group varieties, Topology 1(4) (1962), 313318.CrossRefGoogle Scholar
Lutz, E., Sur l’équation Y 2 = AX 3AXB dans les corps p-adiques, J. Reine Angew. Math. 177 (1937), 238247.CrossRefGoogle Scholar
Matev, T., The p-adic analytic subgroup theorem and applications. Available at http://arxiv.org/pdf/1010.3156v1.pdf Google Scholar
Perucca, A., On the order of the reductions of points on abelian varieties and tori, PhD Thesis (Università di Roma La Sapienza, 2008).Google Scholar
Pham, D. H., Linear independence on simple abelian varieties, Period. Math. Hung. 89(1) (2024), 2331.CrossRefGoogle Scholar
Robert, A. M., A course in p-adic analysis. (Springer-Verlag, 2000).CrossRefGoogle Scholar
Waldschmidt, M., Nombres transcendants et fonctions sigma de weierstrass, C. R. Math. Rep. Acad. Sci. Can 1(2) (1978/1979), 111114.Google Scholar
Waldschmidt, M., Nombres transcendants et groupes algébriques, Astérisques 69-70, (Société Mathématique de France, Paris, 1987).Google Scholar
Weil, A., Sur les fonctions elliptiques $\mathfrak{p}$ -adiques, Note aux C. R. Acad. Sc. Paris 203 (1936), 2224.Google Scholar
Wüstholz, G., Some remarks on a conjecture of Waldschmidt, Diophantine approximations and transcendental numbers (Luminy 1982), Progr. Math. 31, Birkhäuser Boston, Boston, MA, 1983, 329336.Google Scholar
Wüstholz, G., Algebraische Punkte auf Analytischen Untergruppen algebraischer Gruppen, Ann. Math. 129 (1989), 501517.CrossRefGoogle Scholar