Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T19:15:34.866Z Has data issue: false hasContentIssue false

Mediating pathways between attention deficit hyperactivity disorder and type 2 diabetes mellitus: evidence from a two-step and multivariable Mendelian randomization study

Published online by Cambridge University Press:  28 October 2024

J. Zhang
Affiliation:
Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Division of Communicable Disease Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
Z. K. Chen
Affiliation:
Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
R. D. Triatin
Affiliation:
Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Faculty of Medicine, Department of Biomedical Sciences, Universitas Padjadjaran, Bandung, Indonesia
H. Snieder
Affiliation:
Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
C. H. L. Thio
Affiliation:
Department of Epidemiology, Unit of Genetic Epidemiology and Bioinformatics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands Department of Population Health Sciences, Institute for Risk Assessment Sciences, University of Utrecht, Utrecht, The Netherlands
C. A. Hartman*
Affiliation:
Interdisciplinary Centre Psychopathology and Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
*
Corresponding author: C. A. Hartman; Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Aims

Type 2 diabetes (T2D) is a global health burden, more prevalent among individuals with attention deficit hyperactivity disorder (ADHD) compared to the general population. To extend the knowledge base on how ADHD links to T2D, this study aimed to estimate causal effects of ADHD on T2D and to explore mediating pathways.

Methods

We applied a two-step, two-sample Mendelian randomization (MR) design, using single nucleotide polymorphisms to genetically predict ADHD and a range of potential mediators. First, a wide range of univariable MR methods was used to investigate associations between genetically predicted ADHD and T2D, and between ADHD and the purported mediators: body mass index (BMI), childhood obesity, childhood BMI, sedentary behaviour (daily hours of TV watching), blood pressure (systolic blood pressure, diastolic blood pressure), C-reactive protein and educational attainment (EA). A mixture-of-experts method was then applied to select the MR method most likely to return a reliable estimate. We used estimates derived from multivariable MR to estimate indirect effects of ADHD on T2D through mediators.

Results

Genetically predicted ADHD liability associated with 10% higher odds of T2D (OR: 1.10; 95% CI: 1.02, 1.18). From nine purported mediators studied, three showed significant individual mediation effects: EA (39.44% mediation; 95% CI: 29.00%, 49.73%), BMI (44.23% mediation; 95% CI: 34.34%, 52.03%) and TV watching (44.10% mediation; 95% CI: 30.76%, 57.80%). The combination of BMI and EA explained the largest mediating effect (53.31%, 95% CI: −1.99%, 110.38%) of the ADHD–T2D association.

Conclusions

These findings suggest a potentially causal, positive relationship between ADHD liability and T2D, with mediation through higher BMI, more TV watching and lower EA. Intervention on these factors may thus have beneficial effects on T2D risk in individuals with ADHD.

Type
Original Article
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2024. Published by Cambridge University Press.

Introduction

Attention deficit/hyperactivity disorder (ADHD) is one of the most prevalent childhood psychiatric disorders affecting around 5–7% of children (Faraone et al., Reference Faraone, Asherson, Banaschewski, Biederman, Buitelaar, Ramos-Quiroga, Rohde, Sonuga-Barke, Tannock and Franke2015; Polanczyk et al., Reference Polanczyk, Willcutt, Salum, Kieling and Rohde2014; Thomas et al., Reference Thomas, Sanders, Doust, Beller and Glasziou2015). It is characterized by extensive hyperactive, impulsive and inattentive behaviours that impair daily functioning, e.g. at school, work or in social relations (Breslau et al., Reference Breslau, Miller, Joanie Chung and Schweitzer2011; Fleming et al., Reference Fleming, Fitton, Steiner, McLay, Clark, King, Mackay and Pell2017; Ros and Graziano, Reference Ros and Graziano2018). In most children, ADHD persists during adolescence and into adulthood, either at full syndromal or subthreshold clinical levels (Faraone et al., Reference Faraone, Biederman and Mick2006). Prevalence estimates of ADHD in adulthood are 2–3% (Simon et al., Reference Simon, Czobor, Bálint, Mészáros and Bitter2009).

Type 2 diabetes (T2D) is a multifactorial disorder in which impaired insulin secretion and/or insulin resistance results in dysregulated carbohydrate, lipid and protein metabolism (DeFronzo et al., Reference DeFronzo, Ferrannini, Groop, Henry, Herman, Holst, Hu, Kahn, Raz, Shulman, Simonson, Testa and Weiss2015). T2D is typically an adult-onset disease manifesting at middle or older ages (Carstensen et al., Reference Carstensen, Rønn and Jørgensen2020; Sun et al., Reference Sun, Saeedi, Karuranga, Pinkepank, Ogurtsova, Duncan, Stein, Basit, Chan, Mbanya, Pavkov, Ramachandaran, Wild, James, Herman, Zhang, Bommer, Kuo, Boyko and Magliano2022), although more recently a substantial increase among younger people (aged <40 years) is observed, significantly boosting premature morbidity and mortality (Magliano et al., Reference Magliano, Sacre, Harding, Gregg, Zimmet and Shaw2020; Viner et al., Reference Viner, White and Christie2017). The global prevalence has been continuously rising over the past few decades, with T2D projected to affect 12.2% (783 million) of the world population by the year 2045 (Sun et al., Reference Sun, Saeedi, Karuranga, Pinkepank, Ogurtsova, Duncan, Stein, Basit, Chan, Mbanya, Pavkov, Ramachandaran, Wild, James, Herman, Zhang, Bommer, Kuo, Boyko and Magliano2022), thus posing an increasingly unsustainable global health burden (Vos et al., Reference Vos, Lim, Abbafati, Abbas, Abbasi, Abbasifard, Abbasi-Kangevari, Abbastabar, Abd-Allah, Abdelalim, Abdollahi, Abdollahpour, Abolhassani, Aboyans, Abrams, Abreu, Abrigo, Abu-Raddad, Abushouk, Acebedo, Ackerman, Adabi, Adamu, Adebayo, Adekanmbi, Adelson, Adetokunboh, Adham, Afshari, Afshin, Agardh, Agarwal, Agesa, Aghaali, Aghamir, Agrawal, Ahmad, Ahmadi, Ahmadi, Ahmadieh, Ahmadpour, Akalu, Akinyemi, Akinyemiju, Akombi, Al-Aly, Alam, Alam, Alam, Alam, Alanzi, Albertson, Alcalde-Rabanal, Alema, Ali, Ali, Alicandro, Alijanzadeh, Alinia, Alipour, Aljunid, Alla, Allebeck, Almasi-Hashiani, Alonso, Al-Raddadi, Altirkawi, Alvis-Guzman, Alvis-Zakzuk, Amini, Amini-Rarani, Aminorroaya, Amiri, Amit, Amugsi, Amul, Anderlini, Andrei, Andrei, Anjomshoa, Ansari, Ansari, Ansari-Moghaddam, Antonio, Antony, Antriyandarti, Anvari, Anwer, Arabloo, Arab-Zozani, Aravkin, Ariani, Ärnlöv, Aryal, Arzani, Asadi-Aliabadi, Asadi-Pooya, Asghari, Ashbaugh, Atnafu, Atre, Ausloos, Ausloos, Ayala Quintanilla, Ayano, Ayanore, Aynalem, Azari, Azarian, Azene, Babaee, Badawi, Bagherzadeh, Bakhshaei, Bakhtiari, Balakrishnan, Balalla, Balassyano, Banach, Banik, Bannick, Bante, Baraki, Barboza, Barker-Collo, Barthelemy, Barua, Barzegar, Basu, Baune, Bayati, Bazmandegan, Bedi, Beghi, Béjot, Bello, Bender, Bennett, Bennitt, Bensenor, Benziger, Berhe, Bernabe, Bertolacci, Bhageerathy, Bhala, Bhandari, Bhardwaj, Bhattacharyya, Bhutta, Bibi, Biehl, Bikbov, Bin Sayeed, Biondi, Birihane, Bisanzio, Bisignano, Biswas, Bohlouli, Bohluli, Bolla, Boloor, Boon-Dooley, Borges, Borzì, Bourne, Brady, Brauer, Brayne, Breitborde, Brenner, Briant, Briggs, Briko, Britton, Bryazka, Buchbinder, Bumgarner, Busse, Butt, Caetano dos Santos, Cámera, Campos-Nonato, Car, Cárdenas, Carreras, Carrero, Carvalho, Castaldelli-Maia, Castañeda-Orjuela, Castelpietra, Castle, Castro, Catalá-López, Causey, Cederroth, Cercy, Cerin, Chandan, Chang, Charlson, Chattu, Chaturvedi, Chimed-Ochir, Chin, Cho, Christensen, Chu, Chung, Cicuttini, Ciobanu, Cirillo, Collins, Compton, Conti, Cortesi, Costa, Cousin, Cowden, Cowie, Cromwell, Cross, Crowe, Cruz, Cunningham, Dahlawi, Damiani, Dandona, Dandona, Darwesh, Daryani, Das, Das Gupta, das Neves, Dávila-Cervantes, Davletov, De Leo, Dean, DeCleene, Deen, Degenhardt, Dellavalle, Demeke, Demsie, Denova-Gutiérrez, Dereje, Dervenis, Desai, Desalew, Dessie, Dharmaratne, Dhungana, Dianatinasab, Diaz, Dibaji Forooshani, Dingels, Dirac, Djalalinia, Do, Dokova, Dorostkar, Doshi, Doshmangir, Douiri, Doxey, Driscoll, Dunachie, Duncan, Duraes, Eagan, Ebrahimi Kalan, Edvardsson, Ehrlich, El Nahas, El Sayed, El Tantawi, Elbarazi, Elgendy, Elhabashy, El-Jaafary, Elyazar, Emamian, Emmons-Bell, Erskine, Eshrati, Eskandarieh, Esmaeilnejad, Esmaeilzadeh, Esteghamati, Estep, Etemadi, Etisso, Farahmand, Faraj, Fareed, Faridnia, Farinha, Farioli, Faro, Faruque, Farzadfar, Fattahi, Fazlzadeh, Feigin, Feldman, Fereshtehnejad, Fernandes, Ferrari, Ferreira, Filip, Fischer, Fisher, Fitzgerald, Flohr, Flor, Foigt, Folayan, Force, Fornari, Foroutan, Fox, Freitas, Fu, Fukumoto, Furtado, Gad, Gakidou, Galles, Gallus, Gamkrelidze, Garcia-Basteiro, Gardner, Geberemariyam, Gebrehiwot, Gebremedhin, Gebreslassie, Gershberg Hayoon, Gething, Ghadimi, Ghadiri, Ghafourifard, Ghajar, Ghamari, Ghashghaee, Ghiasvand, Ghith, Gholamian, Gilani, Gill, Gitimoghaddam, Giussani, Goli, Gomez, Gopalani, Gorini, Gorman, Gottlich, Goudarzi, Goulart, Goulart, Grada, Grivna, Grosso, Gubari, Gugnani, Guimaraes, Guimarães, Guled, Guo, Guo, Gupta, Haagsma, Haddock, Hafezi-Nejad, Hafiz, Hagins, Haile, Hall, Halvaei, Hamadeh, Hamagharib Abdullah, Hamilton, Han, Han, Hankey, Haro, Harvey, Hasaballah, Hasanzadeh, Hashemian, Hassanipour, Hassankhani, Havmoeller, Hay, Hay, Hayat, Heidari, Heidari, Heidari-Soureshjani, Hendrie, Henrikson, Henry, Herteliu, Heydarpour, Hird, Hoek, Hole, Holla, Hoogar, Hosgood, Hosseinzadeh, Hostiuc, Hostiuc, Househ, Hoy, Hsairi, Hsieh, Hu, Huda, Hugo, Huynh, Hwang, Iannucci, Ibitoye, Ikuta, Ilesanmi, Ilic, Ilic, Inbaraj, Ippolito, Irvani, Islam, Islam, Islam, Islami, Iso, Ivers, Iwu, Iyamu, Jaafari, Jacobsen, Jadidi-Niaragh, Jafari, Jafarinia, Jahagirdar, Jahani, Jahanmehr, Jakovljevic, Jalali, Jalilian, James, Janjani, Janodia, Jayatilleke, Jeemon, Jenabi, Jha, Jha, Ji, Jia, John, John-Akinola, Johnson, Johnson, Jonas, Joo, Joshi, Jozwiak, Jürisson, Kabir, Kabir, Kalani, Kalani, Kalankesh, Kalhor, Kamiab, Kanchan, Karami Matin, Karch, Karim, Karimi, Kassa, Kassebaum, Katikireddi, Kawakami, Kayode, Keddie, Keller, Kereselidze, Khafaie, Khalid, Khan, Khatab, Khater, Khatib, Khayamzadeh, Khodayari, Khundkar, Kianipour, Kieling, Kim, Kim, Kim, Kimokoti, Kisa, Kisa, Kissimova-Skarbek, Kivimäki, Kneib, Knudsen, Kocarnik, Kolola, Kopec, Kosen, Koul, Koyanagi, Kravchenko, Krishan, Krohn, Kuate Defo, Kucuk Bicer, Kumar, Kumar, Kumar, Kumar, Kumaresh, Kurmi, Kusuma, Kyu, La Vecchia, Lacey, Lal, Lalloo, Lam, Lami, Landires, Lang, Lansingh, Larson, Larsson, Lasrado, Lassi, Lau, Lavados, Lazarus, Ledesma, Lee, Lee, LeGrand, Leigh, Leonardi, Lescinsky, Leung, Levi, Lewington, Li, Lim, Lin, Lin, Linehan, Linn, Liu, Liu, Liu, Looker, Lopez, Lopukhov, Lorkowski, Lotufo, Lucas, Lugo, Lunevicius, Lyons, Ma, MacLachlan, Maddison, Maddison, Madotto, Mahasha, Mai, Majeed, Maled, Maleki, Malekzadeh, Malta, Mamun, Manafi, Manafi, Manguerra, Mansouri, Mansournia, Mantilla Herrera, Maravilla, Marks, Martins-Melo, Martopullo, Masoumi, Massano, Massenburg, Mathur, Maulik, McAlinden, McGrath, McKee, Mehndiratta, Mehri, Mehta, Meitei, Memiah, Mendoza, Menezes, Mengesha, Mengesha, Mereke, Meretoja, Meretoja, Mestrovic, Miazgowski, Miazgowski, Michalek, Mihretie, Miller, Mills, Mirica, Mirrakhimov, Mirzaei, Mirzaei, Mirzaei-Alavijeh, Misganaw, Mithra, Moazen, Moghadaszadeh, Mohamadi, Mohammad, Mohammad, Mohammad Gholi Mezerji, Mohammadian-Hafshejani, Mohammadifard, Mohammadpourhodki, Mohammed, Mokdad, Molokhia, Momen, Monasta, Mondello, Mooney, Moosazadeh, Moradi, Moradi, Moradi-Lakeh, Moradzadeh, Moraga, Morales, Morawska, Moreno Velásquez, Morgado-da-Costa, Morrison, Mosser, Mouodi, Mousavi, Mousavi Khaneghah, Mueller, Munro, Muriithi, Musa, Muthupandian, Naderi, Nagarajan, Nagel, Naghshtabrizi, Nair, Nandi, Nangia, Nansseu, Nayak, Nazari, Negoi, Negoi, Netsere, Ngunjiri, Nguyen, Nguyen, Nguyen, Nichols, Nigatu, Nigatu, Nikbakhsh, Nixon, Nnaji, Nomura, Norrving, Noubiap, Nowak, Nunez-Samudio, Oţoiu, Oancea, Odell, Ogbo, I-H, Okunga, Oladnabi, Olagunju, Olusanya, Olusanya, Oluwasanu, Omar Bali, Omer, Ong, Onwujekwe, Orji, Orpana, Ortiz, Ostroff, Otstavnov, Otstavnov, Øverland, Owolabi, M, Padubidri, Pakhare, Palladino, Pana, Panda-Jonas, Pandey, Park, Parmar, Pasupula, Patel, Paternina-Caicedo, Pathak, Pathak, Patten, Patton, Paudel, Pazoki Toroudi, Peden, Pennini, Pepito, Peprah, Pereira, Pereira, Perico, Pham, Phillips, Pigott, Pilgrim, Pilz, Pirsaheb, Plana-Ripoll, Plass, Pokhrel, Polibin, Polinder, Polkinghorne, Postma, Pourjafar, Pourmalek, Pourmirza Kalhori, Pourshams, Poznańska, Prada, Prakash, Pribadi, Pupillo, Quazi Syed, Rabiee, Rabiee, Radfar, Rafiee, Rafiei, Raggi, Rahimi-Movaghar, Rahman, Rajabpour-Sanati, Rajati, Ramezanzadeh, Ranabhat, Rao, Rao, Rasella, Rastogi, Rathi, Rawaf, Rawaf, Rawal, Razo, Redford, Reiner, Reinig, Reitsma, Remuzzi, Renjith, Renzaho, Resnikoff, Rezaei, Rezai, Rezapour, Rhinehart, Riahi, Ribeiro, Ribeiro, Ribeiro, Rickard, Roberts, Roberts, Robinson, Roever, Rolfe, Ronfani, Roshandel, Roth, Rubagotti, Rumisha, Sabour, Sachdev, Saddik, Sadeghi, Sadeghi, Saeidi, Safi, Safiri, Sagar, Sahebkar, Sahraian, Sajadi, Salahshoor, Salamati, Salehi Zahabi, Salem, Salem, Salimzadeh, Salomon, Salz, Samad, Samy, Sanabria, Santomauro, Santos, Santos, Santric-Milicevic, Saraswathy, Sarmiento-Suárez, Sarrafzadegan, Sartorius, Sarveazad, Sathian, Sathish, Sattin, Sbarra, Schaeffer, Schiavolin, Schmidt, Schutte, Schwebel, Schwendicke, Senbeta, Senthilkumaran, Sepanlou, Shackelford, Shadid, Shahabi, Shaheen, Shaikh, Shalash, Shams-Beyranvand, Shamsizadeh, Shannawaz, Sharafi, Sharara, Sheena, Sheikhtaheri, Shetty, Shibuya, Shiferaw, Shigematsu, Shin, Shiri, Shirkoohi, Shrime, Shuval, Siabani, Sigfusdottir, Sigurvinsdottir, Silva, Simpson, Singh, Singh, Skiadaresi, Skou, Skryabin, Sobngwi, Sokhan, Soltani, Sorensen, Soriano, Sorrie, Soyiri, Sreeramareddy, Stanaway, Stark, Ştefan, Stein, Steiner, Steiner, Stokes, Stovner, Stubbs, Sudaryanto, MaB, Sulo, Sultan, Sykes, Sylte, Szócska, Tabarés-Seisdedos, Tabb, Tadakamadla, Taherkhani, Tajdini, Takahashi, Taveira, Teagle, Teame, Tehrani-Banihashemi, Teklehaimanot, Terrason, Tessema, Thankappan, Thomson, Tohidinik, Tonelli, Topor-Madry, Torre, Touvier, Tovani-Palone, Tran, Travillian, Troeger, Truelsen, Tsai, Tsatsakis, Tudor Car, Tyrovolas, Uddin, Ullah, Undurraga, Unnikrishnan, Vacante, Vakilian, Valdez, Varughese, Vasankari, Vasseghian, Venketasubramanian, Violante, Vlassov, Vollset, Vongpradith, Vukovic, Vukovic, Waheed, Walters, Wang, Wang, Wang, Ward, Watson, Wei, Weintraub, Weiss, Weiss, Westerman, Whisnant, Whiteford, Wiangkham, Wiens, Wijeratne, Wilner, Wilson, Wojtyniak, Wolfe, Wool, Wulf, Hanson, Wunrow, Xu, Xu, Yadgir, Yahyazadeh Jabbari, Yamagishi, Yaminfirooz, Yano, Yaya, Yazdi-Feyzabadi, Yearwood, Yeheyis, Yeshitila, Yip, Yonemoto, Yoon, Yoosefi Lebni, Younis, Younker, Yousefi, Yousefifard, Yousefinezhadi, Yousuf, Yu, Yusefzadeh, Zahirian Moghadam, Zaki, Zaman, Zamani, Zamanian, Zandian, Zangeneh, Zastrozhin, Zewdie, Zhang, Zhang, Zhao, Zhao, Zheng, Zhou, Ziapour, Zimsen, Naghavi and Murray2020).

Epidemiological studies have shown a higher T2D prevalence (up to 70%) among individuals with ADHD compared to the general population (Chen et al., Reference Chen, Hartman, Haavik, Harro, Klungsøyr, Hegvik, Wanders, Ottosen, Dalsgaard, Faraone and Larsson2018b, Reference Chen, Pan, Hsu, Huang, Su, Li, Lin, Tsai, Chang, Chen and Bai2018a). Meta-analysis estimated a twofold higher risk of T2D in individuals with ADHD (Garcia-Argibay et al., Reference Garcia-Argibay, Li, Du Rietz, Zhang, Yao, Jendle, Ramos-Quiroga, Ribasés, Chang, Brikell, Cortese and Larsson2023). In addition, recent evidence suggests an earlier onset of T2D in those with ADHD than those without (Chen et al., Reference Chen, Pan, Hsu, Huang, Su, Li, Lin, Tsai, Chang, Chen and Bai2018a). As a childhood onset condition, ADHD manifests much earlier than T2D, suggesting that ADHD, or factors/behaviours related to ADHD, precede and possibly cause T2D. However, it is currently unclear if the association between ADHD and T2D indeed represents a causal link and, if such link exists, how ADHD could lead to the onset of T2D.

Several factors could explain a potential link between ADHD and T2D. First, known precursors of T2D, such as obesity (Cortese et al., Reference Cortese, Moreira-Maia, St Fleur, Morcillo-Peñalver, Rohde and Faraone2016; Güngör et al., Reference Güngör, Celiloğlu, Raif, Özcan and Selimoğlu2016) and sedentary behaviour (Cook et al., Reference Cook, Li and Heinrich2015), are also more common in individuals with ADHD compared to those in the general population. It is plausible that the behaviours involved in ADHD such as impulsivity may enhance the chance of overeating or poor diet, leading to obesity (Cortese and Castellanos, Reference Cortese and Castellanos2014) in turn leading to T2D (Landau and Pinhas-Hamiel, Reference Landau and Pinhas-Hamiel2019). Also, screen time utilization is longer among individuals with ADHD and may partly explain the relation between sedentary behaviours and T2D (Nightingale et al., Reference Nightingale, Rudnicka, Donin, Sattar, Cook, Whincup and Owen2017; Yang et al., Reference Yang, Rolls, Dong, Du, Li, Feng, Cheng and Zhao2022). Second, ADHD is strongly linked to lower educational attainment (EA) (Fleming et al., Reference Fleming, Fitton, Steiner, McLay, Clark, King, Mackay and Pell2017; Korrel et al., Reference Korrel, Mueller, Silk, Anderson and Sciberras2017), potentially due to early school dropout or poor school performance, although such causal pathways are currently unclear (Hartman, Reference Hartman2020). Evidence from observational studies and genetic studies have suggested that lower EA and T2D are causally linked (Agardh et al., Reference Agardh, Allebeck, Hallqvist, Moradi and Sidorchuk2011; Zhang et al., Reference Zhang, Chen, Pärna, van Zon, Snieder and Thio2022). Lower EA may thus be an important pathway connecting ADHD and T2D. Third, individuals with ADHD are at increased risk for cardiovascular diseases (Akmatov et al., Reference Akmatov, Ermakova and Bätzing2021; Chen et al., Reference Chen, Hartman, Haavik, Harro, Klungsøyr, Hegvik, Wanders, Ottosen, Dalsgaard, Faraone and Larsson2018b; Li et al., Reference Li, Chang, Sun, Garcia-Argibay, Du Rietz, Dobrosavljevic, Brikell, Jernberg, Solmi, Cortese and Larsson2022b, Reference Li, Yao, Zhang, Garcia-Argibay, Du Rietz, Brikell, Solmi, Cortese, Ramos-Quiroga, Ribasés, Chang and Larsson2023), elevated blood pressure (Chen et al., Reference Chen, Hartman, Haavik, Harro, Klungsøyr, Hegvik, Wanders, Ottosen, Dalsgaard, Faraone and Larsson2018b) and increased peripheral inflammation (Saccaro et al., Reference Saccaro, Schilliger, Perroud and Piguet2021). These well-known risk factors of T2D (Emdin et al., Reference Emdin, Anderson, Woodward and Rahimi2015; Wang et al., Reference Wang, Bao, Liu, OuYang, Wang, Rong, Xiao, Shan, Zhang, Yao and Liu2012) may also be mediators between ADHD and T2D, although a recent register-based study focused on referred and diagnosed patients (i.e. more severely affected patients) suggests that cardiovascular traits played only a minor mediating role (Garcia-Argibay et al., Reference Garcia-Argibay, Li, Du Rietz, Zhang, Yao, Jendle, Ramos-Quiroga, Ribasés, Chang, Brikell, Cortese and Larsson2023). Despite the plausibility of these pathways, it is not known whether, and to what extent, these are mechanisms explaining the association of ADHD with T2D. A better understanding of causal mechanisms may help prevention of T2D in individuals with ADHD. Therefore, research on mediating pathways is needed (Byrne et al., Reference Byrne, Yang and Wray2017; Hartman, Reference Hartman2020).

A widely applied method that supports causal inference from observational data is Mendelian randomization (MR), which uses genetic instrumental variables to examine the relationship between a risk factor (in this case ADHD), and a disease outcome (T2D) (Smith and Ebrahim, Reference Smith and Ebrahim2003). Under a number of assumptions, MR yields a causal estimate, i.e. an estimate that is less likely to be biased due to confounding, the primary source of bias in observational studies (Smith and Ebrahim, Reference Smith and Ebrahim2004). According to Mendel’s laws of random segregation and independent assortment, alleles are assigned randomly before conception, independently of other traits. Thus, genetic variants can be exploited as a natural experiment. Recent advances in MR methodology include multivariable MR (MVMR), which among other things can be applied to investigate mediation (Sanderson, Reference Sanderson2021).

In recent years, MR has been applied to study effects of ADHD on a wide range of outcomes (see, for an overview, Riglin and Stergiakouli, Reference Riglin and Stergiakouli2022), including but not limited to ischemic stroke (Du et al., Reference Du, Zhou, You, Liu, King, Liang, Ranson, Llewellyn, Huang and Zhang2023), Parkinson’s disease (Li et al., Reference Li, Ge, Cheung, Ip, Coghill and Wong2020), insomnia (Gao et al., Reference Gao, Meng, Ma, Liang, Wang, Gao and Wang2019), autism spectrum disorder (Baranova et al., Reference Baranova, Wang, Cao, Chen, Chen, Chen, Ni, Xu, Ke, Xie, Sun and Zhang2022), body mass index (BMI) or obesity (Karhunen et al., Reference Karhunen, Bond, Zuber, Hurtig, Moilanen, Järvelin, Evangelou and Rodriguez2021; Liu et al., Reference Liu, Schoeler, Davies, Peyre, Lim, Barker, Llewellyn, Dudbridge and Pingault2021; Martins-Silva et al., Reference Martins-Silva, Vaz, Hutz, Salatino-Oliveira, Genro, Hartwig, Moreira-Maia, Rohde, Borges and Tovo-Rodrigues2019), substance use (Treur et al., Reference Treur, Demontis, Smith, Sallis, Richardson, Wiers, Børglum, Verweij and Munafò2021) and socio-economic status (SES) (Michaëlsson et al., Reference Michaëlsson, Yuan, Melhus, Baron, Byberg, Larsson and Michaëlsson2022). One previous MR study reported a positive relationship between ADHD and T2D (Leppert et al., Reference Leppert, Riglin, Wootton, Dardani, Thapar, Staley, Tilling, Davey Smith, Thapar and Stergiakouli2020). Our study aimed to improve on previous studies in two ways. First, we aimed to update ADHD-T2D effect estimates using the most recent genome-wide association studies (GWAS) on ADHD (Demontis et al., Reference Demontis, Walters, Athanasiadis, Walters, Therrien, Nielsen, Farajzadeh, Voloudakis, Bendl, Zeng, Zhang, Grove, Als, Duan, Satterstrom, Bybjerg-Grauholm, Bækved-Hansen, Gudmundsson, Magnusson, Baldursson, Davidsdottir, Haraldsdottir, Agerbo, Hoffman, Dalsgaard, Martin, Ribasés, Boomsma, Soler Artigas, Roth Mota, Howrigan, Medland, Zayats, Rajagopal, Havdahl, Doyle, Reif, Thapar, Cormand, Liao, Burton, Bau, Rovaris, Sonuga-Barke, Corfield, Grevet, Larsson, Gizer, Waldman, Brikell, Haavik, Crosbie, McGough, Kuntsi, Glessner, Langley, Lesch, Rohde, Hutz, Klein, Bellgrove, Tesli, O’Donovan, Andreassen, Leung, Pan, Joober, Schachar, Loo, Witt, Reichborn-Kjennerud, Banaschewski, Hawi, Daly, Mors, Nordentoft, Mors, Hougaard, Mortensen, Daly, Faraone, Stefansson, Roussos, Franke, Werge, Neale, Stefansson and Børglum2023) and T2D (Mahajan et al., Reference Mahajan, Taliun, Thurner, Robertson, Torres, Rayner, Payne, Steinthorsdottir, Scott, Grarup, Cook, Schmidt, Wuttke, Sarnowski, Mägi, Nano, Gieger, Trompet, Lecoeur, Preuss, Prins, Guo, Bielak, Below, Bowden, Chambers, Kim, Ng, Petty, Sim, Zhang, Bennett, Bork-Jensen, Brummett, Canouil, Ec Kardt, Fischer, Kardia, Kronenberg, Läll, Liu, Locke, Luan, Ntalla, Nylander, Schönherr, Schurmann, Yengo, Bottinger, Brandslund, Christensen, Dedoussis, Florez, Ford, Franco, Frayling, Giedraitis, Hackinger, Hattersley, Herder, Ikram, Ingelsson, Jørgensen, Jørgensen, Kriebel, Kuusisto, Ligthart, Lindgren, Linneberg, Lyssenko, Mamakou, Meitinger, Mohlke, Morris, Nadkarni, Pankow, Peters, Sattar, Stančáková, Strauch, Taylor, Thorand, Thorleifsson, Thorsteinsdottir, Tuomilehto, Witte, Dupuis, Peyser, Zeggini, Loos, Froguel, Ingelsson, Lind, Groop, Laakso, Collins, Jukema, Palmer, Grallert, Metspalu, Dehghan, Köttgen, Abecasis, Meigs, Rotter, Marchini, Pedersen, Hansen, Langenberg, Wareham, Stefansson, Gloyn, Morris, Boehnke and McCarthy2018), which, due to their larger sample sizes, have yielded more precise estimates of genetic effects. Second, we aimed to identify potential mediating pathways that link ADHD to T2D, specifically BMI, sedentary behaviour, EA, smoking, C-reactive protein (CRP), systolic blood pressure (SBP), diastolic blood pressure (DBP).

Methods

Study design

This is an MR study that investigated the relation between ADHD and T2D, and potential mediation through BMI, childhood obesity, childhood BMI, sedentary behaviour (daily hours of TV watching), blood pressure (SBP, DBP), CRP and EA. MR uses genetic instruments to genetically predict an exposure trait. Here, we used single nucleotide polymorphisms (SNPs) as genetic instruments. MR yields causal estimates under three key assumptions: (1) relevance, (2) exchangeability and (3) exclusion restriction (for more details, see ESM Methods). We used two-sample MR (2SMR) methods that uses SNP-trait associations available from GWAS summary data (Burgess et al., Reference Burgess, Butterworth and Thompson2013). We obtained summary statistics of the genetic associations from the most recent GWAS for each respective phenotype (details in Table 1). To determine whether a trait mediates the effect between exposure and outcome, two-step 2SMR was performed (Relton and Davey Smith, Reference Relton and Davey Smith2012). The first step involves genetically predict ADHD and estimating its association with potential mediators. The second step involved genetically predicting these mediators and estimating their effect on the outcome while accounting for ADHD using MVMR. Then, the overall effect of ADHD was separated into an indirect effect (i.e. the effect of ADHD on T2D via the mediator) and a direct effect (i.e. the effect of ADHD on T2D independent of the mediator). The distinct analysis steps for mediation analysis, as well as the decision algorithm on which variables to take forward to the subsequent step, are outlined in Fig. 2. Reporting of the present study was done in accordance with STROBE-MR guidelines (ESM STROBE-MR) (Skrivankova et al., Reference Skrivankova, Richmond, Woolf, Davies, Swanson, VanderWeele, Timpson, Higgins, Dimou, Langenberg, Loder, Golub, Egger, Davey Smith and Richards2021a, Reference Skrivankova, Richmond, Woolf, Yarmolinsky, Davies, Swanson, VanderWeele, Higgins, Timpson, Dimou, Langenberg, Golub, Loder, Gallo, Tybjaerg-Hansen, Davey Smith, Egger and Richards2021b).

Table 1. Overview of GWAS data used

PGC, Psychiatric Genomics Consortium; DIAGRAM, DIAbetes Genetics Replication And Meta-analysis; EGG, Early Growth Genetics; GIANT, Genetic Investigation of Anthropometric Traits; GSCAN, GWAS & Sequencing Consortium of Alcohol and Nicotine use; ICBP, International Consortium for Blood Pressure; SSGAC, Social Science Genetic Association Consortium; UKBB, UK Biobank; CIWG, Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Inflammation Working Group.

Variable definitions

The original GWAS defined T2D using a diagnostic fasting glucose, casual glucose level or plasma glucose level of 2 hours or an HbA1c level; use of glucose-lowering medication (by Anatomical Therapeutic Chemical code or self-report); or a history of T2D based on electronic medical records, self-report or a combination of these (Mahajan et al., Reference Mahajan, Taliun, Thurner, Robertson, Torres, Rayner, Payne, Steinthorsdottir, Scott, Grarup, Cook, Schmidt, Wuttke, Sarnowski, Mägi, Nano, Gieger, Trompet, Lecoeur, Preuss, Prins, Guo, Bielak, Below, Bowden, Chambers, Kim, Ng, Petty, Sim, Zhang, Bennett, Bork-Jensen, Brummett, Canouil, Ec Kardt, Fischer, Kardia, Kronenberg, Läll, Liu, Locke, Luan, Ntalla, Nylander, Schönherr, Schurmann, Yengo, Bottinger, Brandslund, Christensen, Dedoussis, Florez, Ford, Franco, Frayling, Giedraitis, Hackinger, Hattersley, Herder, Ikram, Ingelsson, Jørgensen, Jørgensen, Kriebel, Kuusisto, Ligthart, Lindgren, Linneberg, Lyssenko, Mamakou, Meitinger, Mohlke, Morris, Nadkarni, Pankow, Peters, Sattar, Stančáková, Strauch, Taylor, Thorand, Thorleifsson, Thorsteinsdottir, Tuomilehto, Witte, Dupuis, Peyser, Zeggini, Loos, Froguel, Ingelsson, Lind, Groop, Laakso, Collins, Jukema, Palmer, Grallert, Metspalu, Dehghan, Köttgen, Abecasis, Meigs, Rotter, Marchini, Pedersen, Hansen, Langenberg, Wareham, Stefansson, Gloyn, Morris, Boehnke and McCarthy2018).

In the original GWAS (Demontis et al., Reference Demontis, Walters, Athanasiadis, Walters, Therrien, Nielsen, Farajzadeh, Voloudakis, Bendl, Zeng, Zhang, Grove, Als, Duan, Satterstrom, Bybjerg-Grauholm, Bækved-Hansen, Gudmundsson, Magnusson, Baldursson, Davidsdottir, Haraldsdottir, Agerbo, Hoffman, Dalsgaard, Martin, Ribasés, Boomsma, Soler Artigas, Roth Mota, Howrigan, Medland, Zayats, Rajagopal, Havdahl, Doyle, Reif, Thapar, Cormand, Liao, Burton, Bau, Rovaris, Sonuga-Barke, Corfield, Grevet, Larsson, Gizer, Waldman, Brikell, Haavik, Crosbie, McGough, Kuntsi, Glessner, Langley, Lesch, Rohde, Hutz, Klein, Bellgrove, Tesli, O’Donovan, Andreassen, Leung, Pan, Joober, Schachar, Loo, Witt, Reichborn-Kjennerud, Banaschewski, Hawi, Daly, Mors, Nordentoft, Mors, Hougaard, Mortensen, Daly, Faraone, Stefansson, Roussos, Franke, Werge, Neale, Stefansson and Børglum2023), ADHD cases were diagnosed by psychiatrists at in- or out-patient clinics according to the ICD10 criteria (F90.0, F90.1, F98.8 diagnosis codes) or individuals that have been prescribed medication specific for ADHD symptoms (ATC-NA06BA, mostly methylphenidate).

In selecting mediators, we considered potential for modification, observational epidemiological evidence that link these to both ADHD or T2D, as well as the availability of comprehensive GWAS data. BMI was calculated by dividing weight (kg) by height squared (m2) (Yengo et al., Reference Yengo, Sidorenko, Kemper, Zheng, Wood, Weedon, Frayling, Hirschhorn, Yang and Visscher2018). Sedentary behaviour was proxied by daily hours of TV watching (in standard deviations, 1.5 hours) (van de Vegte et al., Reference van de Vegte, Said, Rienstra, van der Harst and Verweij2020). SBP and DBP were derived from two automated or two manual blood pressure measurements (Evangelou et al., Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, Del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott, Caulfield and The Million Veteran2018). Smoking was defined as ever-smoking vs never-smoking (Liu et al., Reference Liu, Jiang, Wedow, Li, Brazel, Chen, Datta, Davila-Velderrain, McGuire, Tian, Zhan, Agee, Alipanahi, Auton, Bell, Bryc, Elson, Fontanillas, Furlotte, Hinds, Hromatka, Huber, Kleinman, Litterman, McIntyre, Mountain, Northover, Sathirapongsasuti, Sazonova, Shelton, Shringarpure, Tian, Tung, Vacic, Wilson, Pitts, Mitchell, Skogholt, Winsvold, Sivertsen, Stordal, Morken, Kallestad, Heuch, Zwart, Fjukstad, Pedersen, Gabrielsen, Johnsen, Skrove, Indredavik, Drange, Bjerkeset, Børte, Stensland, Choquet, Docherty, Faul, Foerster, Fritsche, Gabrielsen, Gordon, Haessler, Hottenga, Huang, Jang, Jansen, Ling, Mägi, Matoba, McMahon, Mulas, Orrù, Palviainen, Pandit, Reginsson, Skogholt, Smith, Taylor, Turman, Willemsen, Young, Young, Zajac, Zhao, Zhou, Bjornsdottir, Boardman, Boehnke, Boomsma, Chen, Cucca, Davies, Eaton, Ehringer, Esko, Fiorillo, Gillespie, Gudbjartsson, Haller, Harris, Heath, Hewitt, Hickie, Hokanson, Hopfer, Hunter, Iacono, Johnson, Kamatani, Kardia, Keller, Kellis, Kooperberg, Kraft, Krauter, Laakso, Lind, Loukola, Lutz, Madden, Martin, McGue, McQueen, Medland, Metspalu, Mohlke, Nielsen, Okada, Peters, Polderman, Posthuma, Reiner, Rice, Rimm, Rose, Runarsdottir, Stallings, Stančáková, Stefansson, Thai, Tindle, Tyrfingsson, Wall, Weir, Weisner, Whitfield, Winsvold, Yin, Zuccolo, Bierut, Hveem, Lee, Munafò, Saccone, Willer, Cornelis, David, Hinds, Jorgenson, Kaprio, Stitzel, Stefansson, Thorgeirsson, Abecasis, Liu and Vrieze2019). EA was defined as years of schooling (in standard deviations, 4.2 years) based on the International Standard Classification of Education (ISCED) 2011 (Lee et al., Reference Lee, Wedow, Okbay, Kong, Maghzian, Zacher, Nguyen-Viet, Bowers, Sidorenko, Karlsson Linnér, Fontana, Kundu, Lee, Li, Li, Royer, Timshel, Walters, Willoughby, Yengo, Agee, Alipanahi, Auton, Bell, Bryc, Elson, Fontanillas, Hinds, McCreight, Huber, Litterman, McIntyre, Mountain, Noblin, Northover, Pitts, Sathirapongsasuti, Sazonova, Shelton, Shringarpure, Tian, Vacic, Wilson, Okbay, Beauchamp, Fontana, Lee, Pers, Rietveld, Turley, Chen, Emilsson, Meddens, Oskarsson, Pickrell, Thom, Timshel, Vlaming, Abdellaoui, Ahluwalia, Bacelis, Baumbach, Bjornsdottir, Brandsma, Concas, Derringer, Furlotte, Galesloot, Girotto, Gupta, Hall, Harris, Hofer, Horikoshi, Huffman, Kaasik, Kalafati, Karlsson, Kong, Lahti, van der Lee, Leeuw, Lind, Lindgren, Liu, Mangino, Marten, Mihailov, Miller, van der Most, Oldmeadow, Payton, Pervjakova, Peyrot, Qian, Raitakari, Rueedi, Salvi, Schmidt, Schraut, Shi, Smith, Poot, St Pourcain, Teumer, Thorleifsson, Verweij, Vuckovic, Wellmann, Westra, Yang, Zhao, Zhu, Alizadeh, Amin, Bakshi, Baumeister, Biino, Bønnelykke, Boyle, Campbell, Cappuccio, Davies, De Neve, Deloukas, Demuth, Ding, Eibich, Eisele, Eklund, Evans, Faul, Feitosa, Forstner, Gandin, Gunnarsson, Halldórsson, Harris, Heath, Hocking, Holliday, Homuth, Horan, Hottenga, de Jager, Joshi, Jugessur, Kaakinen, Kähönen, Kanoni, Keltigangas-Järvinen, Kiemeney, Kolcic, Koskinen, Kraja, Kroh, Kutalik, Latvala, Launer, Lebreton, Levinson, Lichtenstein, Lichtner, Liewald, Loukola, Madden, Mägi, Mäki-Opas, Marioni, Marques-Vidal, Meddens, McMahon, Meisinger, Meitinger, Milaneschi, Milani, Montgomery, Myhre, Nelson, Nyholt, Ollier, Palotie, Paternoster, Pedersen, Petrovic, Porteous, Räikkönen, Ring, Robino, Rostapshova, Rudan, Rustichini, Salomaa, Sanders, Sarin, Schmidt, Scott, Smith, Smith, Staessen, Steinhagen-Thiessen, Strauch, Terracciano, Tobin, Ulivi, Vaccargiu, Quaye, van Rooij, Venturini, Vinkhuyzen, Völker, Völzke, Vonk, Vozzi, Waage, Ware, Willemsen, Attia, Bennett, Berger, Bertram, Bisgaard, Boomsma, Borecki, Bültmann, Chabris, Cucca, Cusi, Deary, Dedoussis, van Duijn, Eriksson, Franke, Franke, Gasparini, Gejman, Gieger, Grabe, Gratten, Groenen, Gudnason, van der Harst, Hayward, Hinds, Hoffmann, Hyppönen, Iacono, Jacobsson, Järvelin, Jöckel, Kaprio, Kardia, Lehtimäki, Lehrer, Magnusson, Martin, McGue, Metspalu, Pendleton, Penninx, Perola, Pirastu, Pirastu, Polasek, Posthuma, Power, Province, Samani, Schlessinger, Schmidt, Sørensen, Spector, Stefansson, Thorsteinsdottir, Thurik, Timpson, Tiemeier, Tung, Uitterlinden, Vitart, Vollenweider, Weir, Wilson, Wright, Conley, Krueger, Smith, Hofman, Laibson, Medland, Meyer, Yang, Johannesson, Visscher, Esko, Koellinger and Cesarini2018; UNESCO Institute for Statistics., 2012). Serum CRP was measured in mg/L using standard laboratory techniques, and was transformed by its natural logarithm in the original GWAS (Ligthart et al., Reference Ligthart, Vaez, Võsa, Stathopoulou, de Vries, Prins, Van der Most, Tanaka, Naderi, Rose, Wu, Karlsson, Barbalic, Lin, Pool, Zhu, Macé, Sidore, Trompet, Mangino, Sabater-Lleal, Kemp, Abbasi, Kacprowski, Verweij, Smith, Huang, Marzi, Feitosa, Lohman, Kleber, Milaneschi, Mueller, Huq, Vlachopoulou, Lyytikäinen, Oldmeadow, Deelen, Perola, Zhao, Feenstra, Amini, Lahti, Schraut, Fornage, Suktitipat, Chen, Li, Nutile, Malerba, Luan, Bak, Schork, Del Greco, Thiering, Mahajan, Marioni, Mihailov, Eriksson, Ozel, Zhang, Nethander, Cheng, Aslibekyan, Ang, Gandin, Yengo, Portas, Kooperberg, Hofer, Rajan, Schurmann, den Hollander, Ahluwalia, Zhao, Draisma, Ford, Timpson, Teumer, Huang, Wahl, Liu, Huang, Uh, Geller, Joshi, Yanek, Trabetti, Lehne, Vozzi, Verbanck, Biino, Saba, Meulenbelt, O’Connell, Laakso, Giulianini, Magnusson, Ballantyne, Hottenga, Montgomery, Rivadineira, Rueedi, Steri, Herzig, Stott, Menni, Frånberg, St Pourcain, Felix, Pers, Bakker, Kraft, Peters, Vaidya, Delgado, Smit, Großmann, Sinisalo, Seppälä, Williams, Holliday, Moed, Langenberg, Räikkönen, Ding, Campbell, Sale, Chen, James, Ruggiero, Soranzo, Hartman, Smith, Berenson, Fuchsberger, Hernandez, Tiesler, Giedraitis, Liewald, Fischer, Mellström, Larsson, Wang, Scott, Lorentzon, Beilby, Ryan, Pennell, Vuckovic, Balkau, Concas, Schmidt, Mendes de Leon, Bottinger, Kloppenburg, Paternoster, Boehnke, Musk, Willemsen, Evans, Madden, Kähönen, Kutalik, Zoledziewska, Karhunen, Kritchevsky, Sattar, Lachance, Clarke, Harris, Raitakari, Attia, van Heemst, Kajantie, Sorice, Gambaro, Scott, Hicks, Ferrucci, Standl, Lindgren, Starr, Karlsson, Lind, Li, Chambers, Mori, de Geus, Heath, Martin, Auvinen, Buckley, de Craen, Waldenberger, Strauch, Meitinger, Scott, McEvoy, Beekman, Bombieri, Ridker, Mohlke, Pedersen, Morrison, Boomsma, Whitfield, Strachan, Hofman, Vollenweider, Cucca, Jarvelin, Jukema, Spector, Hamsten, Zeller, Uitterlinden, Nauck, Gudnason, Qi, Grallert, Borecki, Rotter, März, Wild, Lokki, Boyle, Salomaa, Melbye, Eriksson, Wilson, Penninx, Becker, Worrall, Gibson, Krauss, Ciullo, Zaza, Wareham, Oldehinkel, Palmer, Murray, Pramstaller, Bandinelli, Heinrich, Ingelsson, Deary, Mägi, Vandenput, van der Harst, Desch, Kooner, Ohlsson, Hayward, Lehtimäki, Shuldiner, Arnett, Beilin, Robino, Froguel, Pirastu, Jess, Koenig, Loos, Evans, Schmidt, Smith, Slagboom, Eiriksdottir, Morris, Psaty, Tracy, Nolte, Boerwinkle, Visvikis-Siest, Reiner, Gross, Bis, Franke, Franco, Benjamin, Chasman, Dupuis, Snieder, Dehghan and Alizadeh2018). Childhood obesity was defined as ≥95th percentile of BMI achieved 2–18 years old (Bradfield et al., Reference Bradfield, Vogelezang, Felix, Chesi, Helgeland, Horikoshi, Karhunen, Lowry, Cousminer, Ahluwalia, Thiering, Boh, Zafarmand, Vilor-Tejedor, Wang, Joro, Chen, Gauderman, Pitkänen, Parra, Fernandez-Rhodes, Alyass, Monnereau, Curtin, Have, McCormack, Hollensted, Frithioff-Bøjsøe, Valladares-Salgado, Peralta-Romero, Teo, Standl, Leinonen, Holm, Peters, Vioque, Vrijheid, Simpson, Custovic, Vaudel, Canouil, Lindi, Atalay, Kähönen, Raitakari, van Schaik, Berkowitz, Cole, Voruganti, Wang, Highland, Comuzzie, Butte, Justice, Gahagan, Blanco, Lehtimäki, Lakka, Hebebrand, Bonnefond, Grarup, Froguel, Lyytikäinen, Cruz, Kobes, Hanson, Zemel, Hinney, Teo, Meyre, North, Gilliland, Bisgaard, Bustamante, Bonnelykke, Pennell, Rivadeneira, Uitterlinden, Baier, Vrijkotte, Heinrich, Sørensen, Saw, Pedersen, Hansen, Eriksson, Widén, McCarthy, Njølstad, Power, Hyppönen, Sebert, Brown, Järvelin, Timpson, Johansson, Hakonarson, Jaddoe and Grant2019), and childhood BMI was measured in children aged between 2 and 10 years (Vogelezang et al., Reference Vogelezang, Bradfield, Ahluwalia, Curtin, Lakka, Grarup, Scholz, van der Most, Monnereau, Stergiakouli, Heiskala, Horikoshi, Fedko, Vilor-Tejedor, Cousminer, Standl, Wang, Viikari, Geller, Íñiguez, Pitkänen, Chesi, Bacelis, Yengo, Torrent, Ntalla, Helgeland, Selzam, Vonk, Zafarmand, Heude, Farooqi, Alyass, Beaumont, Have, Rzehak, Bilbao, Schnurr, Barroso, Bønnelykke, Beilin, Carstensen, Charles, Chawes, Clément, Closa-Monasterolo, Custovic, Eriksson, Escribano, Groen-Blokhuis, Grote, Gruszfeld, Hakonarson, Hansen, Hattersley, Hollensted, Hottenga, Hyppönen, Johansson, Joro, Kähönen, Karhunen, Kiess, Knight, Koletzko, Kühnapfel, Landgraf, Langhendries, Lehtimäki, Leinonen, Li, Lindi, Lowry, Bustamante, Medina-Gomez, Melbye, Michaelsen, Morgen, Mori, Nielsen, Niinikoski, Oldehinkel, Pahkala, Panoutsopoulou, Pedersen, Pennell, Power, Reijneveld, Rivadeneira, Simpson, Sly, Stokholm, Teo, Thiering, Timpson, Uitterlinden, van Beijsterveldt, van Schaik, Vaudel, Verduci, Vinding, Vogel, Zeggini, Sebert, Lind, Brown, Santa-Marina, Reischl, Frithioff-Bøjsøe, Meyre, Wheeler, Ong, Nohr, Vrijkotte, Koppelman, Plomin, Njølstad, Dedoussis, Froguel, Sørensen, Jacobsson, Freathy, Zemel, Raitakari, Vrijheid, Feenstra, Lyytikäinen, Snieder, Kirsten, Holt, Heinrich, Widén, Sunyer, Boomsma, Järvelin, Körner, Davey Smith, Holm, Atalay, Murray, Bisgaard, McCarthy, Jaddoe, Grant and Felix2020).

Instrument selection

In Table 1, all identified SNPs, and their associations with T2D, mediators, and ADHD were extracted from summary GWAS data. From the most recent GWAS meta-analysis of ADHD, which included 38,691 people with ADHD and 186,843 controls, 27 SNPs (p < 5 × 10−8) were chosen as genetic instruments for ADHD (Demontis et al., Reference Demontis, Walters, Athanasiadis, Walters, Therrien, Nielsen, Farajzadeh, Voloudakis, Bendl, Zeng, Zhang, Grove, Als, Duan, Satterstrom, Bybjerg-Grauholm, Bækved-Hansen, Gudmundsson, Magnusson, Baldursson, Davidsdottir, Haraldsdottir, Agerbo, Hoffman, Dalsgaard, Martin, Ribasés, Boomsma, Soler Artigas, Roth Mota, Howrigan, Medland, Zayats, Rajagopal, Havdahl, Doyle, Reif, Thapar, Cormand, Liao, Burton, Bau, Rovaris, Sonuga-Barke, Corfield, Grevet, Larsson, Gizer, Waldman, Brikell, Haavik, Crosbie, McGough, Kuntsi, Glessner, Langley, Lesch, Rohde, Hutz, Klein, Bellgrove, Tesli, O’Donovan, Andreassen, Leung, Pan, Joober, Schachar, Loo, Witt, Reichborn-Kjennerud, Banaschewski, Hawi, Daly, Mors, Nordentoft, Mors, Hougaard, Mortensen, Daly, Faraone, Stefansson, Roussos, Franke, Werge, Neale, Stefansson and Børglum2023). We applied strict linkage disequilibrium (LD) clumping thresholds for ADHD genetic instruments (LD cut-off of r 2 < 0.001 within a window of 10 MB), leading to the removal of 2 out of 27 SNPs. We oriented SNP alleles for ADHD towards positive coefficients, and harmonized the SNP alleles from the outcome GWAS accordingly. We inferred the strand for palindromic SNPs using allele frequencies, and removed ambiguous palindromes (minor allele frequency between 0.42 and 0.58). Figure 1 shows the SNP selection procedure for the ADHD-T2D analysis. It should be noted that the ADHD genetic effect was estimated on the liability scale and not on the yes/no scale. We applied the same criteria to select genetic instruments for each mediator (see Table 1 for details on each GWAS). Detailed information on SNPs and their associations with ADHD, mediators and T2D can be found in ESM SNP Data.

Figure 1. ADHD instrument selection for ADHD-T2D association. LD, linkage disequilibrium; T2D, type 2 diabetes; MR, Mendelian randomization.

Univariable MR analysis

To estimate the univariable associations between genetically predicted ADHD and T2D, and between genetically predicted ADHD and mediators we used a number of methods. First, we performed conventional random-effects inverse variance weighted (IVW) MR of single-SNP Wald ratios (SNP-outcome divided by SNP-exposure association), examining heterogeneity statistics to assess potential pleiotropy, and Egger intercepts to assess potential directional pleiotropy. In addition, we performed a large range of MR sensitivity analyses. In total, we used 44 univariable MR strategies (11 distinct MR estimation methods × Steiger filtering yes/no × outlier filtering yes/no). We applied the MR mixture-of-experts (MR-MoE) machine learning framework to assist in selecting the MR estimate most likely to be reliable (Hemani et al., Reference Hemani, Bowden, Haycock, Zheng, Davis, Flach, Gaunt and Smith2017). MR-MoE prioritizes methods based on certain characteristics of the data such as heterogeneity and directional pleiotropy, and discards instruments that are possibly invalid (e.g. potentially pleiotropic outliers and/or ‘reverse causal’ SNPs). The top ranked MR estimates for each univariable association were taken forward to further analysis.

MVMR analysis

We estimated the ADHD-adjusted association between each mediator and T2D risk using regression-based MVMR-IVW (Burgess and Thompson, Reference Burgess and Thompson2015), using trait-specific instruments in addition to ADHD instruments.

Mediation analysis

To calculate the indirect effect of each individual mediator (childhood BMI/obesity, BMI, SBP, DBP, smoking, CRP, EA and TV watching), we used the product-of-coefficients approach. This involved multiplying the ADHD–mediator association (derived from univariable MR) with the ADHD-adjusted association between mediator and outcome (Burgess et al., Reference Burgess, Daniel, Butterworth and Thompson2015). The indirect effect was divided by the total effect to assess the proportion of the overall effect of ADHD on T2D that was mediated by each individual mediator. We used the bootstrap method and delta method to estimate the confidence interval for the indirect effect and the proportion mediated.

We investigated indirect effects of multiple mediators combined (e.g. BMI + EA) using the difference in regression coefficient method. This involved subtracting the direct effect of ADHD on T2D (after adjustment for the mediators in MVMR) from the total effect of ADHD on T2D (from univariable MR), to obtain the indirect effect through multiple mediators. To identify the combination with the largest proportion mediated, and to evaluate potential overlapping effects between mediators, we looked into all combinations of mediators.

Mediators were selected into the final analysis if they met the following requirements: (1) ADHD affects the mediator in univariable MR; (2) The mediator affects T2D risk independent of ADHD in an MVMR model (see Fig. 2).

Figure 2. Decision algorithm for mediator selection in the final analysis. MR, Mendelian randomization; MVMR, Multivariable Mendelian randomization; MoE, mixture of experts; ADHD, Attention deficit hyperactivity disorder; EA, educational attainment; BMI, body mass index; TV watching, television watching; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRP, C-Reactive Protein; IV, instrument variable.

Sensitivity analyses

As an alternative to the product-of-coefficients method to calculate indirect effects through individual mediators, we used the difference in regression coefficient method. The robustness of the MVMR-IVW results was evaluated using the MVMR-Egger method (Rees et al., Reference Rees, Wood and Burgess2017). We investigated potential bidirectional relationship between ADHD and possible mediators in reverse MR analysis (genetic instruments for each mediator as the exposure).

All MR analyses were conducted using R (version 4.2.1) (Team RC, 2014) and the TwoSampleMR R package v0.5.7 (Hemani et al., Reference Hemani, Zheng, Elsworth, Wade, Haberland, Baird, Laurin, Burgess, Bowden, Langdon, Tan, Yarmolinsky, Shihab, Timpson, Evans, Relton, Martin, Davey Smith, Gaunt and Haycock2018).

Results

Univariable MR analysis

We included 25 SNPs as genetic instruments for ADHD (Fig. 1). Conventional random-effects IVW estimated a significant positive association between ADHD liability and T2D (OR: 1.15; 95% CI: 1.12, 1.18) in the presence of heterogeneity (Q [df] = 102.2 [24], heterogeneity p-value = 1.26 × 10−11) butabsence of directional pleiotropy (Egger intercept = −1.50 ± 1.59, Egger intercept p-value = 0.357) (ESM Table S1). In the results of all 44 univariable MR strategies, associations of ADHD liability with T2D ranged from OR 0.99 (simple mean, no Steiger filtering, no outlier filtering) to OR 1.28 (random effects MR Egger, Steiger filtering, no outlier filtering). Overall, results from the various MR strategies converged to a positive association. MoE assigned the weighted median MR estimate (no Steiger filtering, no outlier filtering) to be the most reliable, which estimated ADHD liability to associate with 10% higher odds of T2D (OR: 1.10; 95% CI: 1.02, 1.18; MoE score: 0.72, ESM Table S2).

Associations of genetically predicted ADHD liability with each candidate mediator are shown in Fig. 3a. In the MR models prioritized by MoE (ESM Table S2), genetically predicted ADHD liability associated with higher BMI (β = 0.05 kg/m2; 95% CI: 0.02, 0.07); more TV watching (β = 0.07 SD of TV watching; 95% CI: 0.05, 0.08, translating to 0.10 h more TV watching); higher odds of smoking (OR: 1.19; 95% CI: 1.14, 1.24); higher level of circulating CRP (β = 0.06; 95% CI: 0.02, 0.11), lower EA (β = −0.06 SD in years of schooling; 95% CI: −0.08, −0.03, translating to 0.25 less years of schooling). Genetically predicted ADHD liability was not associated with childhood obesity or childhood BMI. We observed an inverse association between liability of ADHD and blood pressure (SBP: β = −0.62; 95% CI: −1.29, 0.04; DBP: β = −0.38; 95% CI: −0.71, −0.04). Six potential mediators were taken forward to the next step, i.e. MVMR analysis of the ADHD-adjusted effect of mediators (i.e. BMI, TV watching, smoking, CRP, EA and DBP) on T2D (Fig. 2).

Figure 3. (a) MR-estimated effects of ADHD liability on each mediator separately, presented as Beta with 95% CI. (b) MR-estimated effects of each mediator separately on type 2 diabetes after MVMR adjustment for ADHD, presented as Beta /OR with 95% CI. (c) MR-estimated effects of indirect effects of each mediator separately, by product-of-coefficients method with bootstrap method-estimated 95% CIs. MR-estimated proportions mediated (%) are presented with 95% CIs. OR, odds ratio; CI, confidence interval; ADHD, Attention deficit hyperactivity disorder; BMI, body mass index; TV watching, television watching; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRP, C-Reactive Protein; T2D, type 2 diabetes.

MVMR analysis

Figure 3b shows associations of genetically predicted mediators on T2D with adjustment for ADHD using MVMR. A 1 kg/m2 higher genetically predicted BMI associated with 2.52 times higher odds of T2D (95% CI: 2.14, 2.97). One SD (4.2 years of schooling) higher genetically predicted EA associated with lower odds of T2D (OR: 0.52; 95% CI: 0.45, 0.61). One SD (1.5 hours) of genetically predicted TV watching associated with 1.88 times higher odds of T2D (95% CI: 1.55, 2.28). No associations with T2D were found for genetically predicted smoking (OR: 1.11; 95% CI: 0.98, 1.25), CRP (OR: 1.03; 95% CI: 0.90, 1.17) and DBP (OR: 1.01; 95% CI: 0.99, 1.02). Consequently, BMI, EA and TV watching were taken forward to the final mediation analysis.

Mediation analysis

Figure 3c displays the proportion of the effect of ADHD liability on T2D explained by each mediator separately. BMI mediated 44.23% (95% CI: 34.34%, 52.03%) of the total effect of ADHD liability on T2D. EA mediated 39.44% (95% CI: 29.00%, 49.73%) of the total effect, whereas TV watching mediated 44.10% (95% CI: 30.76%, 57.80%).

We examined the proportion mediated of different combinations of BMI, TV watching and EA. This was done in an effort to find the combination that explained the most variance in the ADHD–T2D association, as well as to investigate potential overlap in effects between mediators.

Combining EA with any one of the other mediators resulted in a combined proportion mediation estimate of 40–50% (Table 2). Among the two-mediator combinations, EA + BMI explained the largest combined mediation effect (53.31; 95% CI: −1.99%, 110.38%) of the estimated effect of ADHD liability on T2D. The EA + TV combination showed subtly lower proportion mediated (51.28%; 95% CI: −20.90%, 123.89%). BMI + TV showed less mediating effect (26.87%, 95% CI: −36.96%, 90.89%), suggesting overlapping mediating pathways between higher BMI and TV watching.

Table 2. Estimates of proportion mediated by combinations of factors

IDE, indirect effect; LL, lower limit; UL, upper limit; CI, confidence interval; Prop, proportion; BMI, body mass index; EA, educational attainment; TV, television.

The full three-mediator combination (BMI + EA + TV) did not result in a higher estimate of combined proportion mediated (45.99%, 95% CI: −6.80%, 98.73%), again suggesting overlapping effects between these three. For all mediator combinations, delta method estimation of confidence intervals was consistent with the bootstrap method, with wider intervals that all included zero (ESM Table S3).

Sensitivity analyses

To assess the consistency of our main MR product-of-coefficients estimates of individual mediation, we performed additional MVMR mediation analysis using the difference in regression coefficient method. Although the estimated indirect effect through BMI was lower, estimates for EA and TV watching were generally similar (ESM Figure S1). Results from MVMR-Egger sensitivity analyses showed no significant effects (ESM Table S4). However, given the absence of evidence for directional pleiotropy, we consider the MVMR-IVW estimates to be reliable. There was reasonable instrument strength (F > 10) of SNPs for EA, BMI and TV in all MVMR analyses. However, conditional instrument strength for ADHD was low.

In reverse MR analyses, higher EA suggestively reduced liability of ADHD (OR: 0.30, 95% CI: 0.26, 0.35), whereas more smoking, hours of TV watching and a higher BMI increased the liability of ADHD (ESM Table S5, ESM Figure S2).

Discussion

This study used a two-step MVMR approach to test a putative causal effect of ADHD on T2D, and to explore potential mediators in this relation. ADHD, instrumented by 25 SNPs, was associated with 10% higher odds of T2D (OR: 1.10). Individually, BMI, EA and TV watching mediated 39–44% of the relation, with up to 53% mediation when combining multiple mediators. However, confidence intervals were wide and included zero for each combination. While a simulation study has shown little evidence of bias in MR point estimates of mediation effect, the indirect effect and the proportion mediated estimate may have large error terms in case of a modest total effect (Carter et al., Reference Carter, Sanderson, Hammerton, Richmond, Davey Smith, Heron, Taylor, Davies and Howe2021). Therefore, the estimated proportions mediated are likely reliable, but some caution in interpretation is warranted for the error terms.

For the effect magnitude of ADHD on T2D, our study corroborated the estimate of a previous MR study that used 11 ADHD SNPs (OR: 1.09) (Leppert et al., Reference Leppert, Riglin, Wootton, Dardani, Thapar, Staley, Tilling, Davey Smith, Thapar and Stergiakouli2020). This estimate is however smaller than the OR reported in a recent study that used 26 instruments (OR: 1.30) (Baranova et al., Reference Baranova, Chandhoke, Cao and Zhang2023). Using the same methods and GWAS data as described in the Baranova study, we however reassuringly arrived at an effect estimate similar to our main analysis (OR: 1.10, ESM Table S6, ESM SNP data 9), thus we were unable to replicate the larger Baranova estimate of OR 1.30. Results from a meta-analysis and an observational study also demonstrated a positive association (OR: 2.29 and HR: 2.35, respectively) between ADHD and T2D (Garcia-Argibay et al., Reference Garcia-Argibay, Li, Du Rietz, Zhang, Yao, Jendle, Ramos-Quiroga, Ribasés, Chang, Brikell, Cortese and Larsson2023). It must be mentioned that MR results are necessarily on the liability scale (i.e. per log-odds unit increase in genetic liability to ADHD) rather than the binary scale (ADHD yes/no), thus the observational estimate cannot be directly compared to our MR estimates.

We found evidence that BMI mediates the effect of ADHD on T2D. Multiple studies have demonstrated that ADHD liability is associated with an increased risk of obesity (Karhunen et al., Reference Karhunen, Bond, Zuber, Hurtig, Moilanen, Järvelin, Evangelou and Rodriguez2021; Nigg et al., Reference Nigg, Johnstone, Musser, Long, Willoughby and Shannon2016) or higher BMI (Liu et al., Reference Liu, Schoeler, Davies, Peyre, Lim, Barker, Llewellyn, Dudbridge and Pingault2021). Garcia-Argibay et al. (Reference Garcia-Argibay, Li, Du Rietz, Zhang, Yao, Jendle, Ramos-Quiroga, Ribasés, Chang, Brikell, Cortese and Larsson2023) also found observational evidence of a mediating role of obesity. We extended the evidence that this mediating pathway is causal. Impaired inhibitory control and reward sensitivity that characterize ADHD could result in unhealthy, irregular eating habits (Cortese and Castellanos, Reference Cortese and Castellanos2014) thus leading to obesity. Given that obesity, or elevated BMI are thought to be the primary causes of T2D (Censin et al., Reference Censin, Peters, Bovijn, Ferreira, Pulit, Mägi, Mahajan, Holmes and Lindgren2019; Sun et al., Reference Sun, Saeedi, Karuranga, Pinkepank, Ogurtsova, Duncan, Stein, Basit, Chan, Mbanya, Pavkov, Ramachandaran, Wild, James, Herman, Zhang, Bommer, Kuo, Boyko and Magliano2022), the indirect pathway from ADHD to obesity/higher BMI to T2D might be the most relevant.

Furthermore, we found that part of the association between ADHD and T2D is driven by lower educational attainment, which is related to lower SES, and accordingly lower financial security, lower quality employment and less job security (Galobardes et al., Reference Galobardes, Shaw, Lawlor, Lynch and Davey Smith2006a, Reference Galobardes, Shaw, Lawlor, Lynch and Davey Smith2006b). These SES-related risk factors are associated with T2D, potentially due to poorer nutrition, poorer health behaviours, less healthcare seeking and poorer access to (high quality) healthcare (Gavin et al., Reference Gavin, Rodbard, Battelino, Brosius, Ceriello, Cosentino, Giorgino, Green, Ji, Kellerer, Koob, Kosiborod, Lalic, Marx, Prashant Nedungadi, Parkin, Topsever, Rydén, Huey-Herng Sheu, Standl, Olav Vandvik and Schnell2024; Krishnan et al., Reference Krishnan, Cozier, Rosenberg and Palmer2010; Zhang et al., Reference Zhang, Chen, Pärna, van Zon, Snieder and Thio2022). Therefore, associations between ADHD and T2D may not only be driven by educational attainment, but also partly be driven by the socio-economic context into which individuals with ADHD are sorted by the educational system (Schmengler et al., Reference Schmengler, Peeters, Stevens, Kunst, Hartman, Oldehinkel and Vollebergh2023). Thus, ADHD related symptoms, such as forgetfulness, and difficulty in engaging and sustaining attention, could induce poor performance in school (Jangmo et al., Reference Jangmo, Stålhandske, Chang, Chen, Almqvist, Feldman, Bulik, Lichtenstein, D’Onofrio, Kuja-Halkola and Larsson2019). As a consequence, children with ADHD are more often assigned to lower educational tracks in selective educational systems, subsequently leading to lower educational attainment, illustrating the health-related selection into lower SES (Schmengler et al., Reference Schmengler, Peeters, Stevens, Kunst, Hartman, Oldehinkel and Vollebergh2023).

Next to BMI and EA, our study suggests sedentary behaviour, measured by TV watching, is a mediator. Those with ADHD are observed to engage in more screen time (Ansari and Crosnoe, Reference Ansari and Crosnoe2016), with dose-dependency on severity of ADHD (Montagni et al., Reference Montagni, Guichard and Kurth2016; Vaidyanathan et al., Reference Vaidyanathan, Manohar, Chandrasekaran and Kandasamy2021). Possibly, ADHD people are prompted to watch TV or gaming to seek arousal, or to avoid social difficulties (Roberti, Reference Roberti2004; Vandewater et al., Reference Vandewater, Lee and Shim2005). Such sedentary behaviour could lead to increases in trunk and body fat percentage, thereby increasing risk of T2D (Li et al., Reference Li, Yang, Gao, Zhao, Yang, Xu, Yu, Zhang, Wang, Wang and Su2022a).

The mediation effects of the three pathways described above are not expected to be independent of each other, given the strong (genetic) correlations and potential causal relationships between BMI, EA and sedentary behaviour (Cassidy et al., Reference Cassidy, Chau, Catt, Bauman and Trenell2017; van de Vegte et al., Reference van de Vegte, Said, Rienstra, van der Harst and Verweij2020; Zhang et al., Reference Zhang, Chen, Pärna, van Zon, Snieder and Thio2022). We therefore performed analyses in which we modelled combined mediation effects. These indeed yielded non-additive results, i.e. combined effects through all three mediators were smaller than the sum of the individual effects, corroborating overlap in mediation effects. Our MVMR results show that each individual mediator generally retains significant effects on T2D conditional on the other mediators, suggesting partially independent effects and thus incomplete overlap. We additionally found there that nearly half of the total effect remains unexplained by BMI, EA and TV watching. Other mediating pathways thus likely exist. A recent register-based study suggests the observed association between ADHD and T2D is largely explained by psychiatric comorbidities, with unhealthy behaviours (smoking and drinking), dietary habits and neurobiological abnormalities proposed as possible explanations (Garcia-Argibay et al., Reference Garcia-Argibay, Li, Du Rietz, Zhang, Yao, Jendle, Ramos-Quiroga, Ribasés, Chang, Brikell, Cortese and Larsson2023). Once sufficiently large GWAS studies on these potential additional mediators are available, it would be possible to assess their indirect effects through MR.

The difference of coefficients method returned a much lower estimate of proportion mediated by BMI than our main products method (16% vs 44%). Possibly, this is due to non-collapsibility of the odds ratio. The mediation literature recommends the product-of-coefficients method, but binary outcomes must have a low prevalence (i.e. <10%), so that the odds ratio approximates the linear risk ratio (Vanderweele and Vansteelandt, Reference Vanderweele and Vansteelandt2010). In case of common outcomes (i.e. prevalence >10%), estimates from the product-of-coefficients method and difference of coefficients method are unlikely to perfectly align (Carter et al., Reference Carter, Sanderson, Hammerton, Richmond, Davey Smith, Heron, Taylor, Davies and Howe2021). In the present study, both methods agreed on mediation by BMI, EA and TV watching. Nevertheless, some caution is warranted with regard to the differing BMI estimates, as well as our estimates of combined proportion mediated, for which we necessarily used the difference method.

In sensitivity reverse MR analysis, we found surprising results suggestive of reverse causation, i.e. several of our candidate mediators (i.e. smoking, BMI, EA, TV watching) are suggested to cause ADHD. Such effects of smoking and EA on ADHD were also reported in another MR study (Soler Artigas et al., Reference Soler Artigas, Sánchez-Mora, Rovira, Vilar-Ribó, Ramos-Quiroga and Ribasés2023). There is evidence that physical exercise mitigates ADHD symptoms (Choi et al., Reference Choi, Han, Kang, Jung and Renshaw2015; Rommel et al., Reference Rommel, Halperin, Mill, Asherson and Kuntsi2013) and some evidence that screen time reduces executive functioning (Liu et al., Reference Liu, Riesch, Tien, Lipman, Pinto-Martin and O’Sullivan2022) and thus, some bidirectionality is possible. However, we find it highly unlikely that these factors cause onset of ADHD. A plausible explanation is that MR estimates (both in forward and reverse analyses) are affected by biased GWAS estimates induced by (spurious) gene-environment correlation (Quinn and D’Onofrio, Reference Quinn, D’Onofrio and Benson2020). Also, gene-trait associations are possibly mediated through the family environment due to assortative mating (partner choice based on similarity, resulting in non-random distribution of genetic variants) (Howe et al., Reference Howe, Lawson, Davies, St Pourcain, Lewis, Davey Smith and Hemani2019), dynastic effects (effects of non-transmitted alleles that affect traits through the environment) (Kong et al., Reference Kong, Thorleifsson, Frigge, Vilhjalmsson, Young, Thorgeirsson, Benonisdottir, Oddsson, Halldorsson, Masson, Gudbjartsson, Helgason, Bjornsdottir, Thorsteinsdottir and Stefansson2018). Alternatively, reverse causation could be due to inherited alleles, i.e. parental EA and smoking, for instance, would affect offspring ADHD risk and severity of symptoms. Genetic propensity towards lower EA and smoking in individuals with ADHD could thus be inherited from the parents. Indeed, there is evidence that the above described phenomena could affect genetic studies into ADHD. One study found evidence that liability of earlier age at first sexual intercourse and of lower rate of past tobacco smoking in non-heavy smokers increasing the odds of ADHD (Soler Artigas et al., Reference Soler Artigas, Sánchez-Mora, Rovira, Vilar-Ribó, Ramos-Quiroga and Ribasés2023), similar to the chronologically implausible reverse effect of EA on ADHD in our study. These apparent reverse effects may be driven by dynastic effects, as literatures linked young parental age or maternal smoking with increased risk of ADHD in children (Huang et al., Reference Huang, Wang, Zhang, Zheng, Zhu, Qu and Mu2018; Hvolgaard Mikkelsen et al., Reference Hvolgaard Mikkelsen, Olsen, Bech and Obel2017). Assortative mating is also likely in individuals with ADHD, with a sevenfold higher odds of ADHD in the partner (Nordsletten et al., Reference Nordsletten, Larsson, Crowley, Almqvist, Lichtenstein and Mataix-Cols2016). Studies comparing within-family with population-based GWAS estimates found that within-sibship estimates are smaller than population estimates, for educational attainment, cognitive ability, depressive symptoms and smoking, with a shrinkage in SNP effects that ranged from 19% (smoking) to 50% (depressive symptoms) (Howe et al., Reference Howe, Nivard, Morris, Hansen, Rasheed, Cho, Chittoor, Ahlskog, Lind, Palviainen, van der Zee, Cheesman, Mangino, Wang, Li, Klaric, Ratliff, Bielak, Nygaard, Giannelis, Willoughby, Reynolds, Balbona, Andreassen, Ask, Baras, Bauer, Boomsma, Campbell, Campbell, Chen, Christofidou, Corfield, Dahm, Dokuru, Evans, de Geus, Giddaluru, Gordon, Harden, Hill, Hughes, Kerr, Kim, Kweon, Latvala, Lawlor, Li, Lin, Magnus, Magnusson, Mallard, Martikainen, Mills, Njølstad, Overton, Pedersen, Porteous, Reid, Silventoinen, Southey, Stoltenberg, Tucker-Drob, Wright, Hewitt, Keller, Stallings, Lee, Christensen, Kardia, Peyser, Smith, Wilson, Hopper, Hägg, Spector, Pingault, Plomin, Havdahl, Bartels, Martin, Oskarsson, Justice, Millwood, Hveem, Naess, Willer, Åsvold, Koellinger, Kaprio, Medland, Walters, Benjamin, Turley, Evans, Davey Smith, Hayward, Brumpton, Hemani and Davies2022). Although the authors did not investigate ADHD, their results suggests that SNP-estimates of population-based GWAS on cognition and mental health could in part be confounded by demographic effects (population stratification, assortative mating) and indirect genetic effects. In contrast, one twin study investigated within- and between-family differences in ADHD polygenic score effects on ADHD symptoms found little difference (Selzam et al., Reference Selzam, Ritchie, Pingault, Reynolds, O’Reilly and Plomin2019). This suggests that for ADHD, confounding by demographic and indirect genetic effects is negligible. Given all the above, although there is currently limited evidence of bias in population-based GWAS on ADHD, we cannot exclude the possibility that ADHD SNP estimates are biased through these phenomena. Within-family analysis is thought to be largely robust against these effects (Brumpton et al., Reference Brumpton, Sanderson, Heilbron, Hartwig, Harrison, Vie, Cho, Howe, Hughes, Boomsma, Havdahl, Hopper, Neale, Nivard, Pedersen, Reynolds, Tucker-Drob, Grotzinger, Howe, Morris, Li, Auton, Windmeijer, Chen, Bjørngaard, Hveem, Willer, Evans, Kaprio, Davey Smith, Åsvold, Hemani and Davies2020; Davies et al., Reference Davies, Howe, Brumpton, Havdahl, Evans and Davey Smith2019). Therefore, sufficiently large within-family data (e.g. parent-offspring trios, between-sibling design), currently unavailable for ADHD, is needed to account for such potential sources of bias in GWASs and MR and further validate our findings.

Given the evidence for a causal effect of ADHD on T2D, it is to be expected that successful management of ADHD will reduce T2D risk either directly or through increasing EA, reducing BMI and promoting non-sedentary behaviour in individuals with ADHD. Based on large registry data, it has been shown that treatment with ADHD medication increases school grades as well as the probability of completing upper secondary education (Jangmo et al., Reference Jangmo, Stålhandske, Chang, Chen, Almqvist, Feldman, Bulik, Lichtenstein, D’Onofrio, Kuja-Halkola and Larsson2019), while discontinuation of ADHD medication was associated with a (small) decline in grades (Keilow et al., Reference Keilow, Holm and Fallesen2018). Similarly, test scores were higher during periods on rather than off medication (Lu et al., Reference Lu, Sjölander, Cederlöf, D’Onofrio, Almqvist, Larsson and Lichtenstein2017). Collaborative school-home behavioural interventions may also benefit educational outcomes (Pfiffner et al., Reference Pfiffner, Villodas, Kaiser, Rooney and McBurnett2013). With regard to reducing BMI, it is known that stimulant treatment reduces appetite, and thus, weight loss, in children with overweight or obesity and ADHD, stimulant treatment yields an additional benefit in terms of weight management (Fast et al., Reference Fast, Björk, Strandberg, Johannesson, Wentz and Dahlgren2021). Similarly, we already mentioned that physical exercise reduces ADHD symptoms (Choi et al., Reference Choi, Han, Kang, Jung and Renshaw2015) with the added advantage that this may benefit weight lowering. Finally, it is implausible that stimulant treatment reduces sedentary behaviour and screen time, but behavioural interventions, although not specifically studied in individuals with ADHD, may provide effective treatment (Jones et al., Reference Jones, Armstrong, Weaver, Parker, von Klinggraeff and Beets2021). Finally, high BMI in individuals with ADHD could additionally be targeted through diet (e.g. replacing a ‘Western-style’ diet with a healthy diet) (Howard et al., Reference Howard, Robinson, Smith, Ambrosini, Piek and Oddy2011; Millichap and Yee, Reference Millichap and Yee2012). It has also been reported that altering the metabolic profile via restriction and elimination diets will reduce both ADHD symptoms and BMI level (Pelsser et al., Reference Pelsser, Frankena, Toorman, Savelkoul, Dubois, Pereira, Haagen, Rommelse and Buitelaar2011).

Previous MR studies that investigated mediation generally used IVW estimates, which relies on the strong assumption of absence of horizontal pleiotropy. Given that horizontal pleiotropy is likely to be pervasive (Hemani et al., Reference Hemani, Bowden, Haycock, Zheng, Davis, Flach, Gaunt and Smith2017), using IVW estimates might not always be appropriate. We therefore relied on the MR-MoE tool which uses a reproducible, pre-defined machine learning algorithm to identify the most appropriate models and thus most reliable univariable MR estimates that were then taken forward to mediation analysis. For the MVMR setting however, relatively few pleiotropy robust methods are available, and to our knowledge, no machine learning algorithm for prioritizing MVMR models exists. Thus, the MVMR-IVW estimates of direct effects we used for mediation analysis may be biased by pleiotropy, even though estimates from MVMR-Egger were largely consistent. Future study, simulation or otherwise, may investigate potential machine learning algorithms to prioritize MVMR models.

This is the first study that systematically explores mediating mechanisms in the relation between ADHD and T2D using MR methods. We used the most comprehensive large-scale GWAS data available to us, optimizing the power and precision of our study. Several limitations must be acknowledged. First, we already mentioned that gene-environment correlation, assortative mating and dynastic effects may bias GWASs and by that MR. This awaits GWASs that use within-family data. Second, MR may be biased by pleiotropic effects of SNPs, i.e. genetic variants influencing the outcome through other pathways than the exposure, which would be a violation of exclusion restriction criterion. Therefore, we compared estimates from a wide range of pleiotropy robust MR analyses, which generally and reassuringly showed consistency. Nevertheless, MR makes several assumptions that are strong and untestable, and thus MR results should be interpreted with caution. Third, the present study assumes the absence of exposure × mediator interaction, the investigation of which requires large-scale individual level data and is therefore not possible with summary level data. Four, conditional instrument strength for ADHD in MVMR was low (F < 10). Future, more powerful GWAS may identify stronger instruments for ADHD with which our MVMR results may be corroborated. Fifth, if any sample overlap existed between GWAS studies it may have biased MR estimates towards observational, possibly confounded, association estimates (Burgess et al., Reference Burgess, Davies and Thompson2016). These limitations illustrate that more evidence is needed to firmly establish causality, by triangulating with future observational and (quasi-)interventional studies.

We conclude that there is a possible causal relationship between liability of ADHD and T2D, in which ADHD liability causes higher T2D risk through higher BMI, more TV watching and lower EA. Intervention on these factors may have beneficial effects on reducing T2D risk in individuals with ADHD.

Supplementary material

The supplementary material for this article can be found at https://doi.org/10.1017/S2045796024000593.

Availability of data and materials

GWAS data are publicly available through the MRC IEU Open GWAS database (https://gwas.mrcieu.ac.uk/). The analysis code can be shared upon request.

Acknowledgements

ZC and RDT acknowledge the support from the China Scholarship Council and the Indonesia Endowment Funds for Education (LPDP), respectively.

Author contributions

CT, CAH, JZ and HS contributed to the conception and design of the study. JZ and CT drafted the manuscript, JZ, RDT and ZC contributed to data analysis. CT, JZ, CAH and HS contributed to data interpretation. All authors provided critical review of the manuscript. All authors approved of the final manuscript and agree to be accountable for the accuracy and integrity of the work.

ZKC, RDT, HS, CHLT and CAH contributed equally to this article.

Financial support

This project received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 965381 (TIMESPAN).

Competing interests

The authors declare that there are no relationships or activities that might bias, or be perceived to bias, their work.

Ethical standards

All summary data were extracted from published studies, which were approved by the institutional review committees in their respective studies. Therefore, no further sanction was required.

References

Agardh, E, Allebeck, P, Hallqvist, J, Moradi, T and Sidorchuk, A (2011) Type 2 diabetes incidence and socio-economic position: A systematic review and meta-analysis. International Journal of Epidemiology 40, 804818.CrossRefGoogle ScholarPubMed
Akmatov, MK, Ermakova, T and Bätzing, J (2021) Psychiatric and nonpsychiatric comorbidities among children with ADHD: An exploratory analysis of nationwide claims data in Germany. Journal of Attention Disorders 25, 874884.CrossRefGoogle ScholarPubMed
Ansari, A and Crosnoe, R (2016) Children’s hyperactivity, television viewing, and the potential for child effects. Children and Youth Services Review 61, 135140.CrossRefGoogle ScholarPubMed
Baranova, A, Chandhoke, V, Cao, H and Zhang, F (2023) Shared genetics and bidirectional causal relationships between type 2 diabetes and attention-deficit/hyperactivity disorder. General Psychiatry 36, .CrossRefGoogle ScholarPubMed
Baranova, A, Wang, J, Cao, H, Chen, JH, Chen, J, Chen, M, Ni, S, Xu, X, Ke, X, Xie, S, Sun, J and Zhang, F (2022) Shared genetics between autism spectrum disorder and attention-deficit/hyperactivity disorder and their association with extraversion. Psychiatry Research 314, .CrossRefGoogle ScholarPubMed
Bradfield, JP, Vogelezang, S, Felix, JF, Chesi, A, Helgeland, Ø, Horikoshi, M, Karhunen, V, Lowry, E, Cousminer, DL, Ahluwalia, TS, Thiering, E, Boh, ET, Zafarmand, MH, Vilor-Tejedor, N, Wang, CA, Joro, R, Chen, Z, Gauderman, WJ, Pitkänen, N, Parra, EJ, Fernandez-Rhodes, L, Alyass, A, Monnereau, C, Curtin, JA, Have, CT, McCormack, SE, Hollensted, M, Frithioff-Bøjsøe, C, Valladares-Salgado, A, Peralta-Romero, J, Teo, YY, Standl, M, Leinonen, JT, Holm, JC, Peters, T, Vioque, J, Vrijheid, M, Simpson, A, Custovic, A, Vaudel, M, Canouil, M, Lindi, V, Atalay, M, Kähönen, M, Raitakari, OT, van Schaik, BDC, Berkowitz, RI, Cole, SA, Voruganti, VS, Wang, Y, Highland, HM, Comuzzie, AG, Butte, NF, Justice, AE, Gahagan, S, Blanco, E, Lehtimäki, T, Lakka, TA, Hebebrand, J, Bonnefond, A, Grarup, N, Froguel, P, Lyytikäinen, LP, Cruz, M, Kobes, S, Hanson, RL, Zemel, BS, Hinney, A, Teo, KK, Meyre, D, North, KE, Gilliland, FD, Bisgaard, H, Bustamante, M, Bonnelykke, K, Pennell, CE, Rivadeneira, F, Uitterlinden, AG, Baier, LJ, Vrijkotte, TGM, Heinrich, J, Sørensen, TIA, Saw, SM, Pedersen, O, Hansen, T, Eriksson, J, Widén, E, McCarthy, MI, Njølstad, PR, Power, C, Hyppönen, E, Sebert, S, Brown, CD, Järvelin, MR, Timpson, NJ, Johansson, S, Hakonarson, H, Jaddoe, VWV and Grant, SFA (2019) A trans-ancestral meta-analysis of genome-wide association studies reveals loci associated with childhood obesity. Human Molecular Genetics 28, 33273338.CrossRefGoogle ScholarPubMed
Breslau, J, Miller, E, Joanie Chung, WJ and Schweitzer, JB (2011) Childhood and adolescent onset psychiatric disorders, substance use, and failure to graduate high school on time. Journal of Psychiatric Research 45, 295301.CrossRefGoogle ScholarPubMed
Brumpton, B, Sanderson, E, Heilbron, K, Hartwig, FP, Harrison, S, Vie, G, Cho, Y, Howe, LD, Hughes, A, Boomsma, DI, Havdahl, A, Hopper, J, Neale, M, Nivard, MG, Pedersen, NL, Reynolds, CA, Tucker-Drob, EM, Grotzinger, A, Howe, L, Morris, T, Li, S, Auton, A, Windmeijer, F, Chen, WM, Bjørngaard, JH, Hveem, K, Willer, C, Evans, DM, Kaprio, J, Davey Smith, G, Åsvold, BO, Hemani, G and Davies, NM (2020) Avoiding dynastic, assortative mating, and population stratification biases in Mendelian randomization through within-family analyses. Nature Communications 11, .CrossRefGoogle ScholarPubMed
Burgess, S, Butterworth, A and Thompson, SG (2013) Mendelian randomization analysis with multiple genetic variants using summarized data. Genetic Epidemiology 37, 658665.CrossRefGoogle ScholarPubMed
Burgess, S, Daniel, RM, Butterworth, AS and Thompson, SG (2015) Network Mendelian randomization: Using genetic variants as instrumental variables to investigate mediation in causal pathways. International Journal of Epidemiology 44, 484495.CrossRefGoogle ScholarPubMed
Burgess, S, Davies, NM and Thompson, SG (2016) Bias due to participant overlap in two-sample Mendelian randomization. Genetic Epidemiology 40, 597608.CrossRefGoogle ScholarPubMed
Burgess, S and Thompson, SG (2015) Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects. American Journal of Epidemiology 181, 251260.CrossRefGoogle ScholarPubMed
Byrne, EM, Yang, J and Wray, NR (2017) Inference in psychiatry via 2-sample Mendelian randomization—From association to causal pathway? JAMA Psychiatry 74, 11911192.CrossRefGoogle ScholarPubMed
Carstensen, B, Rønn, PF and Jørgensen, ME (2020) Prevalence, incidence and mortality of type 1 and type 2 diabetes in Denmark 1996-2016. BMJ Open Diabetes Research and Care 8, .CrossRefGoogle ScholarPubMed
Carter, AR, Sanderson, E, Hammerton, G, Richmond, RC, Davey Smith, G, Heron, J, Taylor, AE, Davies, NM and Howe, LD (2021) Mendelian randomisation for mediation analysis: Current methods and challenges for implementation. European Journal of Epidemiology 36, 465478.CrossRefGoogle ScholarPubMed
Cassidy, S, Chau, JY, Catt, M, Bauman, A and Trenell, MI (2017) Low physical activity, high television viewing and poor sleep duration cluster in overweight and obese adults; a cross-sectional study of 398,984 participants from the UK Biobank. International Journal of Behavioral Nutrition and Physical Activity 14, .CrossRefGoogle ScholarPubMed
Censin, JC, Peters, SAE, Bovijn, J, Ferreira, T, Pulit, SL, Mägi, R, Mahajan, A, Holmes, MV and Lindgren, CM (2019) Causal relationships between obesity and the leading causes of death in women and men. PLoS Genetics 15, .CrossRefGoogle ScholarPubMed
Chen, MH, Pan, TL, Hsu, JW, Huang, KL, Su, TP, Li, CT, Lin, WC, Tsai, SJ, Chang, WH, Chen, TJ and Bai, YM (2018a) Risk of type 2 diabetes in adolescents and young adults with attention-deficit/hyperactivity disorder: A nationwide longitudinal study. The Journal of Clinical Psychiatry 79, .CrossRefGoogle Scholar
Chen, Q, Hartman, CA, Haavik, J, Harro, J, Klungsøyr, K, Hegvik, T-A, Wanders, R, Ottosen, C, Dalsgaard, S, Faraone, SV and Larsson, H (2018b) Common psychiatric and metabolic comorbidity of adult attention-deficit/hyperactivity disorder: A population-based cross-sectional study. PLoS One 13, .Google ScholarPubMed
Choi, JW, Han, DH, Kang, KD, Jung, HY and Renshaw, PF (2015) Aerobic exercise and attention deficit hyperactivity disorder: Brain research. Medicine and Science in Sports and Exercise 47, 3339.CrossRefGoogle ScholarPubMed
Cook, BG, Li, D and Heinrich, KM (2015) Obesity, physical activity, and sedentary behavior of youth with learning disabilities and ADHD. Journal of Learning Disabilities 48, 563576.CrossRefGoogle ScholarPubMed
Cortese, S and Castellanos, FX (2014) The relationship between ADHD and obesity: Implications for therapy. Expert Review of Neurotherapeutics 14, 473479.CrossRefGoogle ScholarPubMed
Cortese, S, Moreira-Maia, CR, St Fleur, D, Morcillo-Peñalver, C, Rohde, LA and Faraone, SV (2016) Association between ADHD and obesity: A systematic review and meta-analysis. American Journal of Psychiatry 173, 3443.CrossRefGoogle ScholarPubMed
Davies, NM, Howe, LJ, Brumpton, B, Havdahl, A, Evans, DM and Davey Smith, G (2019) Within family Mendelian randomization studies. Human Molecular Genetics 28, R170r179.CrossRefGoogle ScholarPubMed
DeFronzo, RA, Ferrannini, E, Groop, L, Henry, RR, Herman, WH, Holst, JJ, Hu, FB, Kahn, CR, Raz, I, Shulman, GI, Simonson, DC, Testa, MA and Weiss, R (2015) Type 2 diabetes mellitus. Nature Reviews Disease Primers 1, .CrossRefGoogle ScholarPubMed
Demontis, D, Walters, GB, Athanasiadis, G, Walters, R, Therrien, K, Nielsen, TT, Farajzadeh, L, Voloudakis, G, Bendl, J, Zeng, B, Zhang, W, Grove, J, Als, TD, Duan, J, Satterstrom, FK, Bybjerg-Grauholm, J, Bækved-Hansen, M, Gudmundsson, OO, Magnusson, SH, Baldursson, G, Davidsdottir, K, Haraldsdottir, GS, Agerbo, E, Hoffman, GE, Dalsgaard, S, Martin, J, Ribasés, M, Boomsma, DI, Soler Artigas, M, Roth Mota, N, Howrigan, D, Medland, SE, Zayats, T, Rajagopal, VM, Havdahl, A, Doyle, A, Reif, A, Thapar, A, Cormand, B, Liao, C, Burton, C, Bau, CHD, Rovaris, DL, Sonuga-Barke, E, Corfield, E, Grevet, EH, Larsson, H, Gizer, IR, Waldman, I, Brikell, I, Haavik, J, Crosbie, J, McGough, J, Kuntsi, J, Glessner, J, Langley, K, Lesch, K-P, Rohde, LA, Hutz, MH, Klein, M, Bellgrove, M, Tesli, M, O’Donovan, MC, Andreassen, OA, Leung, PWL, Pan, PM, Joober, R, Schachar, R, Loo, S, Witt, SH, Reichborn-Kjennerud, T, Banaschewski, T, Hawi, Z, Daly, MJ, Mors, O, Nordentoft, M, Mors, O, Hougaard, DM, Mortensen, PB, Daly, MJ, Faraone, SV, Stefansson, H, Roussos, P, Franke, B, Werge, T, Neale, BM, Stefansson, K, Børglum, AD and Consortium AWGotPG and i P-BC (2023) Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. Nature Genetics 55, 198208.CrossRefGoogle ScholarPubMed
Du, R, Zhou, Y, You, C, Liu, K, King, DA, Liang, ZS, Ranson, JM, Llewellyn, DJ, Huang, J and Zhang, Z (2023) Attention-deficit/hyperactivity disorder and ischemic stroke: A Mendelian randomization study. International Journal of Stroke 18(3), 346353.CrossRefGoogle ScholarPubMed
Emdin, CA, Anderson, SG, Woodward, M and Rahimi, K (2015) Usual blood pressure and risk of new-onset diabetes. Journal of the American College of Cardiology 66, 15521562.CrossRefGoogle ScholarPubMed
Evangelou, E, Warren, HR, Mosen-Ansorena, D, Mifsud, B, Pazoki, R, Gao, H, Ntritsos, G, Dimou, N, Cabrera, CP, Karaman, I, Ng, FL, Evangelou, M, Witkowska, K, Tzanis, E, Hellwege, JN, Giri, A, Velez Edwards, DR, Sun, YV, Cho, K, Gaziano, JM, Wilson, PWF, Tsao, PS, Kovesdy, CP, Esko, T, Mägi, R, Milani, L, Almgren, P, Boutin, T, Debette, S, Ding, J, Giulianini, F, Holliday, EG, Jackson, AU, Li-Gao, R, Lin, W-Y, Luan, J, Mangino, M, Oldmeadow, C, Prins, BP, Qian, Y, Sargurupremraj, M, Shah, N, Surendran, P, Thériault, S, Verweij, N, Willems, SM, Zhao, J-H, Amouyel, P, Connell, J, de Mutsert, R, Doney, ASF, Farrall, M, Menni, C, Morris, AD, Noordam, R, Paré, G, Poulter, NR, Shields, DC, Stanton, A, Thom, S, Abecasis, G, Amin, N, Arking, DE, Ayers, KL, Barbieri, CM, Batini, C, Bis, JC, Blake, T, Bochud, M, Boehnke, M, Boerwinkle, E, Boomsma, DI, Bottinger, EP, Braund, PS, Brumat, M, Campbell, A, Campbell, H, Chakravarti, A, Chambers, JC, Chauhan, G, Ciullo, M, Cocca, M, Collins, F, Cordell, HJ, Davies, G, de Borst, MH, de Geus, EJ, Deary, IJ, Deelen, J, Del Greco, MF, Demirkale, CY, Dörr, M, Ehret, GB, Elosua, R, Enroth, S, Erzurumluoglu, AM, Ferreira, T, Frånberg, M, Franco, OH, Gandin, I, Gasparini, P, Giedraitis, V, Gieger, C, Girotto, G, Goel, A, Gow, AJ, Gudnason, V, Guo, X, Gyllensten, U, Hamsten, A, Harris, TB, Harris, SE, Hartman, CA, Havulinna, AS, Hicks, AA, Hofer, E, Hofman, A, Hottenga, J-J, Huffman, JE, Hwang, S-J, Ingelsson, E, James, A, Jansen, R, Jarvelin, M-R, Joehanes, R, Johansson, Å, Johnson, AD, Joshi, PK, Jousilahti, P, Jukema, JW, Jula, A, Kähönen, M, Kathiresan, S, Keavney, BD, Khaw, K-T, Knekt, P, Knight, J, Kolcic, I, Kooner, JS, Koskinen, S, Kristiansson, K, Kutalik, Z, Laan, M, Larson, M, Launer, LJ, Lehne, B, Lehtimäki, T, Liewald, DCM, Lin, L, Lind, L, Lindgren, CM, Liu, Y, Loos, RJF, Lopez, LM, Lu, Y, Lyytikäinen, L-P, Mahajan, A, Mamasoula, C, Marrugat, J, Marten, J, Milaneschi, Y, Morgan, A, Morris, AP, Morrison, AC, Munson, PJ, Nalls, MA, Nandakumar, P, Nelson, CP, Niiranen, T, Nolte, IM, Nutile, T, Oldehinkel, AJ, Oostra, BA, O’Reilly, PF, Org, E, Padmanabhan, S, Palmas, W, Palotie, A, Pattie, A, Penninx, BWJH, Perola, M, Peters, A, Polasek, O, Pramstaller, PP, Nguyen, QT, Raitakari, OT, Ren, M, Rettig, R, Rice, K, Ridker, PM, Ried, JS, Riese, H, Ripatti, S, Robino, A, Rose, LM, Rotter, JI, Rudan, I, Ruggiero, D, Saba, Y, Sala, CF, Salomaa, V, Samani, NJ, Sarin, A-P, Schmidt, R, Schmidt, H, Shrine, N, Siscovick, D, Smith, AV, Snieder, H, Sõber, S, Sorice, R, Starr, JM, Stott, DJ, Strachan, DP, Strawbridge, RJ, Sundström, J, Swertz, MA, Taylor, KD, Teumer, A, Tobin, MD, Tomaszewski, M, Toniolo, D, Traglia, M, Trompet, S, Tuomilehto, J, Tzourio, C, Uitterlinden, AG, Vaez, A, van der Most, PJ, van Duijn, CM, Vergnaud, A-C, Verwoert, GC, Vitart, V, Völker, U, Vollenweider, P, Vuckovic, D, Watkins, H, Wild, SH, Willemsen, G, Wilson, JF, Wright, AF, Yao, J, Zemunik, T, Zhang, W, Attia, JR, Butterworth, AS, Chasman, DI, Conen, D, Cucca, F, Danesh, J, Hayward, C, Howson, JMM, Laakso, M, Lakatta, EG, Langenberg, C, Melander, O, Mook-Kanamori, DO, Palmer, CNA, Risch, L, Scott, RA, Scott, RJ, Sever, P, Spector, TD, van der Harst, P, Wareham, NJ, Zeggini, E, Levy, D, Munroe, PB, Newton-Cheh, C, Brown, MJ, Metspalu, A, Hung, AM, O’Donnell, CJ, Edwards, TL, Psaty, BM, Tzoulaki, I, Barnes, MR, Wain, LV, Elliott, P, Caulfield, MJ and The Million Veteran, P (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics 50, 14121425.CrossRefGoogle ScholarPubMed
Faraone, SV, Asherson, P, Banaschewski, T, Biederman, J, Buitelaar, JK, Ramos-Quiroga, JA, Rohde, LA, Sonuga-Barke, EJ, Tannock, R and Franke, B (2015) Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers 1, .CrossRefGoogle ScholarPubMed
Faraone, SV, Biederman, J and Mick, E (2006) The age-dependent decline of attention deficit hyperactivity disorder: A meta-analysis of follow-up studies. Psychological Medicine 36, 159165.CrossRefGoogle ScholarPubMed
Fast, K, Björk, A, Strandberg, M, Johannesson, E, Wentz, E and Dahlgren, J (2021) Half of the children with overweight or obesity and attention-deficit/hyperactivity disorder reach normal weight with stimulants. Acta Paediatrica (Oslo, Norway: 1992) 110, 28252832.CrossRefGoogle ScholarPubMed
Fleming, M, Fitton, CA, Steiner, MFC, McLay, JS, Clark, D, King, A, Mackay, DF and Pell, JP (2017) Educational and health outcomes of children treated for attention-deficit/hyperactivity disorder. JAMA Pediatrics 171, .CrossRefGoogle ScholarPubMed
Galobardes, B, Shaw, M, Lawlor, DA, Lynch, JW and Davey Smith, G (2006a) Indicators of socioeconomic position (part 1). Journal of Epidemiology & Community Health 60, 712.CrossRefGoogle ScholarPubMed
Galobardes, B, Shaw, M, Lawlor, DA, Lynch, JW and Davey Smith, G (2006b) Indicators of socioeconomic position (part 2). Journal of Epidemiology & Community Health 60, 95101.CrossRefGoogle ScholarPubMed
Gao, X, Meng, LX, Ma, KL, Liang, J, Wang, H, Gao, Q and Wang, T (2019) The bidirectional causal relationships of insomnia with five major psychiatric disorders: A Mendelian randomization study. European Psychiatry 60, 7985.CrossRefGoogle ScholarPubMed
Garcia-Argibay, M, Li, L, Du Rietz, E, Zhang, L, Yao, H, Jendle, J, Ramos-Quiroga, JA, Ribasés, M, Chang, Z, Brikell, I, Cortese, S and Larsson, H (2023) The association between type 2 diabetes and attention-deficit/hyperactivity disorder: A systematic review, meta-analysis, and population-based sibling study. Neuroscience and Biobehavioral Reviews 147, .CrossRefGoogle ScholarPubMed
Gavin, JR, Rodbard, HW, Battelino, T, Brosius, F, Ceriello, A, Cosentino, F, Giorgino, F, Green, J, Ji, L, Kellerer, M, Koob, S, Kosiborod, M, Lalic, N, Marx, N, Prashant Nedungadi, T, Parkin, CG, Topsever, P, Rydén, L, Huey-Herng Sheu, W, Standl, E, Olav Vandvik, P and Schnell, O (2024) Disparities in prevalence and treatment of diabetes, cardiovascular and chronic kidney diseases – Recommendations from the taskforce of the guideline workshop. Diabetes Research and Clinical Practice 211, .CrossRefGoogle ScholarPubMed
Güngör, S, Celiloğlu, ÖS, Raif, SG, Özcan, Ö and Selimoğlu, MA (2016) Malnutrition and obesity in children with ADHD. Journal of Attention Disorders 20, 647652.CrossRefGoogle ScholarPubMed
Hartman, CA (2020) A solid knowledge base on the seriousness of childhood-onset mental disorders to advance research into causal mechanisms. JAMA Psychiatry 77, 783784.CrossRefGoogle ScholarPubMed
Hemani, G, Bowden, J, Haycock, P, Zheng, J, Davis, O, Flach, P, Gaunt, T and Smith, GD (2017) Automating Mendelian randomization through machine learning to construct a putative causal map of the human phenome. bioRxiv .Google Scholar
Hemani, G, Zheng, J, Elsworth, B, Wade, KH, Haberland, V, Baird, D, Laurin, C, Burgess, S, Bowden, J, Langdon, R, Tan, VY, Yarmolinsky, J, Shihab, HA, Timpson, NJ, Evans, DM, Relton, C, Martin, RM, Davey Smith, G, Gaunt, TR and Haycock, PC (2018) The MR-Base platform supports systematic causal inference across the human phenome. Elife 7, .CrossRefGoogle ScholarPubMed
Howard, AL, Robinson, M, Smith, GJ, Ambrosini, GL, Piek, JP and Oddy, WH (2011) ADHD is associated with a “Western” dietary pattern in adolescents. Journal of Attention Disorders 15, 403411.CrossRefGoogle ScholarPubMed
Howe, LJ, Lawson, DJ, Davies, NM, St Pourcain, B, Lewis, SJ, Davey Smith, G and Hemani, G (2019) Genetic evidence for assortative mating on alcohol consumption in the UK Biobank. Nature Communications 10, .CrossRefGoogle ScholarPubMed
Howe, LJ, Nivard, MG, Morris, TT, Hansen, AF, Rasheed, H, Cho, Y, Chittoor, G, Ahlskog, R, Lind, PA, Palviainen, T, van der Zee, MD, Cheesman, R, Mangino, M, Wang, Y, Li, S, Klaric, L, Ratliff, SM, Bielak, LF, Nygaard, M, Giannelis, A, Willoughby, EA, Reynolds, CA, Balbona, JV, Andreassen, OA, Ask, H, Baras, A, Bauer, CR, Boomsma, DI, Campbell, A, Campbell, H, Chen, Z, Christofidou, P, Corfield, E, Dahm, CC, Dokuru, DR, Evans, LM, de Geus, EJC, Giddaluru, S, Gordon, SD, Harden, KP, Hill, WD, Hughes, A, Kerr, SM, Kim, Y, Kweon, H, Latvala, A, Lawlor, DA, Li, L, Lin, K, Magnus, P, Magnusson, PKE, Mallard, TT, Martikainen, P, Mills, MC, Njølstad, PR, Overton, JD, Pedersen, NL, Porteous, DJ, Reid, J, Silventoinen, K, Southey, MC, Stoltenberg, C, Tucker-Drob, EM, Wright, MJ, Hewitt, JK, Keller, MC, Stallings, MC, Lee, JJ, Christensen, K, Kardia, SLR, Peyser, PA, Smith, JA, Wilson, JF, Hopper, JL, Hägg, S, Spector, TD, Pingault, JB, Plomin, R, Havdahl, A, Bartels, M, Martin, NG, Oskarsson, S, Justice, AE, Millwood, IY, Hveem, K, Naess, Ø, Willer, CJ, Åsvold, BO, Koellinger, PD, Kaprio, J, Medland, SE, Walters, RG, Benjamin, DJ, Turley, P, Evans, DM, Davey Smith, G, Hayward, C, Brumpton, B, Hemani, G and Davies, NM (2022) Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nature Genetics 54, 581592.CrossRefGoogle ScholarPubMed
Huang, L, Wang, Y, Zhang, L, Zheng, Z, Zhu, T, Qu, Y and Mu, D (2018) Maternal smoking and attention-deficit/hyperactivity disorder in offspring: A meta-analysis. Pediatrics 141, .CrossRefGoogle ScholarPubMed
Hvolgaard Mikkelsen, S, Olsen, J, Bech, BH and Obel, C (2017) Parental age and attention-deficit/hyperactivity disorder (ADHD). International Journal of Epidemiology 46, 409420.Google ScholarPubMed
Jangmo, A, Stålhandske, A, Chang, Z, Chen, Q, Almqvist, C, Feldman, I, Bulik, CM, Lichtenstein, P, D’Onofrio, B, Kuja-Halkola, R and Larsson, H (2019) Attention-deficit/hyperactivity disorder, school performance, and effect of medication. Journal of the American Academy of Child & Adolescent Psychiatry 58, 423432.CrossRefGoogle ScholarPubMed
Jones, A, Armstrong, B, Weaver, RG, Parker, H, von Klinggraeff, L and Beets, MW (2021) Identifying effective intervention strategies to reduce children’s screen time: A systematic review and meta-analysis. International Journal of Behavioral Nutrition and Physical Activity 18, .CrossRefGoogle ScholarPubMed
Karhunen, V, Bond, TA, Zuber, V, Hurtig, T, Moilanen, I, Järvelin, MR, Evangelou, M and Rodriguez, A (2021) The link between attention deficit hyperactivity disorder (ADHD) symptoms and obesity-related traits: Genetic and prenatal explanations. Translational Psychiatry 11, .CrossRefGoogle ScholarPubMed
Keilow, M, Holm, A and Fallesen, P (2018) Medical treatment of attention deficit/hyperactivity disorder (ADHD) and children’s academic performance. PLoS One 13, .CrossRefGoogle ScholarPubMed
Kong, A, Thorleifsson, G, Frigge, ML, Vilhjalmsson, BJ, Young, AI, Thorgeirsson, TE, Benonisdottir, S, Oddsson, A, Halldorsson, BV, Masson, G, Gudbjartsson, DF, Helgason, A, Bjornsdottir, G, Thorsteinsdottir, U and Stefansson, K (2018) The nature of nurture: Effects of parental genotypes. Science 359, 424428.CrossRefGoogle ScholarPubMed
Korrel, H, Mueller, KL, Silk, T, Anderson, V and Sciberras, E (2017) Research review: Language problems in children with attention-deficit hyperactivity disorder – A systematic meta-analytic review. Journal of Child Psychology and Psychiatry 58, 640654.CrossRefGoogle ScholarPubMed
Krishnan, S, Cozier, YC, Rosenberg, L and Palmer, JR (2010) Socioeconomic status and incidence of type 2 diabetes: Results from the black women’s health study. American Journal of Epidemiology 171, 564570.CrossRefGoogle ScholarPubMed
Landau, Z and Pinhas-Hamiel, O (2019) Attention deficit/hyperactivity, the metabolic syndrome, and type 2 diabetes. Current Diabetes Reports 19, .CrossRefGoogle ScholarPubMed
Lee, JJ, Wedow, R, Okbay, A, Kong, E, Maghzian, O, Zacher, M, Nguyen-Viet, TA, Bowers, P, Sidorenko, J, Karlsson Linnér, R, Fontana, MA, Kundu, T, Lee, C, Li, H, Li, R, Royer, R, Timshel, PN, Walters, RK, Willoughby, EA, Yengo, L, Agee, M, Alipanahi, B, Auton, A, Bell, RK, Bryc, K, Elson, SL, Fontanillas, P, Hinds, DA, McCreight, JC, Huber, KE, Litterman, NK, McIntyre, MH, Mountain, JL, Noblin, ES, Northover, CAM, Pitts, SJ, Sathirapongsasuti, JF, Sazonova, OV, Shelton, JF, Shringarpure, S, Tian, C, Vacic, V, Wilson, CH, Okbay, A, Beauchamp, JP, Fontana, MA, Lee, JJ, Pers, TH, Rietveld, CA, Turley, P, Chen, G-B, Emilsson, V, Meddens, SFW, Oskarsson, S, Pickrell, JK, Thom, K, Timshel, P, Vlaming, Rd, Abdellaoui, A, Ahluwalia, TS, Bacelis, J, Baumbach, C, Bjornsdottir, G, Brandsma, JH, Concas, MP, Derringer, J, Furlotte, NA, Galesloot, TE, Girotto, G, Gupta, R, Hall, LM, Harris, SE, Hofer, E, Horikoshi, M, Huffman, JE, Kaasik, K, Kalafati, IP, Karlsson, R, Kong, A, Lahti, J, van der Lee, SJ, Leeuw, Cd, Lind, PA, Lindgren, K-O, Liu, T, Mangino, M, Marten, J, Mihailov, E, Miller, MB, van der Most, PJ, Oldmeadow, C, Payton, A, Pervjakova, N, Peyrot, WJ, Qian, Y, Raitakari, O, Rueedi, R, Salvi, E, Schmidt, B, Schraut, KE, Shi, J, Smith, AV, Poot, RA, St Pourcain, B, Teumer, A, Thorleifsson, G, Verweij, N, Vuckovic, D, Wellmann, J, Westra, H-J, Yang, J, Zhao, W, Zhu, Z, Alizadeh, BZ, Amin, N, Bakshi, A, Baumeister, SE, Biino, G, Bønnelykke, K, Boyle, PA, Campbell, H, Cappuccio, FP, Davies, G, De Neve, J-E, Deloukas, P, Demuth, I, Ding, J, Eibich, P, Eisele, L, Eklund, N, Evans, DM, Faul, JD, Feitosa, MF, Forstner, AJ, Gandin, I, Gunnarsson, B, Halldórsson, BV, Harris, TB, Heath, AC, Hocking, LJ, Holliday, EG, Homuth, G, Horan, MA, Hottenga, J-J, de Jager, PL, Joshi, PK, Jugessur, A, Kaakinen, MA, Kähönen, M, Kanoni, S, Keltigangas-Järvinen, L, Kiemeney, LALM, Kolcic, I, Koskinen, S, Kraja, AT, Kroh, M, Kutalik, Z, Latvala, A, Launer, LJ, Lebreton, MP, Levinson, DF, Lichtenstein, P, Lichtner, P, Liewald, DCM, Loukola, LCSA, Madden, PA, Mägi, R, Mäki-Opas, T, Marioni, RE, Marques-Vidal, P, Meddens, GA, McMahon, G, Meisinger, C, Meitinger, T, Milaneschi, Y, Milani, L, Montgomery, GW, Myhre, R, Nelson, CP, Nyholt, DR, Ollier, WER, Palotie, A, Paternoster, L, Pedersen, NL, Petrovic, KE, Porteous, DJ, Räikkönen, K, Ring, SM, Robino, A, Rostapshova, O, Rudan, I, Rustichini, A, Salomaa, V, Sanders, AR, Sarin, A-P, Schmidt, H, Scott, RJ, Smith, BH, Smith, JA, Staessen, JA, Steinhagen-Thiessen, E, Strauch, K, Terracciano, A, Tobin, MD, Ulivi, S, Vaccargiu, S, Quaye, L, van Rooij, FJA, Venturini, C, Vinkhuyzen, AAE, Völker, U, Völzke, H, Vonk, JM, Vozzi, D, Waage, J, Ware, EB, Willemsen, G, Attia, JR, Bennett, DA, Berger, K, Bertram, L, Bisgaard, H, Boomsma, DI, Borecki, IB, Bültmann, U, Chabris, CF, Cucca, F, Cusi, D, Deary, IJ, Dedoussis, GV, van Duijn, CM, Eriksson, JG, Franke, B, Franke, L, Gasparini, P, Gejman, PV, Gieger, C, Grabe, H-J, Gratten, J, Groenen, PJF, Gudnason, V, van der Harst, P, Hayward, C, Hinds, DA, Hoffmann, W, Hyppönen, E, Iacono, WG, Jacobsson, B, Järvelin, M-R, Jöckel, K-H, Kaprio, J, Kardia, SLR, Lehtimäki, T, Lehrer, SF, Magnusson, PKE, Martin, NG, McGue, M, Metspalu, A, Pendleton, N, Penninx, BWJH, Perola, M, Pirastu, N, Pirastu, M, Polasek, O, Posthuma, D, Power, C, Province, MA, Samani, NJ, Schlessinger, D, Schmidt, R, Sørensen, TIA, Spector, TD, Stefansson, K, Thorsteinsdottir, U, Thurik, AR, Timpson, NJ, Tiemeier, H, Tung, JY, Uitterlinden, AG, Vitart, V, Vollenweider, P, Weir, DR, Wilson, JF, Wright, AF, Conley, DC, Krueger, RF, Smith, GD, Hofman, A, Laibson, DI, Medland, SE, Meyer, MN, Yang, J, Johannesson, M, Visscher, PM, Esko, T, Koellinger, PD, Cesarini, D and Me Research T, Cogent and Social Science Genetic Association C (2018) Gene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individuals. Nature Genetics 50, 11121121.CrossRefGoogle ScholarPubMed
Leppert, B, Riglin, L, Wootton, RE, Dardani, C, Thapar, A, Staley, JR, Tilling, K, Davey Smith, G, Thapar, A and Stergiakouli, E (2020) The effect of attention deficit/hyperactivity disorder on physical health outcomes: A 2-sample Mendelian randomization study. American Journal of Epidemiology 190, 10471055.CrossRefGoogle Scholar
Li, D-D, Yang, Y, Gao, Z-Y, Zhao, L-H, Yang, X, Xu, F, Yu, C, Zhang, X-L, Wang, X-Q, Wang, L-H and Su, J-B (2022a) Sedentary lifestyle and body composition in type 2 diabetes. Diabetology and Metabolic Syndrome 14, .CrossRefGoogle ScholarPubMed
Li, GH, Ge, GM, Cheung, CL, Ip, P, Coghill, D and Wong, IC (2020) Evaluation of causality between ADHD and Parkinson’s disease: Mendelian randomization study. European Neuropsychopharmacology 37, 4963.CrossRefGoogle ScholarPubMed
Li, L, Chang, Z, Sun, J, Garcia-Argibay, M, Du Rietz, E, Dobrosavljevic, M, Brikell, I, Jernberg, T, Solmi, M, Cortese, S and Larsson, H (2022b) Attention-deficit/hyperactivity disorder as a risk factor for cardiovascular diseases: A nationwide population-based cohort study. World Psychiatry: Official Journal of the World Psychiatric Association (WPA) 21, 452459.CrossRefGoogle ScholarPubMed
Li, L, Yao, H, Zhang, L, Garcia-Argibay, M, Du Rietz, E, Brikell, I, Solmi, M, Cortese, S, Ramos-Quiroga, JA, Ribasés, M, Chang, Z and Larsson, H (2023) Attention-deficit/hyperactivity disorder is associated with increased risk of cardiovascular diseases: A systematic review and meta-analysis. JCPP Advances 3, .CrossRefGoogle ScholarPubMed
Ligthart, S, Vaez, A, Võsa, U, Stathopoulou, MG, de Vries, PS, Prins, BP, Van der Most, PJ, Tanaka, T, Naderi, E, Rose, LM, Wu, Y, Karlsson, R, Barbalic, M, Lin, H, Pool, R, Zhu, G, Macé, A, Sidore, C, Trompet, S, Mangino, M, Sabater-Lleal, M, Kemp, JP, Abbasi, A, Kacprowski, T, Verweij, N, Smith, AV, Huang, T, Marzi, C, Feitosa, MF, Lohman, KK, Kleber, ME, Milaneschi, Y, Mueller, C, Huq, M, Vlachopoulou, E, Lyytikäinen, LP, Oldmeadow, C, Deelen, J, Perola, M, Zhao, JH, Feenstra, B, Amini, M, Lahti, J, Schraut, KE, Fornage, M, Suktitipat, B, Chen, WM, Li, X, Nutile, T, Malerba, G, Luan, J, Bak, T, Schork, N, Del Greco, MF, Thiering, E, Mahajan, A, Marioni, RE, Mihailov, E, Eriksson, J, Ozel, AB, Zhang, W, Nethander, M, Cheng, YC, Aslibekyan, S, Ang, W, Gandin, I, Yengo, L, Portas, L, Kooperberg, C, Hofer, E, Rajan, KB, Schurmann, C, den Hollander, W, Ahluwalia, TS, Zhao, J, Draisma, HHM, Ford, I, Timpson, N, Teumer, A, Huang, H, Wahl, S, Liu, Y, Huang, J, Uh, HW, Geller, F, Joshi, PK, Yanek, LR, Trabetti, E, Lehne, B, Vozzi, D, Verbanck, M, Biino, G, Saba, Y, Meulenbelt, I, O’Connell, JR, Laakso, M, Giulianini, F, Magnusson, PKE, Ballantyne, CM, Hottenga, JJ, Montgomery, GW, Rivadineira, F, Rueedi, R, Steri, M, Herzig, KH, Stott, DJ, Menni, C, Frånberg, M, St Pourcain, B, Felix, SB, Pers, TH, Bakker, SJL, Kraft, P, Peters, A, Vaidya, D, Delgado, G, Smit, JH, Großmann, V, Sinisalo, J, Seppälä, I, Williams, SR, Holliday, EG, Moed, M, Langenberg, C, Räikkönen, K, Ding, J, Campbell, H, Sale, MM, Chen, YI, James, AL, Ruggiero, D, Soranzo, N, Hartman, CA, Smith, EN, Berenson, GS, Fuchsberger, C, Hernandez, D, Tiesler, CMT, Giedraitis, V, Liewald, D, Fischer, K, Mellström, D, Larsson, A, Wang, Y, Scott, WR, Lorentzon, M, Beilby, J, Ryan, KA, Pennell, CE, Vuckovic, D, Balkau, B, Concas, MP, Schmidt, R, Mendes de Leon, CF, Bottinger, EP, Kloppenburg, M, Paternoster, L, Boehnke, M, Musk, AW, Willemsen, G, Evans, DM, Madden, PAF, Kähönen, M, Kutalik, Z, Zoledziewska, M, Karhunen, V, Kritchevsky, SB, Sattar, N, Lachance, G, Clarke, R, Harris, TB, Raitakari, OT, Attia, JR, van Heemst, D, Kajantie, E, Sorice, R, Gambaro, G, Scott, RA, Hicks, AA, Ferrucci, L, Standl, M, Lindgren, CM, Starr, JM, Karlsson, M, Lind, L, Li, JZ, Chambers, JC, Mori, TA, de Geus, E, Heath, AC, Martin, NG, Auvinen, J, Buckley, BM, de Craen, AJM, Waldenberger, M, Strauch, K, Meitinger, T, Scott, RJ, McEvoy, M, Beekman, M, Bombieri, C, Ridker, PM, Mohlke, KL, Pedersen, NL, Morrison, AC, Boomsma, DI, Whitfield, JB, Strachan, DP, Hofman, A, Vollenweider, P, Cucca, F, Jarvelin, MR, Jukema, JW, Spector, TD, Hamsten, A, Zeller, T, Uitterlinden, AG, Nauck, M, Gudnason, V, Qi, L, Grallert, H, Borecki, IB, Rotter, JI, März, W, Wild, PS, Lokki, ML, Boyle, M, Salomaa, V, Melbye, M, Eriksson, JG, Wilson, JF, Penninx, B, Becker, DM, Worrall, BB, Gibson, G, Krauss, RM, Ciullo, M, Zaza, G, Wareham, NJ, Oldehinkel, AJ, Palmer, LJ, Murray, SS, Pramstaller, PP, Bandinelli, S, Heinrich, J, Ingelsson, E, Deary, IJ, Mägi, R, Vandenput, L, van der Harst, P, Desch, KC, Kooner, JS, Ohlsson, C, Hayward, C, Lehtimäki, T, Shuldiner, AR, Arnett, DK, Beilin, LJ, Robino, A, Froguel, P, Pirastu, M, Jess, T, Koenig, W, Loos, RJF, Evans, DA, Schmidt, H, Smith, GD, Slagboom, PE, Eiriksdottir, G, Morris, AP, Psaty, BM, Tracy, RP, Nolte, IM, Boerwinkle, E, Visvikis-Siest, S, Reiner, AP, Gross, M, Bis, JC, Franke, L, Franco, OH, Benjamin, EJ, Chasman, DI, Dupuis, J, Snieder, H, Dehghan, A and Alizadeh, BZ (2018) Genome analyses of >200,000 individuals identify 58 loci for chronic inflammation and highlight pathways that link inflammation and complex disorders. American Journal of Human Genetics 103, 691706.CrossRefGoogle ScholarPubMed
Liu, CY, Schoeler, T, Davies, NM, Peyre, H, Lim, KX, Barker, ED, Llewellyn, C, Dudbridge, F and Pingault, JB (2021) Are there causal relationships between attention-deficit/hyperactivity disorder and body mass index? Evidence from multiple genetically informed designs. International Journal of Epidemiology 50, 496509.CrossRefGoogle ScholarPubMed
Liu, J, Riesch, S, Tien, J, Lipman, T, Pinto-Martin, J and O’Sullivan, A (2022) Screen media overuse and associated physical, cognitive, and emotional/behavioral outcomes in children and adolescents: An integrative review. Journal of Pediatric Health Care 36, 99109.CrossRefGoogle ScholarPubMed
Liu, M, Jiang, Y, Wedow, R, Li, Y, Brazel, DM, Chen, F, Datta, G, Davila-Velderrain, J, McGuire, D, Tian, C, Zhan, X, Agee, M, Alipanahi, B, Auton, A, Bell, RK, Bryc, K, Elson, SL, Fontanillas, P, Furlotte, NA, Hinds, DA, Hromatka, BS, Huber, KE, Kleinman, A, Litterman, NK, McIntyre, MH, Mountain, JL, Northover, CAM, Sathirapongsasuti, JF, Sazonova, OV, Shelton, JF, Shringarpure, S, Tian, C, Tung, JY, Vacic, V, Wilson, CH, Pitts, SJ, Mitchell, A, Skogholt, AH, Winsvold, BS, Sivertsen, B, Stordal, E, Morken, G, Kallestad, H, Heuch, I, Zwart, J-A, Fjukstad, KK, Pedersen, LM, Gabrielsen, ME, Johnsen, MB, Skrove, M, Indredavik, MS, Drange, OK, Bjerkeset, O, Børte, S, Stensland, , Choquet, H, Docherty, AR, Faul, JD, Foerster, JR, Fritsche, LG, Gabrielsen, ME, Gordon, SD, Haessler, J, Hottenga, J-J, Huang, H, Jang, S-K, Jansen, PR, Ling, Y, Mägi, R, Matoba, N, McMahon, G, Mulas, A, Orrù, V, Palviainen, T, Pandit, A, Reginsson, GW, Skogholt, AH, Smith, JA, Taylor, AE, Turman, C, Willemsen, G, Young, H, Young, KA, Zajac, GJM, Zhao, W, Zhou, W, Bjornsdottir, G, Boardman, JD, Boehnke, M, Boomsma, DI, Chen, C, Cucca, F, Davies, GE, Eaton, CB, Ehringer, MA, Esko, T, Fiorillo, E, Gillespie, NA, Gudbjartsson, DF, Haller, T, Harris, KM, Heath, AC, Hewitt, JK, Hickie, IB, Hokanson, JE, Hopfer, CJ, Hunter, DJ, Iacono, WG, Johnson, EO, Kamatani, Y, Kardia, SLR, Keller, MC, Kellis, M, Kooperberg, C, Kraft, P, Krauter, KS, Laakso, M, Lind, PA, Loukola, A, Lutz, SM, Madden, PAF, Martin, NG, McGue, M, McQueen, MB, Medland, SE, Metspalu, A, Mohlke, KL, Nielsen, JB, Okada, Y, Peters, U, Polderman, TJC, Posthuma, D, Reiner, AP, Rice, JP, Rimm, E, Rose, RJ, Runarsdottir, V, Stallings, MC, Stančáková, A, Stefansson, H, Thai, KK, Tindle, HA, Tyrfingsson, T, Wall, TL, Weir, DR, Weisner, C, Whitfield, JB, Winsvold, BS, Yin, J, Zuccolo, L, Bierut, LJ, Hveem, K, Lee, JJ, Munafò, MR, Saccone, NL, Willer, CJ, Cornelis, MC, David, SP, Hinds, DA, Jorgenson, E, Kaprio, J, Stitzel, JA, Stefansson, K, Thorgeirsson, TE, Abecasis, G, Liu, DJ and Vrieze, S and Me Research T and Psychiatry HA-I (2019) Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nature Genetics 51, 237244.CrossRefGoogle ScholarPubMed
Lu, Y, Sjölander, A, Cederlöf, M, D’Onofrio, BM, Almqvist, C, Larsson, H and Lichtenstein, P (2017) Association between medication use and performance on higher education entrance tests in individuals with attention-deficit/hyperactivity disorder. JAMA Psychiatry 74, 815822.CrossRefGoogle ScholarPubMed
Magliano, DJ, Sacre, JW, Harding, JL, Gregg, EW, Zimmet, PZ and Shaw, JE (2020) Young-onset type 2 diabetes mellitus – Implications for morbidity and mortality. Nature Reviews Endocrinology 16, 321331.CrossRefGoogle ScholarPubMed
Mahajan, A, Taliun, D, Thurner, M, Robertson, NR, Torres, JM, Rayner, NW, Payne, AJ, Steinthorsdottir, V, Scott, RA, Grarup, N, Cook, JP, Schmidt, EM, Wuttke, M, Sarnowski, C, Mägi, R, Nano, J, Gieger, C, Trompet, S, Lecoeur, C, Preuss, MH, Prins, BP, Guo, X, Bielak, LF, Below, JE, Bowden, DW, Chambers, JC, Kim, YJ, Ng, MCY, Petty, LE, Sim, X, Zhang, W, Bennett, AJ, Bork-Jensen, J, Brummett, CM, Canouil, M, Ec Kardt, KU, Fischer, K, Kardia, SLR, Kronenberg, F, Läll, K, Liu, CT, Locke, AE, Luan, J, Ntalla, I, Nylander, V, Schönherr, S, Schurmann, C, Yengo, L, Bottinger, EP, Brandslund, I, Christensen, C, Dedoussis, G, Florez, JC, Ford, I, Franco, OH, Frayling, TM, Giedraitis, V, Hackinger, S, Hattersley, AT, Herder, C, Ikram, MA, Ingelsson, M, Jørgensen, ME, Jørgensen, T, Kriebel, J, Kuusisto, J, Ligthart, S, Lindgren, CM, Linneberg, A, Lyssenko, V, Mamakou, V, Meitinger, T, Mohlke, KL, Morris, AD, Nadkarni, G, Pankow, JS, Peters, A, Sattar, N, Stančáková, A, Strauch, K, Taylor, KD, Thorand, B, Thorleifsson, G, Thorsteinsdottir, U, Tuomilehto, J, Witte, DR, Dupuis, J, Peyser, PA, Zeggini, E, Loos, RJF, Froguel, P, Ingelsson, E, Lind, L, Groop, L, Laakso, M, Collins, FS, Jukema, JW, Palmer, CNA, Grallert, H, Metspalu, A, Dehghan, A, Köttgen, A, Abecasis, GR, Meigs, JB, Rotter, JI, Marchini, J, Pedersen, O, Hansen, T, Langenberg, C, Wareham, NJ, Stefansson, K, Gloyn, AL, Morris, AP, Boehnke, M and McCarthy, MI (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nature Genetics 50, 15051513.CrossRefGoogle ScholarPubMed
Martins-Silva, T, Vaz, JDS, Hutz, MH, Salatino-Oliveira, A, Genro, JP, Hartwig, FP, Moreira-Maia, CR, Rohde, LA, Borges, MC and Tovo-Rodrigues, L (2019) Assessing causality in the association between attention-deficit/hyperactivity disorder and obesity: A Mendelian randomization study. International Journal of Obesity 43, 25002508.CrossRefGoogle ScholarPubMed
Michaëlsson, M, Yuan, S, Melhus, H, Baron, JA, Byberg, L, Larsson, SC and Michaëlsson, K (2022) The impact and causal directions for the associations between diagnosis of ADHD, socioeconomic status, and intelligence by use of a bi-directional two-sample Mendelian randomization design. BMC Medicine 20, .CrossRefGoogle ScholarPubMed
Millichap, JG and Yee, MM (2012) The diet factor in attention-deficit/hyperactivity disorder. Pediatrics 129, 330337.CrossRefGoogle ScholarPubMed
Montagni, I, Guichard, E and Kurth, T (2016) Association of screen time with self-perceived attention problems and hyperactivity levels in French students: A cross-sectional study. BMJ Open 6, .CrossRefGoogle ScholarPubMed
Nigg, JT, Johnstone, JM, Musser, ED, Long, HG, Willoughby, MT and Shannon, J (2016) Attention-deficit/hyperactivity disorder (ADHD) and being overweight/obesity: New data and meta-analysis. Clinical Psychology Review 43, 6779.CrossRefGoogle ScholarPubMed
Nightingale, CM, Rudnicka, AR, Donin, AS, Sattar, N, Cook, DG, Whincup, PH and Owen, CG (2017) Screen time is associated with adiposity and insulin resistance in children. Archives of Disease in Childhood 102, 612616.CrossRefGoogle ScholarPubMed
Nordsletten, AE, Larsson, H, Crowley, JJ, Almqvist, C, Lichtenstein, P and Mataix-Cols, D (2016) Patterns of nonrandom mating within and across 11 major psychiatric disorders. JAMA Psychiatry 73, 354361.CrossRefGoogle ScholarPubMed
Pelsser, LM, Frankena, K, Toorman, J, Savelkoul, HF, Dubois, AE, Pereira, RR, Haagen, TA, Rommelse, NN and Buitelaar, JK (2011) Effects of a restricted elimination diet on the behaviour of children with attention-deficit hyperactivity disorder (INCA study): A randomised controlled trial. Lancet 377, 494503.CrossRefGoogle ScholarPubMed
Pfiffner, LJ, Villodas, M, Kaiser, N, Rooney, M and McBurnett, K (2013) Educational outcomes of a collaborative school–home behavioral intervention for ADHD. School Psychology Quarterly 28, .CrossRefGoogle ScholarPubMed
Polanczyk, GV, Willcutt, EG, Salum, GA, Kieling, C and Rohde, LA (2014) ADHD prevalence estimates across three decades: An updated systematic review and meta-regression analysis. International Journal of Epidemiology 43, 434442.CrossRefGoogle ScholarPubMed
Quinn, PD and D’Onofrio, BM (2020) Nature versus nurture. In Benson, JB (eds), Encyclopedia of Infant and Early Childhood Development, 2nd edn. Oxford: Elsevier, 373384.CrossRefGoogle Scholar
Rees, JMB, Wood, AM and Burgess, S (2017) Extending the MR-Egger method for multivariable Mendelian randomization to correct for both measured and unmeasured pleiotropy. Statistics in Medicine 36, 47054718.CrossRefGoogle ScholarPubMed
Relton, CL and Davey Smith, G (2012) Two-step epigenetic Mendelian randomization: A strategy for establishing the causal role of epigenetic processes in pathways to disease. International Journal of Epidemiology 41, 161176.CrossRefGoogle ScholarPubMed
Riglin, L and Stergiakouli, E (2022) Mendelian randomisation studies of attention deficit hyperactivity disorder. JCPP Advances 2, .CrossRefGoogle ScholarPubMed
Roberti, JW (2004) A review of behavioral and biological correlates of sensation seeking. Journal of Research in Personality 38, 256279.CrossRefGoogle Scholar
Rommel, AS, Halperin, JM, Mill, J, Asherson, P and Kuntsi, J (2013) Protection from genetic diathesis in attention-deficit/hyperactivity disorder: Possible complementary roles of exercise. Journal of the American Academy of Child & Adolescent Psychiatry 52, 900910.CrossRefGoogle ScholarPubMed
Ros, R and Graziano, PA (2018) Social functioning in children with or at risk for attention deficit/hyperactivity disorder: A meta-analytic review. Journal of Clinical Child & Adolescent Psychology 47, 213235.CrossRefGoogle ScholarPubMed
Saccaro, LF, Schilliger, Z, Perroud, N and Piguet, C (2021) Inflammation, anxiety, and stress in attention-deficit/hyperactivity disorder. Biomedicines 9, .CrossRefGoogle ScholarPubMed
Sanderson, E (2021) Multivariable Mendelian randomization and mediation. Cold Spring Harbor Perspectives in Medicine 11, .CrossRefGoogle ScholarPubMed
Schmengler, H, Peeters, M, Stevens, G, Kunst, AE, Hartman, CA, Oldehinkel, AJ and Vollebergh, WAM (2023) Educational level, attention problems, and externalizing behaviour in adolescence and early adulthood: The role of social causation and health-related selection-the TRAILS study. European Child and Adolescent Psychiatry 32, 809824.CrossRefGoogle ScholarPubMed
Selzam, S, Ritchie, SJ, Pingault, JB, Reynolds, CA, O’Reilly, PF and Plomin, R (2019) Comparing within- and between-family polygenic score prediction. American Journal of Human Genetics 105, 351363.CrossRefGoogle ScholarPubMed
Simon, V, Czobor, P, Bálint, S, Mészáros, A and Bitter, I (2009) Prevalence and correlates of adult attention-deficit hyperactivity disorder: Meta-analysis. The British Journal of Psychiatry 194, 204211.CrossRefGoogle ScholarPubMed
Skrivankova, VW, Richmond, RC, Woolf, BAR, Davies, NM, Swanson, SA, VanderWeele, TJ, Timpson, NJ, Higgins, JPT, Dimou, N, Langenberg, C, Loder, EW, Golub, RM, Egger, M, Davey Smith, G and Richards, JB (2021a) Strengthening the reporting of observational studies in epidemiology using Mendelian randomisation (STROBE-MR): Explanation and elaboration. BMJ 375, .Google ScholarPubMed
Skrivankova, VW, Richmond, RC, Woolf, BAR, Yarmolinsky, J, Davies, NM, Swanson, SA, VanderWeele, TJ, Higgins, JPT, Timpson, NJ, Dimou, N, Langenberg, C, Golub, RM, Loder, EW, Gallo, V, Tybjaerg-Hansen, A, Davey Smith, G, Egger, M and Richards, JB (2021b) Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: The STROBE-MR statement. JAMA 326, 16141621.CrossRefGoogle ScholarPubMed
Smith, GD and Ebrahim, S (2003) ‘Mendelian randomization’: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology 32, 122.CrossRefGoogle ScholarPubMed
Smith, GD and Ebrahim, S (2004) Mendelian randomization: Prospects, potentials, and limitations. International Journal of Epidemiology 33, 3042.CrossRefGoogle ScholarPubMed
Soler Artigas, M, Sánchez-Mora, C, Rovira, P, Vilar-Ribó, L, Ramos-Quiroga, JA and Ribasés, M (2023) Mendelian randomization analysis for attention deficit/hyperactivity disorder: Studying a broad range of exposures and outcomes. International Journal of Epidemiology 52, 386402.CrossRefGoogle ScholarPubMed
Sun, H, Saeedi, P, Karuranga, S, Pinkepank, M, Ogurtsova, K, Duncan, BB, Stein, C, Basit, A, Chan, JCN, Mbanya, JC, Pavkov, ME, Ramachandaran, A, Wild, SH, James, S, Herman, WH, Zhang, P, Bommer, C, Kuo, S, Boyko, EJ and Magliano, DJ (2022) IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice 183, .CrossRefGoogle ScholarPubMed
Team RC (2014) R: A language and environment for statistical computing. MSOR Connections .Google Scholar
Thomas, R, Sanders, S, Doust, J, Beller, E and Glasziou, P (2015) Prevalence of attention-deficit/hyperactivity disorder: A systematic review and meta-analysis. Pediatrics 135, e9941001.CrossRefGoogle ScholarPubMed
Treur, JL, Demontis, D, Smith, GD, Sallis, H, Richardson, TG, Wiers, RW, Børglum, AD, Verweij, KJH and Munafò, MR (2021) Investigating causality between liability to ADHD and substance use, and liability to substance use and ADHD risk, using Mendelian randomization. Addiction Biology 26, .CrossRefGoogle ScholarPubMed
UNESCO Institute for Statistics (2012) International standard classification of education. http://uis.unesco.org/sites/default/files/documents/international-standard-classification-of-education-isced-2011-en.pdf (accessed 19 June 2023).Google Scholar
Vaidyanathan, S, Manohar, H, Chandrasekaran, V and Kandasamy, P (2021) Screen time exposure in preschool children with ADHD: A cross-sectional exploratory study from South India. Indian Journal of Psychological Medicine 43, 125129.CrossRefGoogle ScholarPubMed
Vanderweele, TJ and Vansteelandt, S (2010) Odds ratios for mediation analysis for a dichotomous outcome. American Journal of Epidemiology 172, 13391348.CrossRefGoogle ScholarPubMed
van de Vegte, YJ, Said, MA, Rienstra, M, van der Harst, P and Verweij, N (2020) Genome-wide association studies and Mendelian randomization analyses for leisure sedentary behaviours. Nature Communications 11, .CrossRefGoogle ScholarPubMed
Vandewater, EA, Lee, JH and Shim, M-S (2005) Family conflict and violent electronic media use in school-aged children. Media Psychology 7, 7386.CrossRefGoogle Scholar
Viner, R, White, B and Christie, D (2017) Type 2 diabetes in adolescents: A severe phenotype posing major clinical challenges and public health burden. Lancet 389, 22522260.CrossRefGoogle ScholarPubMed
Vogelezang, S, Bradfield, JP, Ahluwalia, TS, Curtin, JA, Lakka, TA, Grarup, N, Scholz, M, van der Most, PJ, Monnereau, C, Stergiakouli, E, Heiskala, A, Horikoshi, M, Fedko, IO, Vilor-Tejedor, N, Cousminer, DL, Standl, M, Wang, CA, Viikari, J, Geller, F, Íñiguez, C, Pitkänen, N, Chesi, A, Bacelis, J, Yengo, L, Torrent, M, Ntalla, I, Helgeland, Ø, Selzam, S, Vonk, JM, Zafarmand, MH, Heude, B, Farooqi, IS, Alyass, A, Beaumont, RN, Have, CT, Rzehak, P, Bilbao, JR, Schnurr, TM, Barroso, I, Bønnelykke, K, Beilin, LJ, Carstensen, L, Charles, MA, Chawes, B, Clément, K, Closa-Monasterolo, R, Custovic, A, Eriksson, JG, Escribano, J, Groen-Blokhuis, M, Grote, V, Gruszfeld, D, Hakonarson, H, Hansen, T, Hattersley, AT, Hollensted, M, Hottenga, JJ, Hyppönen, E, Johansson, S, Joro, R, Kähönen, M, Karhunen, V, Kiess, W, Knight, BA, Koletzko, B, Kühnapfel, A, Landgraf, K, Langhendries, JP, Lehtimäki, T, Leinonen, JT, Li, A, Lindi, V, Lowry, E, Bustamante, M, Medina-Gomez, C, Melbye, M, Michaelsen, KF, Morgen, CS, Mori, TA, Nielsen, TRH, Niinikoski, H, Oldehinkel, AJ, Pahkala, K, Panoutsopoulou, K, Pedersen, O, Pennell, CE, Power, C, Reijneveld, SA, Rivadeneira, F, Simpson, A, Sly, PD, Stokholm, J, Teo, KK, Thiering, E, Timpson, NJ, Uitterlinden, AG, van Beijsterveldt, CEM, van Schaik, BDC, Vaudel, M, Verduci, E, Vinding, RK, Vogel, M, Zeggini, E, Sebert, S, Lind, MV, Brown, CD, Santa-Marina, L, Reischl, E, Frithioff-Bøjsøe, C, Meyre, D, Wheeler, E, Ong, K, Nohr, EA, Vrijkotte, TGM, Koppelman, GH, Plomin, R, Njølstad, PR, Dedoussis, GD, Froguel, P, Sørensen, TIA, Jacobsson, B, Freathy, RM, Zemel, BS, Raitakari, O, Vrijheid, M, Feenstra, B, Lyytikäinen, LP, Snieder, H, Kirsten, H, Holt, PG, Heinrich, J, Widén, E, Sunyer, J, Boomsma, DI, Järvelin, MR, Körner, A, Davey Smith, G, Holm, JC, Atalay, M, Murray, C, Bisgaard, H, McCarthy, MI, Jaddoe, VWV, Grant, SFA and Felix, JF (2020) Novel loci for childhood body mass index and shared heritability with adult cardiometabolic traits. PLoS Genetics 16, .CrossRefGoogle ScholarPubMed
Vos, T, Lim, SS, Abbafati, C, Abbas, KM, Abbasi, M, Abbasifard, M, Abbasi-Kangevari, M, Abbastabar, H, Abd-Allah, F, Abdelalim, A, Abdollahi, M, Abdollahpour, I, Abolhassani, H, Aboyans, V, Abrams, EM, Abreu, LG, Abrigo, MRM, Abu-Raddad, LJ, Abushouk, AI, Acebedo, A, Ackerman, IN, Adabi, M, Adamu, AA, Adebayo, OM, Adekanmbi, V, Adelson, JD, Adetokunboh, OO, Adham, D, Afshari, M, Afshin, A, Agardh, EE, Agarwal, G, Agesa, KM, Aghaali, M, Aghamir, SMK, Agrawal, A, Ahmad, T, Ahmadi, A, Ahmadi, M, Ahmadieh, H, Ahmadpour, E, Akalu, TY, Akinyemi, RO, Akinyemiju, T, Akombi, B, Al-Aly, Z, Alam, K, Alam, N, Alam, S, Alam, T, Alanzi, TM, Albertson, SB, Alcalde-Rabanal, JE, Alema, NM, Ali, M, Ali, S, Alicandro, G, Alijanzadeh, M, Alinia, C, Alipour, V, Aljunid, SM, Alla, F, Allebeck, P, Almasi-Hashiani, A, Alonso, J, Al-Raddadi, RM, Altirkawi, KA, Alvis-Guzman, N, Alvis-Zakzuk, NJ, Amini, S, Amini-Rarani, M, Aminorroaya, A, Amiri, F, Amit, AML, Amugsi, DA, Amul, GGH, Anderlini, D, Andrei, CL, Andrei, T, Anjomshoa, M, Ansari, F, Ansari, I, Ansari-Moghaddam, A, Antonio, CAT, Antony, CM, Antriyandarti, E, Anvari, D, Anwer, R, Arabloo, J, Arab-Zozani, M, Aravkin, AY, Ariani, F, Ärnlöv, J, Aryal, KK, Arzani, A, Asadi-Aliabadi, M, Asadi-Pooya, AA, Asghari, B, Ashbaugh, C, Atnafu, DD, Atre, SR, Ausloos, F, Ausloos, M, Ayala Quintanilla, BP, Ayano, G, Ayanore, MA, Aynalem, YA, Azari, S, Azarian, G, Azene, ZN, Babaee, E, Badawi, A, Bagherzadeh, M, Bakhshaei, MH, Bakhtiari, A, Balakrishnan, S, Balalla, S, Balassyano, S, Banach, M, Banik, PC, Bannick, MS, Bante, AB, Baraki, AG, Barboza, MA, Barker-Collo, SL, Barthelemy, CM, Barua, L, Barzegar, A, Basu, S, Baune, BT, Bayati, M, Bazmandegan, G, Bedi, N, Beghi, E, Béjot, Y, Bello, AK, Bender, RG, Bennett, DA, Bennitt, FB, Bensenor, IM, Benziger, CP, Berhe, K, Bernabe, E, Bertolacci, GJ, Bhageerathy, R, Bhala, N, Bhandari, D, Bhardwaj, P, Bhattacharyya, K, Bhutta, ZA, Bibi, S, Biehl, MH, Bikbov, B, Bin Sayeed, MS, Biondi, A, Birihane, BM, Bisanzio, D, Bisignano, C, Biswas, RK, Bohlouli, S, Bohluli, M, Bolla, SRR, Boloor, A, Boon-Dooley, AS, Borges, G, Borzì, AM, Bourne, R, Brady, OJ, Brauer, M, Brayne, C, Breitborde, NJK, Brenner, H, Briant, PS, Briggs, AM, Briko, NI, Britton, GB, Bryazka, D, Buchbinder, R, Bumgarner, BR, Busse, R, Butt, ZA, Caetano dos Santos, FL, Cámera, LLAA, Campos-Nonato, IR, Car, J, Cárdenas, R, Carreras, G, Carrero, JJ, Carvalho, F, Castaldelli-Maia, JM, Castañeda-Orjuela, CA, Castelpietra, G, Castle, CD, Castro, F, Catalá-López, F, Causey, K, Cederroth, CR, Cercy, KM, Cerin, E, Chandan, JS, Chang, AR, Charlson, FJ, Chattu, VK, Chaturvedi, S, Chimed-Ochir, O, Chin, KL, Cho, DY, Christensen, H, Chu, D-T, Chung, MT, Cicuttini, FM, Ciobanu, LG, Cirillo, M, Collins, EL, Compton, K, Conti, S, Cortesi, PA, Costa, VM, Cousin, E, Cowden, RG, Cowie, BC, Cromwell, EA, Cross, DH, Crowe, CS, Cruz, JA, Cunningham, M, Dahlawi, SMA, Damiani, G, Dandona, L, Dandona, R, Darwesh, AM, Daryani, A, Das, JK, Das Gupta, R, das Neves, J, Dávila-Cervantes, CA, Davletov, K, De Leo, D, Dean, FE, DeCleene, NK, Deen, A, Degenhardt, L, Dellavalle, RP, Demeke, FM, Demsie, DG, Denova-Gutiérrez, E, Dereje, ND, Dervenis, N, Desai, R, Desalew, A, Dessie, GA, Dharmaratne, SD, Dhungana, GP, Dianatinasab, M, Diaz, D, Dibaji Forooshani, ZS, Dingels, ZV, Dirac, MA, Djalalinia, S, Do, HT, Dokova, K, Dorostkar, F, Doshi, CP, Doshmangir, L, Douiri, A, Doxey, MC, Driscoll, TR, Dunachie, SJ, Duncan, BB, Duraes, AR, Eagan, AW, Ebrahimi Kalan, M, Edvardsson, D, Ehrlich, JR, El Nahas, N, El Sayed, I, El Tantawi, M, Elbarazi, I, Elgendy, IY, Elhabashy, HR, El-Jaafary, SI, Elyazar, IRF, Emamian, MH, Emmons-Bell, S, Erskine, HE, Eshrati, B, Eskandarieh, S, Esmaeilnejad, S, Esmaeilzadeh, F, Esteghamati, A, Estep, K, Etemadi, A, Etisso, AE, Farahmand, M, Faraj, A, Fareed, M, Faridnia, R, Farinha, CSeS, Farioli, A, Faro, A, Faruque, M, Farzadfar, F, Fattahi, N, Fazlzadeh, M, Feigin, VL, Feldman, R, Fereshtehnejad, S-M, Fernandes, E, Ferrari, AJ, Ferreira, ML, Filip, I, Fischer, F, Fisher, JL, Fitzgerald, R, Flohr, C, Flor, LS, Foigt, NA, Folayan, MO, Force, LM, Fornari, C, Foroutan, M, Fox, JT, Freitas, M, Fu, W, Fukumoto, T, Furtado, JM, Gad, MM, Gakidou, E, Galles, NC, Gallus, S, Gamkrelidze, A, Garcia-Basteiro, AL, Gardner, WM, Geberemariyam, BS, Gebrehiwot, AM, Gebremedhin, KB, Gebreslassie, AAAA, Gershberg Hayoon, A, Gething, PW, Ghadimi, M, Ghadiri, K, Ghafourifard, M, Ghajar, A, Ghamari, F, Ghashghaee, A, Ghiasvand, H, Ghith, N, Gholamian, A, Gilani, SA, Gill, PS, Gitimoghaddam, M, Giussani, G, Goli, S, Gomez, RS, Gopalani, SV, Gorini, G, Gorman, TM, Gottlich, HC, Goudarzi, H, Goulart, AC, Goulart, BNG, Grada, A, Grivna, M, Grosso, G, Gubari, MIM, Gugnani, HC, Guimaraes, ALS, Guimarães, RA, Guled, RA, Guo, G, Guo, Y, Gupta, R, Haagsma, JA, Haddock, B, Hafezi-Nejad, N, Hafiz, A, Hagins, H, Haile, LM, Hall, BJ, Halvaei, I, Hamadeh, RR, Hamagharib Abdullah, K, Hamilton, EB, Han, C, Han, H, Hankey, GJ, Haro, JM, Harvey, JD, Hasaballah, AI, Hasanzadeh, A, Hashemian, M, Hassanipour, S, Hassankhani, H, Havmoeller, RJ, Hay, RJ, Hay, SI, Hayat, K, Heidari, B, Heidari, G, Heidari-Soureshjani, R, Hendrie, D, Henrikson, HJ, Henry, NJ, Herteliu, C, Heydarpour, F, Hird, TR, Hoek, HW, Hole, MK, Holla, R, Hoogar, P, Hosgood, HD, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Hoy, DG, Hsairi, M, Hsieh, VC-r, Hu, G, Huda, TM, Hugo, FN, Huynh, CK, Hwang, B-F, Iannucci, VC, Ibitoye, SE, Ikuta, KS, Ilesanmi, OS, Ilic, IM, Ilic, MD, Inbaraj, LR, Ippolito, H, Irvani, SSN, Islam, MM, Islam, M, Islam, SMS, Islami, F, Iso, H, Ivers, RQ, Iwu, CCD, Iyamu, IO, Jaafari, J, Jacobsen, KH, Jadidi-Niaragh, F, Jafari, H, Jafarinia, M, Jahagirdar, D, Jahani, MA, Jahanmehr, N, Jakovljevic, M, Jalali, A, Jalilian, F, James, SL, Janjani, H, Janodia, MD, Jayatilleke, AU, Jeemon, P, Jenabi, E, Jha, RP, Jha, V, Ji, JS, Jia, P, John, O, John-Akinola, YO, Johnson, CO, Johnson, SC, Jonas, JB, Joo, T, Joshi, A, Jozwiak, JJ, Jürisson, M, Kabir, A, Kabir, Z, Kalani, H, Kalani, R, Kalankesh, LR, Kalhor, R, Kamiab, Z, Kanchan, T, Karami Matin, B, Karch, A, Karim, MA, Karimi, SE, Kassa, GM, Kassebaum, NJ, Katikireddi, SV, Kawakami, N, Kayode, GA, Keddie, SH, Keller, C, Kereselidze, M, Khafaie, MA, Khalid, N, Khan, M, Khatab, K, Khater, MM, Khatib, MN, Khayamzadeh, M, Khodayari, MT, Khundkar, R, Kianipour, N, Kieling, C, Kim, D, Kim, Y-E, Kim, YJ, Kimokoti, RW, Kisa, A, Kisa, S, Kissimova-Skarbek, K, Kivimäki, M, Kneib, CJ, Knudsen, AKS, Kocarnik, JM, Kolola, T, Kopec, JA, Kosen, S, Koul, PA, Koyanagi, A, Kravchenko, MA, Krishan, K, Krohn, KJ, Kuate Defo, B, Kucuk Bicer, B, Kumar, GA, Kumar, M, Kumar, P, Kumar, V, Kumaresh, G, Kurmi, OP, Kusuma, D, Kyu, HH, La Vecchia, C, Lacey, B, Lal, DK, Lalloo, R, Lam, JO, Lami, FH, Landires, I, Lang, JJ, Lansingh, VC, Larson, SL, Larsson, AO, Lasrado, S, Lassi, ZS, Lau, KM-M, Lavados, PM, Lazarus, JV, Ledesma, JR, Lee, PH, Lee, SWH, LeGrand, KE, Leigh, J, Leonardi, M, Lescinsky, H, Leung, J, Levi, M, Lewington, S, Li, S, Lim, L-L, Lin, C, Lin, R-T, Linehan, C, Linn, S, Liu, H-C, Liu, S, Liu, Z, Looker, KJ, Lopez, AD, Lopukhov, PD, Lorkowski, S, Lotufo, PA, Lucas, TCD, Lugo, A, Lunevicius, R, Lyons, RA, Ma, J, MacLachlan, JH, Maddison, ER, Maddison, R, Madotto, F, Mahasha, PW, Mai, HT, Majeed, A, Maled, V, Maleki, S, Malekzadeh, R, Malta, DC, Mamun, AA, Manafi, A, Manafi, N, Manguerra, H, Mansouri, B, Mansournia, MA, Mantilla Herrera, AM, Maravilla, JC, Marks, A, Martins-Melo, FR, Martopullo, I, Masoumi, SZ, Massano, J, Massenburg, BB, Mathur, MR, Maulik, PK, McAlinden, C, McGrath, JJ, McKee, M, Mehndiratta, MM, Mehri, F, Mehta, KM, Meitei, WB, Memiah, PTN, Mendoza, W, Menezes, RG, Mengesha, EW, Mengesha, MB, Mereke, A, Meretoja, A, Meretoja, TJ, Mestrovic, T, Miazgowski, B, Miazgowski, T, Michalek, IM, Mihretie, KM, Miller, TR, Mills, EJ, Mirica, A, Mirrakhimov, EM, Mirzaei, H, Mirzaei, M, Mirzaei-Alavijeh, M, Misganaw, AT, Mithra, P, Moazen, B, Moghadaszadeh, M, Mohamadi, E, Mohammad, DK, Mohammad, Y, Mohammad Gholi Mezerji, N, Mohammadian-Hafshejani, A, Mohammadifard, N, Mohammadpourhodki, R, Mohammed, S, Mokdad, AH, Molokhia, M, Momen, NC, Monasta, L, Mondello, S, Mooney, MD, Moosazadeh, M, Moradi, G, Moradi, M, Moradi-Lakeh, M, Moradzadeh, R, Moraga, P, Morales, L, Morawska, L, Moreno Velásquez, I, Morgado-da-Costa, J, Morrison, SD, Mosser, JF, Mouodi, S, Mousavi, SM, Mousavi Khaneghah, A, Mueller, UO, Munro, SB, Muriithi, MK, Musa, KI, Muthupandian, S, Naderi, M, Nagarajan, AJ, Nagel, G, Naghshtabrizi, B, Nair, S, Nandi, AK, Nangia, V, Nansseu, JR, Nayak, VC, Nazari, J, Negoi, I, Negoi, RI, Netsere, HBN, Ngunjiri, JW, Nguyen, CT, Nguyen, J, Nguyen, M, Nichols, E, Nigatu, D, Nigatu, YT, Nikbakhsh, R, Nixon, MR, Nnaji, CA, Nomura, S, Norrving, B, Noubiap, JJ, Nowak, C, Nunez-Samudio, V, Oţoiu, A, Oancea, B, Odell, CM, Ogbo, FA, I-H, Oh, Okunga, EW, Oladnabi, M, Olagunju, AT, Olusanya, BO, Olusanya, JO, Oluwasanu, MM, Omar Bali, A, Omer, MO, Ong, KL, Onwujekwe, OE, Orji, AU, Orpana, HM, Ortiz, A, Ostroff, SM, Otstavnov, N, Otstavnov, SS, Øverland, S, Owolabi, MO, M, P A, Padubidri, JR, Pakhare, AP, Palladino, R, Pana, A, Panda-Jonas, S, Pandey, A, Park, E-K, Parmar, PGK, Pasupula, DK, Patel, SK, Paternina-Caicedo, AJ, Pathak, A, Pathak, M, Patten, SB, Patton, GC, Paudel, D, Pazoki Toroudi, H, Peden, AE, Pennini, A, Pepito, VCF, Peprah, EK, Pereira, A, Pereira, DM, Perico, N, Pham, HQ, Phillips, MR, Pigott, DM, Pilgrim, T, Pilz, TM, Pirsaheb, M, Plana-Ripoll, O, Plass, D, Pokhrel, KN, Polibin, RV, Polinder, S, Polkinghorne, KR, Postma, MJ, Pourjafar, H, Pourmalek, F, Pourmirza Kalhori, R, Pourshams, A, Poznańska, A, Prada, SI, Prakash, V, Pribadi, DRA, Pupillo, E, Quazi Syed, Z, Rabiee, M, Rabiee, N, Radfar, A, Rafiee, A, Rafiei, A, Raggi, A, Rahimi-Movaghar, A, Rahman, MA, Rajabpour-Sanati, A, Rajati, F, Ramezanzadeh, K, Ranabhat, CL, Rao, PC, Rao, SJ, Rasella, D, Rastogi, P, Rathi, P, Rawaf, DL, Rawaf, S, Rawal, L, Razo, C, Redford, SB, Reiner, RC, Reinig, N, Reitsma, MB, Remuzzi, G, Renjith, V, Renzaho, AMN, Resnikoff, S, Rezaei, N, Rezai, Ms, Rezapour, A, Rhinehart, P-A, Riahi, SM, Ribeiro, ALP, Ribeiro, DC, Ribeiro, D, Rickard, J, Roberts, NLS, Roberts, S, Robinson, SR, Roever, L, Rolfe, S, Ronfani, L, Roshandel, G, Roth, GA, Rubagotti, E, Rumisha, SF, Sabour, S, Sachdev, PS, Saddik, B, Sadeghi, E, Sadeghi, M, Saeidi, S, Safi, S, Safiri, S, Sagar, R, Sahebkar, A, Sahraian, MA, Sajadi, SM, Salahshoor, MR, Salamati, P, Salehi Zahabi, S, Salem, H, Salem, MRR, Salimzadeh, H, Salomon, JA, Salz, I, Samad, Z, Samy, AM, Sanabria, J, Santomauro, DF, Santos, IS, Santos, JV, Santric-Milicevic, MM, Saraswathy, SYI, Sarmiento-Suárez, R, Sarrafzadegan, N, Sartorius, B, Sarveazad, A, Sathian, B, Sathish, T, Sattin, D, Sbarra, AN, Schaeffer, LE, Schiavolin, S, Schmidt, MI, Schutte, AE, Schwebel, DC, Schwendicke, F, Senbeta, AM, Senthilkumaran, S, Sepanlou, SG, Shackelford, KA, Shadid, J, Shahabi, S, Shaheen, AA, Shaikh, MA, Shalash, AS, Shams-Beyranvand, M, Shamsizadeh, M, Shannawaz, M, Sharafi, K, Sharara, F, Sheena, BS, Sheikhtaheri, A, Shetty, RS, Shibuya, K, Shiferaw, WS, Shigematsu, M, Shin, JI, Shiri, R, Shirkoohi, R, Shrime, MG, Shuval, K, Siabani, S, Sigfusdottir, ID, Sigurvinsdottir, R, Silva, JP, Simpson, KE, Singh, A, Singh, JA, Skiadaresi, E, Skou, ST, Skryabin, VY, Sobngwi, E, Sokhan, A, Soltani, S, Sorensen, RJD, Soriano, JB, Sorrie, MB, Soyiri, IN, Sreeramareddy, CT, Stanaway, JD, Stark, BA, Ştefan, SC, Stein, C, Steiner, C, Steiner, TJ, Stokes, MA, Stovner, LJ, Stubbs, JL, Sudaryanto, A, MaB, Sufiyan, Sulo, G, Sultan, I, Sykes, BL, Sylte, DO, Szócska, M, Tabarés-Seisdedos, R, Tabb, KM, Tadakamadla, SK, Taherkhani, A, Tajdini, M, Takahashi, K, Taveira, N, Teagle, WL, Teame, H, Tehrani-Banihashemi, A, Teklehaimanot, BF, Terrason, S, Tessema, ZT, Thankappan, KR, Thomson, AM, Tohidinik, HR, Tonelli, M, Topor-Madry, R, Torre, AE, Touvier, M, Tovani-Palone, MRR, Tran, BX, Travillian, R, Troeger, CE, Truelsen, TC, Tsai, AC, Tsatsakis, A, Tudor Car, L, Tyrovolas, S, Uddin, R, Ullah, S, Undurraga, EA, Unnikrishnan, B, Vacante, M, Vakilian, A, Valdez, PR, Varughese, S, Vasankari, TJ, Vasseghian, Y, Venketasubramanian, N, Violante, FS, Vlassov, V, Vollset, SE, Vongpradith, A, Vukovic, A, Vukovic, R, Waheed, Y, Walters, MK, Wang, J, Wang, Y, Wang, Y-P, Ward, JL, Watson, A, Wei, J, Weintraub, RG, Weiss, DJ, Weiss, J, Westerman, R, Whisnant, JL, Whiteford, HA, Wiangkham, T, Wiens, KE, Wijeratne, T, Wilner, LB, Wilson, S, Wojtyniak, B, Wolfe, CDA, Wool, EE, Wulf, A-M, Hanson, S, Wunrow, HY, Xu, G, Xu, R, Yadgir, S, Yahyazadeh Jabbari, SH, Yamagishi, K, Yaminfirooz, M, Yano, Y, Yaya, S, Yazdi-Feyzabadi, V, Yearwood, JA, Yeheyis, TY, Yeshitila, YG, Yip, P, Yonemoto, N, Yoon, S-J, Yoosefi Lebni, J, Younis, MZ, Younker, TP, Yousefi, Z, Yousefifard, M, Yousefinezhadi, T, Yousuf, AY, Yu, C, Yusefzadeh, H, Zahirian Moghadam, T, Zaki, L, Zaman, SB, Zamani, M, Zamanian, M, Zandian, H, Zangeneh, A, Zastrozhin, MS, Zewdie, KA, Zhang, Y, Zhang, Z-J, Zhao, JT, Zhao, Y, Zheng, P, Zhou, M, Ziapour, A, Zimsen, SRM, Naghavi, M and Murray, CJL (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 12041222.CrossRefGoogle Scholar
Wang, X, Bao, W, Liu, J, OuYang, Y-Y, Wang, D, Rong, S, Xiao, X, Shan, Z-L, Zhang, Y, Yao, P and Liu, L-G (2012) Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabete Care 36, 166175.CrossRefGoogle Scholar
Yang, A, Rolls, ET, Dong, G, Du, J, Li, Y, Feng, J, Cheng, W and Zhao, XM (2022) Longer screen time utilization is associated with the polygenic risk for attention-deficit/hyperactivity disorder with mediation by brain white matter microstructure. EBioMedicine 80, .CrossRefGoogle ScholarPubMed
Yengo, L, Sidorenko, J, Kemper, KE, Zheng, Z, Wood, AR, Weedon, MN, Frayling, TM, Hirschhorn, J, Yang, J and Visscher, PM and Consortium tG (2018) Meta-analysis of genome-wide association studies for height and body mass index in ∼700000 individuals of European ancestry. Human Molecular Genetics 27, 36413649.CrossRefGoogle ScholarPubMed
Zhang, J, Chen, Z, Pärna, K, van Zon, SKR, Snieder, H and Thio, CHL (2022) Mediators of the association between educational attainment and type 2 diabetes mellitus: A two-step multivariable Mendelian randomisation study. Diabetologia 65, 13641374.CrossRefGoogle ScholarPubMed
Figure 0

Table 1. Overview of GWAS data used

Figure 1

Figure 1. ADHD instrument selection for ADHD-T2D association. LD, linkage disequilibrium; T2D, type 2 diabetes; MR, Mendelian randomization.

Figure 2

Figure 2. Decision algorithm for mediator selection in the final analysis. MR, Mendelian randomization; MVMR, Multivariable Mendelian randomization; MoE, mixture of experts; ADHD, Attention deficit hyperactivity disorder; EA, educational attainment; BMI, body mass index; TV watching, television watching; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRP, C-Reactive Protein; IV, instrument variable.

Figure 3

Figure 3. (a) MR-estimated effects of ADHD liability on each mediator separately, presented as Beta with 95% CI. (b) MR-estimated effects of each mediator separately on type 2 diabetes after MVMR adjustment for ADHD, presented as Beta /OR with 95% CI. (c) MR-estimated effects of indirect effects of each mediator separately, by product-of-coefficients method with bootstrap method-estimated 95% CIs. MR-estimated proportions mediated (%) are presented with 95% CIs. OR, odds ratio; CI, confidence interval; ADHD, Attention deficit hyperactivity disorder; BMI, body mass index; TV watching, television watching; SBP, systolic blood pressure; DBP, diastolic blood pressure; CRP, C-Reactive Protein; T2D, type 2 diabetes.

Figure 4

Table 2. Estimates of proportion mediated by combinations of factors

Supplementary material: File

Zhang et al. supplementary material 1

Zhang et al. supplementary material
Download Zhang et al. supplementary material 1(File)
File 224.5 KB
Supplementary material: File

Zhang et al. supplementary material 2

Zhang et al. supplementary material
Download Zhang et al. supplementary material 2(File)
File 4 MB
Supplementary material: File

Zhang et al. supplementary material 3

Zhang et al. supplementary material
Download Zhang et al. supplementary material 3(File)
File 41.6 KB
Supplementary material: File

Zhang et al. supplementary material 4

Zhang et al. supplementary material
Download Zhang et al. supplementary material 4(File)
File 62.7 KB