Hostname: page-component-669899f699-swprf Total loading time: 0 Render date: 2025-05-05T21:58:13.373Z Has data issue: false hasContentIssue false

Sedimentologic successions and chronology of the late Pleistocene deposits on the southern Kola Peninsula, northern Europe

Published online by Cambridge University Press:  12 September 2024

Olga Korsakova*
Affiliation:
Geological Institute of the Kola Science Centre of the Russian Academy of Sciences, 184209 Apatity, Russia VNIIOkeangeologia, 190121 St. Petersburg, Russia
Anatoly Molodkov
Affiliation:
Research Laboratory for Quaternary Geochronology, Department of Geology, Tallinn University of Technology, 19086 Tallinn, Estonia
Nataliya Zaretskaya
Affiliation:
VNIIOkeangeologia, 190121 St. Petersburg, Russia Institute of Geography, Russian Academy of Sciences, 119017 Moscow, Russia Geological Institute, Russian Academy of Sciences, 119017 Moscow, Russia
Vasily Grigoriev
Affiliation:
St. Petersburg State University, 199034 St. Petersburg, Russia
*
Corresponding author: Olga Korsakova; Email: korsak@geoksc.apatity.ru

Abstract

Late Pleistocene deposits in the southern Kola Peninsula, adjacent to the White Sea, evidence the complex alternation between marine transgressions and glacial expansions in northern Europe during successive late Pleistocene warm and cold stages. According to lithostratigraphic and chronological data from key sections, southern Kola Peninsula underwent two phases of the Boreal marine transgression during Marine Isotope Stage (MIS) 5; marine environments, encompassing the very end of MIS 4 and almost the entirety of MIS 3, were also recognized. Age determinations using electron spin resonance (ESR) and infrared optically stimulated luminescence (IR-OSL) techniques reveal marine sediments with ages ranging from 138–128 ka to 72.4 ± 5.6 ka in the Varzuga, Chavanga, Chapoma 1 and 2, and Bolshaya Kumzhevaya sections, indicating initial and second phases of the Boreal transgression. The presence of marine deposits with ages ranging from ca. 59 ka to 37 ka in the Chavanga, Kamenka, Chapoma 2, and Bolshaya Kumzhevaya sections also suggests an accumulation stage in the marine environment. The research material from the studied sections provides evidence of a short glacier expansion into coastal areas of the White Sea during early MIS 4 and a continuous glaciation from the late MIS 3 and throughout MIS 2.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press on behalf of Quaternary Research Center

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adamiec, G., Aitken, M., 1998. Dose-rate conversion factors: update. Ancient TL 16, 3750.CrossRefGoogle Scholar
Apukhtin, N.I., 1957. Stratigraphy of Quaternary deposits of the Kola Peninsula and North Karelia according to new research. In: Proceedings for the Geology and Commercial Minerals of the North-Western USSR. Vol. 1. [In Russian.] Gosgeoltekhizdat, Leningrad, pp. 6883.Google Scholar
Apukhtin, N.I., 1978. New data on the stratigraphy of Quaternary sediments of the southern part of the Kola Peninsula. [In Russian.] Transactions of the All-Russian Geological Institute: Quaternary Geology and Geomorphology 297, 5365.Google Scholar
Armand, A.D., Armand, N.N., Grave, M.K., Yevzerov, V.Ya., Lebedeva, R.M., 1969. Generalized scheme of Quaternary (Anthropogen) deposits of the Kola Peninsula in the light of the new data. In: Grave, M.K., Koshechkin, B.I. (Eds.), Main Problems of Geomorphology and Anthropogen Stratigraphy of the Kola Peninsula. [In Russian.] Nauka Press, Leningrad, pp. 724.Google Scholar
Armand, A.D., Lebedeva, R.M., 1966. Spore-and-pollen characteristic of the key section of interglacial deposits in the southern coastal area of Kola Peninsula. In: Grave, M.K., Armand, F.L. (Eds.), Formation of the Relief and Quaternary Deposits of the Kola Peninsula. [In Russian.] Nauka Press, Moscow-Leningrad, pp. 7786.Google Scholar
Arslanov, Kh.A., Yevzerov, V.Ya., Tertychnyy, N.I., Gerasimov, S.A., Lokshin, N.V., 1981. On the age of deposits (Ponoy Beds) Boreal transgression in the Kola Peninsula. In: Velichko, A.A., Faustova, M.A. (Eds.), Pleistocene Glaciations on the East European Plain. [In Russian.] Nauka Press, Moscow, pp. 2837.Google Scholar
Astafiev, B.Yu., Bogdanov, Yu.B., Voinova, O.A., Zhuravlev, V.A., Nogina, M.Yu., Paramonova, M.S., Peshkova, I.N., et al., 2012. National Map of the Russian Federation. 1:1 000 000 (third generation). Baltic Series, Sheet Q-37–Arkhangelsk. Explanatory Note. [In Russian.] All-Russian Geological Institute (VSEGEI) Press, St. Petersburg. https://vsegei.ru/ru/info/pub_ggk1000-3/Baltiyskaya/q-37.php, accessed May 15, 2023.Google Scholar
Ayling, B., Eggins, S., McCulloch, M., Chappell, J., Grün, R, Mortimer, G., 2017. Uranium uptake history, open-system behaviour and uranium-series ages of fossil Tridacna gigas from Huon Peninsula, Papua New Guinea. Geochimica et Cosmochimica Acta 213, 475501.CrossRefGoogle Scholar
Bolikhovskaya, N., Molodkov, A., 2007. Pollen and IR-OSL evidences for palaeoenvironmental changes between ca. 39 kyr to ca. 33 kyr BP recorded in the Voka key section, NE Estonia. In: Johansson, P., Sarala, P. (Eds.), Applied Quaternary Research in the Central Part of Glaciated Terrain. Vol. 46. Geological Survey of Finland, Special Paper, pp. 103112.Google Scholar
Boyes, B.M, Linch, L.D., Pearce, D.M., Kolka, V.V., Nash, D.J., 2021.The Kola Peninsula and Russian Lapland: a review of Late Weichselian glaciation. Quaternary Science Reviews 267, 128.CrossRefGoogle Scholar
Boyes, B.M., Linch, L.D., Pearce, D.M., Nash, D.J., 2023. The last Fennoscandian Ice Sheet glaciation on the Kola Peninsula and Russian Lapland (Part 2): ice sheet margin positions, evolution, and dynamics. Quaternary Science Reviews 300, 107872.CrossRefGoogle Scholar
Cheremisinova, E.A., 1962. Diatom flora of marine interglacial deposits on the Kola Peninsula. In: Proceedings for the Geology and Commercial Minerals of the North-Western RSFSR, Vol. 3. [In Russian.] Nauka Press, Leningrad, pp. 4557.Google Scholar
Choukri, A., Hakam, O.-K., Reyss, J.-L., Plaziat, J.-C., 2007. Radiochemical dates obtained by alpha spectrometry on fossil mollusk shell from the 5e Atlantic shoreline of the High Atlas, Morocco. Applied Radiation and Isotopes 65, 883890.CrossRefGoogle ScholarPubMed
Demidov, I.N., Houmark-Nielsen, M., Kjær, K.H., Larsen, E., 2006. The last Scandinavian Ice Sheet in northwestern Russia: ice flow patterns and decay dynamics. Boreas 35, 425443.CrossRefGoogle Scholar
Ekman, I., Iljin, V., 1991. Deglaciation, the Younger Dryas End Moraines and Their Correlation in the Karelian A.S.S.R and Adjacent Areas. Geological Survey of Finland, Espoo.Google Scholar
Farr, T.G., Rosen, P.A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., et al., 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics 45, 1944-9208.CrossRefGoogle Scholar
Faustova, M.A., 1984. Late Pleistocene glaciation of European USSR. In: Velichko, A.A. (Ed.), Late Quaternary Environments of the Soviet Union. University of Minnesota Press, Minneapolis, pp. 312.Google Scholar
Funder, S., Demidov, I., Yelovicheva, Ya., 2002. Hydrography and mollusc faunas of the Baltic and the White Sea-North Sea seaway in the Eemian. Palaeogeography, Palaeoclimatology, Palaeoecology 184, 275304.CrossRefGoogle Scholar
Godfrey-Smith, D.I., Huntley, D.J., Chen, W.H., 1988. Optical dating studies of quartz and field-spar sediment extracts. Quaternary Science Reviews 7, 373380.CrossRefGoogle Scholar
Grave, M.K., Gunova, V.S., Devyatova, E.I., Lavrova, M.A., Lebedeva, R.M., Samsonova, L.Ya., Cheremisinova, E.A., 1969. Mikulinskoye mezhlednikoviye na yugo-vostoke Kolskogo poluostrova [Mikulino interglacial in the South-East of the Kola Peninsula]. In: Grave, M.K., Koshechkin, B.I. (Eds), Main problems of Geomorphology and Anthropogen Stratigraphy of the Kola Peninsula. [In Russian.] Nauka Press, Leningrad, pp. 2556.Google Scholar
Grøsfjeld, K., Funder, S., Seidenkratz, M.-S., Glaister, C., 2006. Last Interglacial marine environments in the White Sea region, northwestern Russia. Boreas 35, 493520.CrossRefGoogle Scholar
Grosswald, M.G., 2001. The Late Weichselian Barents-Kara ice sheet: in defense of a maximum reconstruction. Russian Journal of Earth Sciences 3, 427452.CrossRefGoogle Scholar
Grosswald, M.G., Hughes, T.J., 2002. The Russian component of an Arctic ice sheet during the Last Glacial Maximum. Quaternary Science Reviews 21, 121146.CrossRefGoogle Scholar
Gudina, V.I., Yevzerov, V.Ya., 1973. Review of The Stratigraphy and Foraminifera of the Upper Pleistocene in the Kola Peninsula. Originally published in Russian (Transaction of the Institute of Geology and Geophysics, Kola Branch of the Academy of Sciences of the USSR, issue 175). Translated by Dr E. Lees, and issued by the British Library. Geological Magazine 119(3).Google Scholar
Gusev, Е.А., Molodkov, A.N., 2012. Structure of sediments of the final stage of the Kazantsevo transgression (MIS 5) in the north of western Siberia. Doklady Earth Sciences 443, 458461.CrossRefGoogle Scholar
Gusev, E.A., Molodkov, A.N., Streletskaya, I.D., Vasiliev, A.A., Anikina, N.Y., Bondarenko, S.A., Derevyanko, L.G., et al., 2016. Deposits of the Kazantsevo transgression (MIS 5) in the northern Yenisei region. Russian Geology and Geophysics 57, 586596.CrossRefGoogle Scholar
Hättestrand, C., Clark, Ch.D., 2006. The glacial geomorphology of Kola Peninsula and adjacent areas in the Murmansk Region, Russia. Journal of Maps 2(1), 3042.CrossRefGoogle Scholar
Hättestrand, C., Kolka, V.V., Stroeven, A.P., 2007. The Keiva ice marginal zone on the Kola Peninsula, northwest Russia: a key component for reconstructing the palaeoglaciology of the northeastern Fennoscandian Ice Sheet. Boreas 36, 352370.CrossRefGoogle Scholar
Hughes, A.L.C., Gyllencreutz, R., Lohne, O.S., Mangerud, J., Svendsen, J.I., 2016. The last Eurasian ice sheets—a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 145.CrossRefGoogle Scholar
Huntley, D.J., Baril, M.R., 1997. The K content of K-feldspars being measuring in optical dating or in thermoluminescence dating. Ancient TL 15, 1113.CrossRefGoogle Scholar
Huntley, D.J., Godfrey-Smith, D.I., Thewalt, M.L.W., 1985. Optical dating of sediments. Nature 313, 105107.CrossRefGoogle Scholar
Huntley, D.J., Hancock, R.G.V., 2001. The Rb contents of the K-feldspar grains being measured in optical dating. Ancient TL 19, 4346.CrossRefGoogle Scholar
Ikonen, L., Ekman, I., 2001. Biostratigraphy of the Mikulino interglacial sediments in NW Russia: the Petrozavodsk site and a literature review. Annales Academiae Scientiarum Fennicae, series A, III, Geologica-geographica 161, 188.Google Scholar
Jaek, I., Molodkov, A., Vasilchenko, V., 2008. Instability of luminescence responses in feldspar- and quartz-based palaeodosimeters. Journal of Applied Spectroscopy 75, 820825.CrossRefGoogle Scholar
Jaek, I., Molodkov, A., Vasilchenko, V., 2010. The mechanisms of luminescence response to optical and thermal stimulation of alkali feldspars. Journal of Applied Spectroscopy 77, 441444.CrossRefGoogle Scholar
Kaufman, A., Broecker, W.S., 1965. Comparison of 230Th and 14C ages for carbonates materials from Lakes Lahontan and Bonneville. Journal of Geophysical Research 70, 40394054.CrossRefGoogle Scholar
Kaufman, A., Chaleb, B., Wehmiller, J., Hillaire-Marsel, C., 1996. Uranium concentration and isotope ratio profiles within Mercenariu shells: geochronological implications. Geochimica et Cosmochimica Acta 60, 37353746.CrossRefGoogle Scholar
Kind, N.V., 1974. Anthropogen Geochronology Based on Isotope Data. [In Russian.] Nauka Press, Moscow.Google Scholar
Kjær, K.H., Larsen, E., Funder, S., Demidov, I.N., Jensen, M., Hеkansson, L., Murray, A., 2006. Eurasian ice-sheet interaction in northwestern Russia throughout the Late Quaternary. Boreas 35, 444475.CrossRefGoogle Scholar
Kleman, J., Hättestrand, C., Borgström, I., Stroeven, A.P., 1997. Fennoscandian palaeoglaciology reconstructed using a glacial geological inversion model. Journal of Glaciology 43, 283299.CrossRefGoogle Scholar
Kolka, V.V., Korsakova, O.P., 2017. The position of the coastal line of the White Sea and neotectonic movements in the north-east of Fennoscandia in the late glacial and Holocene. In: Lisitsin, A.P. (Ed.), The White Sea System. Vol. IV, The Processes of Sedimentation, Geology and History. [In Russian.] Scientific World Press, Moscow, pp. 222249.Google Scholar
Korsakova, O., 2019. Formal stratigraphy of the Neopleistocene (Middle and Upper/Late Pleistocene) in the Kola region, NW Russia. Quaternary International 534, 4259.CrossRefGoogle Scholar
Korsakova, O., 2021. Upper Pleistocene and Holocene stratigraphy in the Kola Peninsula and Northern Karelia (N–W Russia): marine and glacial units. Quaternary International 605–606, 108125.CrossRefGoogle Scholar
Korsakova, O., Kolka, V., Semenova, L., 2016. Late Pleistocene stratigraphy according to the sediment sequence from eastern Kola Peninsula, Ponoi River Valley (north-western Russia). Quaternary International 420, 280293.CrossRefGoogle Scholar
Korsakova, O., Molodkov, A., Yelovicheva, Ya., Kolka, V., 2019. Middle Pleistocene marine deposits on the Kola Peninsula (NW Russia). Quaternary International 509, 316.CrossRefGoogle Scholar
Korsakova, O., Vashkov, A., Nosova, O., 2021. European Russia: glacial landforms from the Last Glacial Maximum. In: Palacio, D., Hughes, Ph.D., Garcia-Ruiz, J.M., Andres, N. (Eds.), European Glacial Landscapes. Maximum Extent of Glaciation. Elsevier, Amsterdam, pp. 389394.Google Scholar
Korsakova, O.P., Kolka, V.V., Zozulya, D.R., 2007. On a possible ingression of the late Pleistocene Kara Ice Sheet to the Kola Peninsula. In: Lavrushin, Yu.A., Khoreva, I.M., Chistyakova, I.A. (Eds.), Fundamental Issues of the Quaternary, Results of Study and the Main Trends of Further Research: Proceeding of the V All-Russian Conference on Quaternary Research. [In Russian.] GEOS Press, Moscow, pp. 193195.Google Scholar
Korsakova, O.P., Molodkov, A.N., Kolka, V.V., 2004. Geological-stratigraphic position of Upper Pleistocene marine sediments in the southern Kola Peninsula: evidence from geochronological and geological data. Doklady of Earth Sciences 398, 908912; translation, Doklady Akademii Nauk 398, 218–222.Google Scholar
Koshechkin, B.I., 1979. Holocene Tectonics of the Eastern Part of the Baltic Shield. [In Russian.] Nauka Press, Leningrad.Google Scholar
Labonne, M., Hillaire-Marcel, C., 2000. Geochemical gradients within modern and fossil shells of Concholepas concholepas from northern Chile: an insight into U-Th systematics and diagenetic/authigenic isotopic imprints in mollusk shells. Geochimica et Cosmochimica Acta 64, 15231534.CrossRefGoogle Scholar
Lambeck, K., Purcell, A., Funder, S., Kjær, K.H., Larsen, E., Möller, P., 2006. Constraints on the Late Saalian to early Middle Weichselian ice sheet of Eurasia from field data and rebound modelling. Boreas 35, 539575.CrossRefGoogle Scholar
Lambeck, K., Purcell, A., Zhao, J., Svenson, N.-O., 2010. The Scandinavian Ice Sheet: from MIS 4 to the end of the Last Glacial Maximum. Boreas 39, 410435.CrossRefGoogle Scholar
Larsen, E., Kjær, K.H., Demidov, I.N., Funder, S., Grosfjeld, K., Houmark-Nielsen, M., Linge, H., Lyså, A., 2006. Late Pleistocene glacial and lake history of northwestern Russia. Boreas 35, 394424.CrossRefGoogle Scholar
Lavrova, M.A., 1960. Quaternary Geology of the Kola Peninsula. [In Russian.] Academia Science Press, Moscow-Leningrad.Google Scholar
Lunkka, J.P., Kaparulina, E., Putkinen, N., Saarnisto, M., 2018. Late Pleistocene palaeoenvironments and the last deglaciation on the Kola peninsula, Russia. Arktos 4, 118.CrossRefGoogle Scholar
Maksimov, F.E., Sharin, V.V., Kuznetsov, V.Yu., Okunev, A.S., Grigoriev, V.A., Petrov, A.Yu., 2016. Uranium-thorium dating of high sea terraces of the Spitsbergen Archipelago. Vestnik of Saint-Petersburg University, series 7, Geology, Geography 2, 5464.CrossRefGoogle Scholar
Malyasova, E.S., 1960. Application of the spore-pollen method for stratigraphic subdivision of the Quaternary deposits of the Kola Peninsula and the Karelian Isthmus. In: Pokrovskaya, I.M. (Ed.), Collected articles on paleogeography and stratigraphy of Quaternary deposits. Iss. 2. [In Russian.] LGY Press, Leningrad, pp. 2638.Google Scholar
Miller, G.H., Mangerud, J., 1985. Aminostratigraphy of European marine interglacial deposits. Quaternary Science Reviews 4, 215278.CrossRefGoogle Scholar
Mitrofanov, F.P. (Ed.), 2001. Geological Map of the Kola Region. 1:1500,000. GI KSC RAS, Apatity. https://www.geokniga.org/maps/545, accessed November 14, 2023.Google Scholar
Molodkov, A., 2012. Cross-check of the dating results obtained by ESR and IR-OSL methods: implication for the Pleistocene palaeoenvironmental reconstructions. Quaternary Geochronology 10, 188194.CrossRefGoogle Scholar
Molodkov, A., 2020. The Late Pleistocene palaeoenvironmental evolution in northern Eurasia through the prism of the mollusc shell-based ESR dating evidence. Quaternary International 556, 180197.CrossRefGoogle Scholar
Molodkov, A., Bitinas, A., 2006. Sedimentary record and luminescence chronology of the Lateglacial and Holocene Aeolian sediments in Lithuania. Boreas 35, 244254.CrossRefGoogle Scholar
Molodkov, A., Bolikhovskaya, N., 2002. Eustatic sea-level and climate changes over the last 600 ka as derived from mollusc-based ESR-chronostratigraphy and pollen evidence in northern Eurasia. Sedimentary Geology 150, 185201.CrossRefGoogle Scholar
Molodkov, A., Bolikhovskaya, N., 2009. Climate change dynamics in northern Eurasia over the last 200 ka: evidence from mollusc-based ESR-chronostratigraphy and vegetation successions of the loess–palaeosol records. Quaternary International 201, 6776.CrossRefGoogle Scholar
Molodkov, A., Bolikhovskaya, N., 2010. Climato-chronostratigraphic framework of Pleistocene terrestrial and marine deposits of northern Eurasia based on pollen, electron spin resonance, and infrared optically stimulated luminescence analyses. Estonian Journal of Earth Sciences 59, 4962.CrossRefGoogle Scholar
Molodkov, A., Jaek, I., Vasilchenko, V., 2007. Anomalous fading of IR-stimulated luminescence from feldspar minerals: some results of the study. Geochronometria 26, 1117.CrossRefGoogle Scholar
Molodkov, A., Raukas, A., 1998. ESR age of the Late Pleistocene transgressions in the eastern part of the White Sea coast. Geologija (Vilnius) 25, 6269.Google Scholar
Molodkov, A., Yevzerov, V., 2004. ESR/OSL ages of long-debated subtill fossil-bearing marine deposits from the southern Kola Peninsula: stratigraphic implications. Boreas 33, 123131.Google Scholar
Nikonov, A.A., 1966. Anthropogen stratigraphy and paleogeography of the Kola Peninsula and adjacent areas. In: Grichuk, V.P. (Ed.), Upper Pleistocene: Stratigraphy and Absolute Geochronology. [In Russian with English abstract.] Nauka Press, Moscow, pp. 92105.Google Scholar
Nikonov, A.A., Vostrukhina, T.M., 1964. On the Anthropogen stratigraphy in the North-Eastern Kola Peninsula. [In Russian.] Doklady Akademii Nauk USSR 158, 104107.Google Scholar
Pasanen, A., Lunkka, J.P., Putkinen, N., 2010. Reconstruction of the White Sea basin during the late Younger Dryas. Boreas 39, 273285.CrossRefGoogle Scholar
Prescott, J.R., Hutton, J.T., 1994 Cosmic ray contributions to dose rates for luminescence and ESR dating: large depths and long-term time variations. Radiation Measurement 23, 497500.CrossRefGoogle Scholar
Rippas, P.B., 1899. The Kola Expedition of 1898 (preliminary report). [In Russian.] Proceedings of the Imperial Russian Geographical Society 35, 292312.Google Scholar
Rowe, P.J., Turner, J.A., Andrews, J.E., Leeder, M.R., Calsteren, P. van, Thomas, L., 2015. Uranium-thorium dating potential of the marine bivalve Lithophaga lithophaga. Quaternary Geochronology 30, 8089.CrossRefGoogle Scholar
Strelkov, S.A., Yevzerov, V.Ya., Koshechkin, B.I., Rubinraut, G.S., Afanasiev, A.P., Lebedeva, R.M., Kagan, L.Ya., 1976. The History of the Formation of Relief and Loose Sediments in the Northeastern Part of the Baltic Shield. [In Russian.] Nauka Press, Leningrad.Google Scholar
Stroeven, A.P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., Goodfellow, B.W., et al., 2016. Deglaciation of Fennoscandia. Quaternary Science Reviews 147, 91121.CrossRefGoogle Scholar
Svendsen, J.I., Alexanderson, H., Astakhov, V.I., Demidov, I.N., Dowdeswell, J.A., Funder, S., Gataullin, V., et al., 2004. Late Quaternary ice sheet history of Northern Eurasia. Quaternary Science Reviews 23, 12291271.CrossRefGoogle Scholar
Vasilchenko, V., Molodkov, A., Jaek, I., 2005. Tunnel processes and anomalous fading in natural feldspars extracted from Quaternary deposits. Journal of Applied Spectroscopy 72, 218223.CrossRefGoogle Scholar
Wallinga, J., Murray, A. S., Duller, G.A.T., Tornqvist, Т.E., 2001. Testing optically stimulated luminescence dating of sand-sized quartz and feldspar from fluvial deposits. Earth and Planetary Science Letters 193, 617630.CrossRefGoogle Scholar
Yevzerov, V.Ya. (Ed.), 1993. Eastern Fennoscandian Younger Dryas End Moraines and Deglaciation. Excursion Guide, Field Conference on Termination of the Pleistocene—IGCP Project 253, July, 15–21, Kola Peninsula. Geological Institute of the Kola Science Centre of the Russian Academy of Sciences, Apatity.Google Scholar
Yevzerov, V.Ya., 2001. Valdai (Weichselian) glaciation in the Kola region. In: Matishov, G.G., Denisov, V.V., Dzhenyuk, S.L., Tarasov, G.A. (Eds.), Problems and Methods of Ecological Monitoring of the Seas and Coastal Zones of the Western Arctic Regions. [In Russian.] Kola Science Centre, Apatity, pp. 2033.Google Scholar
Yevzerov, V.Ya., 2016. Geology of the Quaternary Deposits of the Kola Region. [In Russian.] Murmansk State Technical University Press, Murmansk.Google Scholar
Yevzerov, V.Ya., Yelovicheva, Ya.K., Lebedeva, R.M., Rayamyae, R.A., 1981. Stratigraphy of Pleistocene deposits in the southern part of the Kola Peninsula. In: Evzerov, V.Ya. (Ed.), Geology of the Pleistocene of the North-West of the USSR. [In Russian.] Kola Branch of the USSR Academy of Sciences, Apatity, pp. 97107.Google Scholar
Zaretskaya, N., Korsakova, O., Molodkov, A., Ruchkin, M., Baranov, D., Rybalko, A., Lugovoy, N., Merkuliev, A., 2022. Early Middle Weichselian in the White Sea and adjacent areas: chronology, stratigraphy and palaeoenvironments. Quaternary International 632, 6578.CrossRefGoogle Scholar
Zaretskaya, N.E., Korsakova, O.P., Panin, A.V., 2019. Marine Isotopic Stage 3 in Northeastern Europe: geochronology and events. Russian Geology and Geophysics 60, 911925.CrossRefGoogle Scholar
Zarkhidze, D.V., Gusev, E.A., Anikina, N.Yu., Bartova, A.V., Gladenkov, A.Yu., Derevianko, L.G., Krylov, A.V., Tverskaya, L.A., 2010. New data on stratigraphy of the Pliocene-Quaternary deposits in the More-Yu River basin (Bolshezemelskaya tundra). [In Russian.] Geological and Geophysical Characteristics of the Lithosphere of the Arctic Region 7, 96110.Google Scholar
Zatsepin, V.I., Filatova, Z.A., 1961. The bivalve mollusc Cyprina islandica (L.), its geographic distribution and role in the communities of benthic fauna. [In Russian.] Transactions of Institute of Oceanology of USSR Academy of Sciences 46, 201216.Google Scholar