Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-13T21:22:26.828Z Has data issue: false hasContentIssue false

Acetazolamide loaded-silver nanoparticles: A potential treatment for murine trichinellosis

Published online by Cambridge University Press:  16 November 2023

E.F. Abdel Hamed*
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
A.A. Taha
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
S.M. Abdel Ghany
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
A.A. Saleh
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
E.M. Fawzy
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Sharkia, Egypt
*
Corresponding author: E.F. Abdel Hamed; Email: [email protected]

Abstract

Trichinellosis is a global food-borne disease caused by viviparous parasitic nematodes of the genus Trichinella. Due to the lack of effective, safe therapy and the documented adverse effects of traditional therapy, this study aimed to evaluate the therapeutic effect of acetazolamide-loaded silver nanoparticles (AgNPs) on murine trichinellosis. Fifty male Swiss albino mice were divided into five groups of ten mice each: Group I, normal control group; Group II, infected with T. spiralis and not treated; Group III, infected and given AgNPs; Group IV, infected and treated with acetazolamide; and Group V, infected and treated with acetazolamide-loaded AgNPs. Mice were infected orally with 250 larvae. The efficacy was assessed by counting T. spiralis adults and larvae, measuring serum total antioxidant capacity, and observing the histopathological and ultrastructural alterations. Acetazolamide-loaded AgNPs treatment exhibited the highest percentage of reduction (84.72% and 80.74%) for the intestinal adults and the muscular larvae of T. spiralis-infected animals, respectively. Furthermore, during the intestinal and muscular phases, the serum of the same group had the best free-radical scavenging capacity (antioxidant capacity), which reduced tissue damage induced by oxidative stress. Histopathologically, the normal intestinal and muscular architecture was restored in the group treated with acetazolamide-loaded AgNPs, in addition to the reduced inflammatory infiltrate that alleviated inflammation compared to infected animals. Our results confirmed the marked destruction of the ultrastructural features of T. spiralis adults and larvae. Acetazolamide-loaded AgNPs are a promising therapy against T. spiralis infection.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abou Rayia, DM, Saad, AE, Ashour, DS, and Oreiby, RM (2017) Implication of artemisinin nematicidal activity on experimental trichinellosis: in vitro and in vivo studies. International Journal for Parasitology 66, 5663. DOI: 10.1016/j.parint.2016.11.012CrossRefGoogle ScholarPubMed
Akaike, T, Suga, M, and Maeda, H (1998) Free radicals in viral pathogenesis: molecular mechanisms involving superoxide and NO. Proceedings of the Society for Experimental Biology and Medicine 217, 6473. DOI: 10.3181/00379727-217-44206CrossRefGoogle ScholarPubMed
Allahverdiyev, AM, Abamor, ES, Bagirova, M, Ustundag, CB, Kaya, C, Kaya, F, and Rafailovich, M (2011) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. International Journal of Nanomedicine 6, 2705. DOI: 10.2147/IJN.S23883CrossRefGoogle ScholarPubMed
Anwar, A, Rajendran, K, Siddiqui, R, Raza Shah, M, and Mand Khan, NA (2019) Clinically approved drugs against CNS diseases as potential therapeutic agents to target brain-eating amoebae. ACS Chemical Neuroscience 16, 658666. DOI: 10.1021/acschemneuro.8b00484CrossRefGoogle Scholar
Bai, X, Hu, X, Liu, X, Tang, B, and Liu, M (2017) Current research of trichinellosis in China. Frontiers in Microbiology 8, 1472. DOI: 10.3389/fmicb.2017.01472CrossRefGoogle ScholarPubMed
Basyoni, MM and El-Sabaa, AA (2013) Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean Journal of Parasitology 51, 297304. DOI: 10.3347/kjp.2013.51.3.297CrossRefGoogle ScholarPubMed
Carleton, MA, Drury, GA, Willington, EA, and Cammeron, H (1967) Carleton’s histological technique. 4th edn. New York, Toronto, London: Oxford Univ. Press. PMCID: PMC2385117.Google Scholar
Chen, X, Yang, Y, Yang, J, Zhang, Z, and Zhu, X (2012) RNAi-mediated silencing of paramyosin expression in Trichinella spiralis results in impaired viability of the parasite. PLoS One 7, e49913. https://doi.org/10.1371/journal.pone.0049913CrossRefGoogle ScholarPubMed
Choi, O and Hu, Z (2008) Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology 42, 45834588. https://doi.org/10.1021/es703238hCrossRefGoogle ScholarPubMed
Collins, AR (2005) Assays for oxidative stress and antioxidant status: applications to research into the biological effectiveness of polyphenols. The American Journal of Clinical Nutrition 81(Suppl 1), 261267. DOI: 10.1093/ajcn/81.1.261SCrossRefGoogle ScholarPubMed
Denham, DA (1965) Studies with methyridine and Trichinella spiralis. I. Effect upon the intestinal phase in mice. Experimental Parasitology 17, 1014. DOI: 10.1016/0014-4894(65)90003-2CrossRefGoogle ScholarPubMed
Derda, M, Boczoń, K, Wandurska-Nowak, E, and Wojt, W (2003) Changes in the activity of glutathione-S-transferase in muscles and sera from mice infected with Trichinella spiralis after treatment with albendazole and levamisole. Parasitology Research 89, 509512. DOI: 10.1007/s00436-002-0825-yCrossRefGoogle ScholarPubMed
Dupouy-Camet, J (2014) Travels and tourism are drivers for trichinellosis. Parasitologists United Journal 7, 8692. http://www.new.puj.eg.net/text.asp?2014/7/2/86/149555CrossRefGoogle Scholar
Eid, RK, Ashour, DS, Essa, EA, El Maghraby, GM, and Arafa, MF (2020) Chitosan coated nanostructured lipid carriers for enhanced in vivo efficacy of albendazole against Trichinella spiralis. Carbohydrate Polymers 232, 115826. DOI: 10.1016/j.carbpol.2019.115826CrossRefGoogle ScholarPubMed
Eissa, MM, El-Azzouni, MZ, Mady, RF, Fathy, FM, and Baddour, NM (2012) Initial characterization of an autoclaved Toxoplasma vaccine in mice. Experimental Parasitology 131, 310316. DOI: 10.1016/j.exppara.2012.05.001CrossRefGoogle ScholarPubMed
Elmelegy, MA, Ghoneim, NS, El Dien, N, and Rizk, MS (2019) Silver nano particles improve the therapeutic effect of mebendazole treatment during the muscular phase of experimental trichinellosis. The Journal of American Science 15, 34-. DOI: 10.7537/marsjas150519.06Google Scholar
Elmi, T, Gholami, S, Fakhar, M, and Azizi, F (2013) A review on the use of nanoparticles in the treatment. Journal of Mazandaran University of Medical Science 23, 126133. URL: http://jmums.mazums.ac.ir/article-1-2396-en.htmlGoogle Scholar
Fisker, R, Carstensen, JM, Hansen, MF, Bødker, F, and Mørup, S (2000) Estimation of nanoparticle size distributions by image analysis. Journal of Nanoparticle Research 2, 267277. DOI:10.1023/A:1010023316775CrossRefGoogle Scholar
Gherbawy, YA, Shalaby, IM, Abd El-Sadek, MS, Elhariry, HM, and Banaja, AA (2013) The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole. International Journal of Molecular Sciences 14, 2188721898. DOI: 10.3390/ijms141121887CrossRefGoogle ScholarPubMed
Ghiselli, A, Serafini, M, Natella, F, and Scaccini, C (2000) Total antioxidant capacity as a tool to assess redox status: critical view and experimental data. Free Radical Biology and Medicine 29, 11061114. DOI: 10.1016/s0891-5849(00)00394-4CrossRefGoogle ScholarPubMed
Gottstein, B, Pozio, E, and Nockler, K (2009) Epidemiology, diagnosis, treatment, and control of trichinellosis. Clinical Microbiology Reviews 22(1),127–45. DOI: 10.1128/CMR.00026-08CrossRefGoogle ScholarPubMed
Issa, RM, El-Arousy, MH, and Abd EI-Aal, AA (1998) Albendazole: a study of its effect on experimental Trichinella spiralis infection in rats. Egyptian Journal of Medical Sciences 19, 281290.Google Scholar
Luis Muñoz-Carrillo, J, Maldonado-Tapia, C, López-Luna, A, Jesús Muñoz Escobedo, J, Armando Flores-De La Torre, J, Moreno-García, A (2019) Current aspects in Trichinellosis. p. 175216 in Parasites and Parasitic Diseases. London, UK, IntechOpen.Google Scholar
Mckenna, R and Supuran, CT (2014) Carbonic anhydrase inhibitors drug design. Sub-Cellular Biochemistry 75, 291323. DOI: 10.1007/978-94-007-7359-2_15CrossRefGoogle Scholar
Mulfinger, L, Solomon, SD, Bahadory, M, Jeyarajasingam, AV, Rutkowsky, SA, and Boritz, C (2007) Synthesis and study of silver nanoparticles. Journal of Chemical Education 84, 322. DOI: https://doi.org/10.1021/ed084p322CrossRefGoogle Scholar
Mulvaney, P (1996) Surface plasmon spectroscopy of nanosized metal particles. Langmui 12, 788800. DOI: https://doi.org/10.1021/la9502711CrossRefGoogle Scholar
Panáček, A, Kolář, M, Večeřová, R, Prucek, R, Soukupová, J, Kryštof, V, Hamal, P, Zbořil, R, and Kvítek, L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30, 63336340. DOI: 10.1016/j.biomaterials07.065CrossRefGoogle ScholarPubMed
Paredes, AJ, Litterio, N, Dib, A, Allemandi, DA, Lanusse, C, Bruni, SS, and Palma, SD (2018) A nanocrystal-based formulation improves the pharmacokinetic performance and therapeutic response of albendazole in dogs. Journal of Pharmacy and Pharmacology 70, 5158. DOI: 10.1111/jphp.12834CrossRefGoogle ScholarPubMed
Rogers, JV, Parkinson, CV, Choi, YW, Speshock, JL, and Hussain, SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Research Letters 3, 129133. DOI: 10.1007/s11671-008-9128-2CrossRefGoogle Scholar
Pozio, E (2015) Trichinella spp. imported with live animals and meat. Veterinary Parasitology 213, 4655. DOI: 10.1016/j.vetpar.2015.02.017CrossRefGoogle ScholarPubMed
Saad, AE, Ashour, DS, Abou Rayia, DM, and Bedeer, AE (2016) Carbonic anhydrase enzyme as a potential therapeutic target for experimental trichinellosis. Parasitology Research 115, 23312339. DOI: 10.1007/s00436-016-4982-9CrossRefGoogle ScholarPubMed
Saad, AHA, Soliman, MI, Azzam, AM, and Mostafa, AB (2015) Antiparasitic activity of silver and copper oxide nanoparticles against Entamoeba histolytica and Cryptosporidium parvum cysts. Journal of the Egyptian Society of Parasitology 45, 593602. DOI: 10.12816/0017920Google ScholarPubMed
Saini, P, Saha, SK, Roy, P, Chowdhury, P, and Babu, SPS (2016) Evidence of reactive oxygen species (ROS) mediated apoptosis in Setaria cervi induced by green silver nanoparticles from Acacia auriculiformis at a very low dose. Experimental Parasitology 160, 3948. DOI: 10.1016/j.exppara.2015.11.004CrossRefGoogle Scholar
Shanmugasundaram, T, Radhakrishnan, M, Gopikrishnan, V, Pazhanimurugan, R, and Balagurunathan, R (2013) A study of the bactericidal, anti-biofouling, cytotoxic and antioxidant properties of actinobacterially synthesised silver nanoparticles. Colloids and Surfaces B: Biointerfaces 111, 680687. DOI: 10.1016/j.colsurfb.2013.06.045CrossRefGoogle ScholarPubMed
Sun, Y, Chen, D, Pan, Y, Qu, W, Hao, H, Wang, X, Liu, Z, and Xie, S (2019) Nanoparticles for antiparasitic drug delivery. Drug Delivery 26, 12061221. DOI: 10.1080/10717544.2019.1692968CrossRefGoogle ScholarPubMed
Syrjänen, L, Tolvanen, M, Hilvo, M, Olatubosun, A, Innocenti, A, Scozzafava, A, Leppiniemi, J, Niederhauser, B, Hytönen, VP, and Gorr, TA (2010) Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates. BMC Biochemistry 11, 113. DOI: 10.1186/1471-2091-11-28CrossRefGoogle ScholarPubMed
Wang, M, Chen, J, Liu, C, Qiu, J, Wang, X, Chen, P, and Xu, C (2017) A graphene quantum dots–hypochlorite hybrid system for the quantitative fluorescent determination of total antioxidant capacity. Small 13, 1700709. DOI: 10.1002/smll.201700709CrossRefGoogle ScholarPubMed
Yadav, AK and Temjenmongla, (2012) Efficacy of Lasia spinosa leaf extract in treating mice infected with Trichinella spiralis. Parasitology Research 110, 493498. DOI: 10.1007/s00436-011-2551-9CrossRefGoogle ScholarPubMed
Younis, MS, Abououf, EER, Ali, AES, Abd elhady, SM, and Wassef, RM (2020) in vitro effect of silver nanoparticles on Blastocystis hominis. International Journal of Nanomedicine 81678173. DOI: 10.2147/IJN.S272532CrossRefGoogle Scholar
Zayed, KM, Guo, YH, Lv, S, Zhang, Y, and Zhou, XN (2022) Molluscicidal and antioxidant activities of silver nanoparticles on the multi-species of snail intermediate hosts of schistosomiasis. PLOS Neglected Tropical Diseases 16, e0010667. DOI: 10.1371/journal.pntd.0010667CrossRefGoogle ScholarPubMed
Zhao, X, Zhou, L, Riaz Rajoka, MS, Yan, L, Jiang, C, Shao, D, Zhu, J, Shi, J, Huang, Q, and Yang, H (2018) Fungal silver nanoparticles: synthesis, application and challenges. Critical Reviews in Biotechnology 38, 817835. DOI: 10.1080/07388551.2017.1414141CrossRefGoogle ScholarPubMed
Ziel, R, Haus, A, and Tulke, A (2008) Quantification of the pore size distribution (porosity profiles) in microfiltration membranes by SEM, TEM and computer image analysis. Journal of Membrane Science 323, 241246. DOI: https://doi.org/10.1016/j.memsci.2008.05.057CrossRefGoogle Scholar
Emameh, RZ, Barker, H, Hytönen, VP, Tolvanen, ME, and Parkkila, S (2014) Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasites & Vectors 7, 111. DOI: 10.1186/1756-3305-7-403Google Scholar
Emameh, RZ, Kuuslahti, M, Vullo, D, Barker, HR, Supuran, CT, and Parkkila, S (2015) Ascaris lumbricoides β carbonic anhydrase: a potential target enzyme for treatment of ascariasis. Parasites & Vectors 8, 110. DOI: 10.1186/s13071-015-1098-5Google Scholar