Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-13T22:18:11.099Z Has data issue: false hasContentIssue false

Fast magneto-acoustic wave turbulence and the Iroshnikov–Kraichnan spectrum

Published online by Cambridge University Press:  31 March 2023

Sébastien Galtier*
Affiliation:
Laboratoire de Physique des Plasmas, École polytechnique, F-91128 Palaiseau CEDEX, France Université Paris-Saclay, IPP, CNRS, Observatoire Paris, Meudon, France Institut universitaire de France
*
Email address for correspondence: [email protected]

Abstract

An analytical theory of wave turbulence is developed for pure compressible magnetohydrodynamics in the small $\beta$ limit. In contrast to previous works where the multiple scale method was not mentioned and slow magneto-acoustic waves were included, we present here a theory for fast magneto-acoustic waves for which only an asymptotic closure is possible in three dimensions. We introduce the compressible Elsässer fields (canonical variables) and show their linear relationship with the mass density and the compressible velocity. The kinetic equations of wave turbulence for three-wave interactions are obtained and the detailed conservation is shown for the two invariants, energy and momentum (cross-helicity). An exact stationary solution (Kolmogorov-Zakharov spectrum) exists only for the energy. We find a $k^{-3/2}$ energy spectrum compatible with the Iroshnikov–Kraichnan (IK) phenomenological prediction; this leads to a mass density spectrum with the same scaling. Despite the presence of a relatively strong uniform magnetic field, this turbulence is characterized by an energy spectrum with a power index that is independent of the angular direction; its amplitude, however, shows an angular dependence. We prove the existence of the IK solution using the locality condition, show that the energy flux is positive and hence the cascade direct and find the Kolmogorov constant. This theory offers a plausible explanation for recent observations in the solar wind at small $\beta$ where isotropic spectra with a $-3/2$ power-law index are found and associated with fast magneto-acoustic waves. This theory may also be used to explain the IK spectrum often observed near the Sun. Besides, it provides a rigorous theoretical basis for the well-known phenomenological IK spectrum, which coincides with the Zakharov–Sagdeev spectrum for acoustic wave turbulence.

Type
Research Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrés, N., Clark di Leoni, P., Mininni, P.D., Dmitruk, P., Sahraoui, F. & Matthaeus, W.H. 2017 Interplay between Alfvén and magnetosonic waves in compressible magnetohydrodynamics turbulence. Phys. Plasmas 24 (10), 102314.CrossRefGoogle Scholar
Andrés, N., Galtier, S. & Sahraoui, F. 2018 Exact law for homogeneous compressible Hall magnetohydrodynamics turbulence. Phys. Rev. E 97 (1), 013204.CrossRefGoogle ScholarPubMed
Bale, S.D., Kellogg, P.J., Mozer, F.S., Horbury, T.S. & Reme, H. 2005 Measurement of the electric fluctuation spectrum of magnetohydrodynamic turbulence. Phys. Rev. Lett. 94 (21), 215002.CrossRefGoogle ScholarPubMed
Bandyopadhyay, R., Sorriso-Valvo, L., Chasapis, A., Hellinger, P., Matthaeus, W., Verdini, A., Landi, S., Franci, L., Matteini, L., Giles, B., et al. 2020 In situ observation of Hall magnetohydrodynamic cascade in space plasma. Phys. Rev. Lett. 124 (22), 225101.CrossRefGoogle ScholarPubMed
Banerjee, S. & Galtier, S. 2013 Exact relation with two-point correlation functions and phenomenological approach for compressible MHD turbulence. Phys. Rev. E 87 (1), 013019.CrossRefGoogle Scholar
Banerjee, S., Hadid, L., Sahraoui, F. & Galtier, S. 2016 Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind. Astrophys. J. Lett. 829 (2), L27.CrossRefGoogle Scholar
Benney, D. 1967 Asymptotic behavior of nonlinear dispersive waves. J. Maths Phys. 46 (2), 115132.CrossRefGoogle Scholar
Benney, D. & Newell, A. 1967 Sequential time closures for interacting random waves. J. Maths Phys. 46 (4), 363392.CrossRefGoogle Scholar
Benney, D. & Saffman, P. 1966 Nonlinear interactions of random waves in a dispersive medium. Proc. R. Soc. Lond. A 289 (1418), 301320.Google Scholar
Bigot, B., Galtier, S. & Politano, H. 2008 An anisotropic turbulent model for solar coronal heating. Astron. Astrophys. 490, 325337.CrossRefGoogle Scholar
Brodiano, M., Andrés, N. & Dmitruk, P. 2021 Spatiotemporal analysis of waves in compressively driven magnetohydrodynamics turbulence. Astrophys. J. 922 (2), 240.CrossRefGoogle Scholar
Bruno, R. & Carbone, V. 2013 The solar wind as a turbulence laboratory. Living Rev. Solar Phys. 10 (1), 2.CrossRefGoogle Scholar
Chandran, B. 2005 Weak compressible magnetohydrodynamic turbulence in the solar corona. Phys. Rev. Lett. 95, 265004.CrossRefGoogle ScholarPubMed
Chandran, B. 2008 Weakly turbulent magnetohydrodynamic waves in compressible low-${\beta }$ plasmas. Phys. Rev. Lett. 101 (23), 235004.CrossRefGoogle ScholarPubMed
Chen, C.H.K., Bale, S.D., Bonnell, J.W., Borovikov, D., Bowen, T.A., Burgess, D., Case, A.W., Chandran, B.D.G., de Wit, T.D., Goetz, K., et al. 2020 The evolution and role of solar wind turbulence in the inner heliosphere. Astrophys. J. Suppl. 246 (2), 53.CrossRefGoogle Scholar
Chen, C.H.K., Sorriso-Valvo, L., Šafránková, J. & Němeček, Z. 2014 Intermittency of solar wind density fluctuations from ion to electron scales. Astrophys. J. Lett. 789 (1), L8.CrossRefGoogle Scholar
Cho, J. & Lazarian, A. 2002 Compressible sub-Alfvénic MHD turbulence in low-${\beta }$ plasmas. Phys. Rev. Lett. 88 (24), 245001.CrossRefGoogle ScholarPubMed
Coles, W. & Harmon, J. 1989 Propagation observations of the solar wind near the Sun. Astrophys. J. 337, 1023.CrossRefGoogle Scholar
Ferrand, R., Galtier, S. & Sahraoui, F. 2021 A compact exact law for compressible isothermal Hall magnetohydrodynamic turbulence. J. Plasma Phys. 87 (2), 905870220.CrossRefGoogle Scholar
Galtier, S. 2006 Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72, 721769.CrossRefGoogle Scholar
Galtier, S. 2008 von Kármán–Howarth equations for Hall magnetohydrodynamic flows. Phys. Rev. E 77 (1), 015302.CrossRefGoogle ScholarPubMed
Galtier, S. 2014 Weak turbulence theory for rotating magnetohydrodynamics and planetary flows. J. Fluid Mech. 757, 114154.CrossRefGoogle Scholar
Galtier, S. 2016 Introduction to Modern Magnetohydrodynamics. Cambridge University Press.CrossRefGoogle Scholar
Galtier, S. 2023 Physics of Wave Turbulence. Cambridge University Press.Google Scholar
Galtier, S. & Banerjee, S. 2011 Exact relation for correlation functions in compressible isothermal turbulence. Phys. Rev. Lett. 107 (13), 134501.CrossRefGoogle ScholarPubMed
Galtier, S. & Bhattacharjee, A. 2003 Anisotropic weak whistler wave turbulence in electron magnetohydrodynamics. Phys. Plasmas 10, 30653076.CrossRefGoogle Scholar
Galtier, S. & Chandran, B.D.G. 2006 Extended spectral scaling laws for shear-Alfvén wave turbulence. Phys. Plasmas 13 (11), 114505.CrossRefGoogle Scholar
Galtier, S. & Meyrand, R. 2015 Entanglement of helicity and energy in kinetic Alfvén wave/whistler turbulence. J. Plasma Phys. 81 (1), 325810106.CrossRefGoogle Scholar
Galtier, S. & Nazarenko, S. 2017 Turbulence of weak gravitational waves in the early Universe. Phys. Rev. Lett. 119, 221101.CrossRefGoogle ScholarPubMed
Galtier, S., Nazarenko, S., Newell, A. & Pouquet, A. 2000 A weak turbulence theory for incompressible magnetohydrodynamics. J. Plasma Phys. 63, 447488.CrossRefGoogle Scholar
Galtier, S., Nazarenko, S.V. & Newell, A.C. 2001 On wave turbulence in MHD. Nonlinear Process. Geophys. 8 (3), 141150.CrossRefGoogle Scholar
Galtier, S. & Pouquet, A. 1998 Solar flare statistics with a one-dimensional MHD model. Solar Phys. 179 (1), 141165.CrossRefGoogle Scholar
Gan, Z., Li, H., Fu, X. & Du, S. 2022 On the existence of fast modes in compressible magnetohydrodynamic turbulence. Astrophys. J. 926 (2), 222.CrossRefGoogle Scholar
Goldreich, P. & Sridhar, S. 1995 Toward a theory of interstellar turbulence. 2: strong alfvenic turbulence. Astrophys. J. 438, 763775.CrossRefGoogle Scholar
Goldstein, M. & Roberts, D. 1999 Magnetohydrodynamic turbulence in the solar wind. Phys. Plasmas 6 (11), 41544160.CrossRefGoogle Scholar
Hadid, L., Sahraoui, F. & Galtier, S. 2017 Energy cascade rate in compressible fast and slow solar wind turbulence. Astrophys. J. 838 (1), 9.CrossRefGoogle Scholar
Hassaini, R., Mordant, N., Miquel, B., Krstulovic, G. & Düring, G. 2019 Elastic weak turbulence: from the vibrating plate to the drum. Phys. Rev. E 99 (3), 033002.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part 1. General theory. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Higdon, J. 1984 Density fluctuations in the interstellar medium: evidence for anisotropic magnetogasdynamic turbulence. I – model and astrophysical sites. Astrophys. J. 285, 109123.CrossRefGoogle Scholar
Hnat, B., Chapman, S. & Rowlands, G. 2005 Compressibility in solar wind plasma turbulence. Phys. Rev. Lett. 94 (20), 204502.CrossRefGoogle ScholarPubMed
Horbury, T., Forman, M. & Oughton, S. 2008 Anisotropic scaling of magnetohydrodynamic turbulence. Phys. Rev. Lett. 101 (17), 175005.CrossRefGoogle ScholarPubMed
Iroshnikov, P. 1964 Turbulence of a conducting fluid in a strong magnetic field. Sov. Astron. 7, 566571.Google Scholar
Kiyani, K., Osman, K. & Chapman, S. 2015 Dissipation and heating in solar wind turbulence: from the macro to the micro and back again. Phil. Trans. R. Soc. Lond. A 373 (2041), 110.Google Scholar
Kochurin, E.A. & Kuznetsov, E.A. 2022 Direct numerical simulation of acoustic turbulence: Zakharov–Sagdeev spectrum. JETP Lett. 116, 112.CrossRefGoogle Scholar
Kolmogorov, A. 1941 Dissipation of energy in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1618.Google Scholar
Kraichnan, R. 1965 Inertial-range spectrum of hydromagnetic turbulence. Phys. Fluids 8, 13851387.CrossRefGoogle Scholar
Kuznetsov, E. 2001 Weak magnetohydrodynamic turbulence of a magnetized plasma. Sov. J. Expl Theor. Phys. 93 (5), 10521064.CrossRefGoogle Scholar
Le Reun, T., Favier, B. & Le Bars, M. 2020 Evidence of the Zakharov–Kolmogorov spectrum in numerical simulations of inertial wave turbulence. Europhys. Lett. 132 (6), 64002.CrossRefGoogle Scholar
L'vov, V., L'vov, Y., Newell, A. & Zakharov, V. 1997 Statistical description of acoustic turbulence. Phys. Rev. E 56 (1), 390405.CrossRefGoogle Scholar
Makwana, K.D. & Yan, H. 2020 Properties of magnetohydrodynamic modes in compressively driven plasma turbulence. Phys. Rev. X 10 (3), 031021.Google Scholar
Marino, R. & Sorriso-Valvo, L. 2023 Scaling laws for the energy transfer in space plasma turbulence. Phys. Rep. 1006, 1144.CrossRefGoogle Scholar
Matthaeus, W.H. 2021 Turbulence in space plasmas: who needs it? Phys. Plasmas 28 (3), 032306.CrossRefGoogle Scholar
Meyrand, R., Galtier, S. & Kiyani, K. 2016 Direct evidence of the transition from weak to strong magnetohydrodynamic turbulence. Phys. Rev. Lett. 116 (10), 105002.CrossRefGoogle ScholarPubMed
Meyrand, R., Kiyani, K., Gürcan, O. & Galtier, S. 2018 Coexistence of weak and strong wave turbulence in incompressible Hall magnetohydrodynamics. Phys. Rev. X 8 (3), 031066.Google Scholar
Moncuquet, M., Meyer-Vernet, N., Issautier, K., Pulupa, M., Bonnell, J.W., Bale, S., Dudok de Wit, T., Goetz, K., Griton, L., Harvey, P., et al. 2020 First in situ measurements of electron density and temperature from quasi-thermal noise spectroscopy with Parker solar probe/Fields. Astrophys. J. Suppl. 246 (2), 44.CrossRefGoogle Scholar
Montgomery, D., Brown, M.R. & Matthaeus, W.H. 1987 Density fluctuation spectra in magnetohydrodynamic turbulence. J. Geophys. Res. 92 (A1), 282284.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Lecture Notes in Physics. Springer.CrossRefGoogle Scholar
Newell, A. & Aucoin, P. 1971 Semi-dispersive wave systems. J. Fluid Mech. 49, 593609.CrossRefGoogle Scholar
Newell, A., Nazarenko, S. & Biven, L. 2001 Wave turbulence and intermittency. Physica D 152, 520550.CrossRefGoogle Scholar
Osman, K., Wan, M., Matthaeus, W., Weygand, J. & Dasso, S. 2011 Anisotropic third-moment estimates of the energy cascade in solar wind turbulence using multispacecraft data. Phys. Rev. Lett. 107 (16), 165001.CrossRefGoogle ScholarPubMed
Oughton, S. & Matthaeus, W. 2020 Critical balance and the physics of magnetohydrodynamic turbulence. Astrophys. J. 897 (1), 37.CrossRefGoogle Scholar
Passot, T. & Sulem, P.L. 2019 Imbalanced kinetic Alfvén wave turbulence: from weak turbulence theory to nonlinear diffusion models for the strong regime. J. Plasma Phys. 85 (3), 905850301.CrossRefGoogle Scholar
Podesta, J., Roberts, D. & Goldstein, M. 2007 Spectral exponents of kinetic and magnetic energy spectra in solar wind turbulence. Astrophys. J. 664, 543548.CrossRefGoogle Scholar
Politano, H. & Pouquet, A. 1998 von Kármán–Howarth equation for magnetohydrodynamics and its consequences on third-order longitudinal structure and correlation functions. Phys. Rev. E 57, 21.CrossRefGoogle Scholar
Rappazzo, A., Velli, M., Einaudi, G. & Dahlburg, R. 2007 Coronal heating, weak MHD turbulence, and scaling laws. Astrophys. J. Lett. 657, L47L51.CrossRefGoogle Scholar
Sahraoui, F., Hadid, L. & Huang, S. 2020 Magnetohydrodynamic and kinetic scale turbulence in the near-Earth space plasmas: a (short) biased review. Rev. Mod. Plasma Phys. 4 (1), 4.CrossRefGoogle Scholar
Saur, J., Politano, H., Pouquet, A. & Matthaeus, W. 2002 Evidence for weak MHD turbulence in the middle magnetosphere of Jupiter. Astrophys. Astron. 386, 699708.CrossRefGoogle Scholar
Shi, C., Velli, M., Panasenco, O., Tenerani, A., Réville, V., Bale, S.D., Kasper, J., Korreck, K., Bonnell, J.W., Dudok de Wit, T., et al. 2021 Alfvénic versus non-Alfvénic turbulence in the inner heliosphere as observed by Parker Solar Probe. Astron. Astrophys. 650, A21.CrossRefGoogle Scholar
Simon, P. & Sahraoui, F. 2022 Exact law for compressible pressure-anisotropic MHD turbulence: toward linking energy cascade and instabilities. Phys. Rev. E 105 (5), 055111.CrossRefGoogle Scholar
Sorriso-Valvo, L., Marino, R., Carbone, V., Noullez, A., Lepreti, F., Veltri, P., Bruno, R., Bavassano, B. & Pietropaolo, E. 2007 Observation of inertial energy cascade in interplanetary space plasma. Phys. Rev. Lett. 99 (11), 115001.CrossRefGoogle ScholarPubMed
Zakharov, V., L'Vov, V. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence I: Wave Turbulence. Springer Series in Nonlinear Dynamics. Springer.CrossRefGoogle Scholar
Zakharov, V. & Sagdeev, R. 1970 Spectrum of acoustic turbulence. Sov. Phys. Dokl. 15, 439.Google Scholar
Zank, G., Zhao, L.-L., Adhikari, L., Telloni, D., Kasper, J., Stevens, M., Rahmati, A. & Bale, S. 2022 Turbulence in the sub-Alfvénic solar wind. Astrophys. J. Lett. 926 (2), L16.CrossRefGoogle Scholar
Zhao, L.-L., Zank, G., Telloni, D., Stevens, M., Kasper, J. & Bale, S. 2022 a The turbulent properties of the sub-Alfvénic solar wind measured by the Parker Solar Probe. Astrophys. J. Lett. 928 (2), L15.CrossRefGoogle Scholar
Zhao, S., Yan, H., Liu, T., Liu, M. & Wang, H. 2022 b Multispacecraft analysis of the properties of MHD fluctuations in sub-Alfvénic solar wind turbulence at 1 AU. Astrophys. J. 937 (2), 102.CrossRefGoogle Scholar