Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T12:23:45.028Z Has data issue: false hasContentIssue false

A direct derivation of the Gent–McWilliams/Redi diffusion tensor from quasi-geostrophic dynamics

Published online by Cambridge University Press:  19 May 2023

Julie Meunier
Affiliation:
Service de Physique de l'Etat Condensé, Université Paris-Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France
Benjamin Miquel
Affiliation:
Univ Lyon, CNRS, Ecole Centrale de Lyon, INSA Lyon, Université Claude Bernard Lyon 1, LMFA, UMR5509, 69130, Ecully, France
Basile Gallet*
Affiliation:
Service de Physique de l'Etat Condensé, Université Paris-Saclay, CNRS, CEA, 91191 Gif-sur-Yvette, France
*
Email address for correspondence: [email protected]

Abstract

The transport induced by ocean mesoscale eddies remains unresolved in most state-of-the-art climate models and needs to be parametrized instead. The natural scale separation between the forcing and the emergent turbulent flow calls for a diffusive parametrization, where the eddy-induced fluxes are related to the large-scale gradients by a diffusion tensor. The standard parametrization scheme in climate modelling consists in adopting the Gent–McWilliams/Redi (GM/R) form for the diffusion tensor, initially put forward based on physical intuition and educated guesses before being put on firm analytical footing using a thickness-weighted average (TWA). In the present contribution, we provide a direct derivation of this diffusion tensor from the quasi-geostrophic (QG) dynamics of a horizontally homogeneous three-dimensional patch of ocean hosting a large-scale vertically sheared zonal flow on the $\beta$ plane. The derivation hinges on the identification of a useful cross-invariant defined as the product of the buoyancy and QG potential vorticity fluctuations. While less general than the TWA approach, the present QG framework leads to rigorous constraints on the diffusion tensor. First, there is no diapycnal diffusivity arising in the QG GM/R tensor for low viscosity and small-scale diffusivities. The diffusion tensor then involves only two vertically dependent coefficients, namely the GM transport coefficient $K_{GM}(z)$ and the Redi diffusivity $K_R(z)$. Second, as identified already by previous authors, the vertical structures of the two coefficients are related by the so-called Taylor–Bretherton relation. Finally, while the two coefficients differ generically in the interior of the water column, we show that they are equal to one another near the surface and near the bottom of the domain for low-enough dissipative coefficients. We illustrate these findings by simulating numerically the QG dynamics of a horizontally homogeneous patch of ocean hosting a vertically sheared zonal current resembling the Antarctic Circumpolar Current.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abernathey, R., Ferreira, D. & Klocker, A. 2013 Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Model. 72, 116.CrossRefGoogle Scholar
Andrews, D.G. & McIntyre, M.E. 1976 Planetary waves in horizontal and vertical shear: the generalized Eliassen–Palm relation and the mean zonal acceleration. J.Atmos. Sci. 33 (11), 20312048.2.0.CO;2>CrossRefGoogle Scholar
Arbic, B.K. & Flierl, G.R. 2004 a Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. J.Phys. Oceanogr. 34, 22572273.2.0.CO;2>CrossRefGoogle Scholar
Arbic, B.K. & Flierl, G.R. 2004 b Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane geostrophic turbulence. J.Phys. Oceanogr. 34, 7793.2.0.CO;2>CrossRefGoogle Scholar
Arbic, B.K. & Scott, R.B. 2007 On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. J.Phys. Oceanogr. 38, 84103.CrossRefGoogle Scholar
Bouillaut, V., Miquel, B., Julien, K., Aumaître, S. & Gallet, B. 2021 Experimental observation of the geostrophic turbulence regime of rapidly rotating convection. Proc. Natl Acad. Sci. 118 (44), e2105015118.CrossRefGoogle ScholarPubMed
Bretherton, F.P. 1966 Critical layer instability in baroclinic flows. Q. J. R. Meteorol. Soc. 92 (393), 325334.CrossRefGoogle Scholar
Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D. & Brown, B.P. 2020 Dedalus: a flexible framework for numerical simulations with spectral methods. Phys. Rev. Res. 2, 023068.CrossRefGoogle Scholar
Caulfield, C.P. 2021 Layering, instabilities, and mixing in turbulent stratified flows. Annu. Rev. Fluid Mech. 53, 113145.CrossRefGoogle Scholar
Chang, C.-Y. & Held, I.M. 2019 The control of surface friction on the scales of baroclinic eddies in a homogeneous quasigeostrophic two-layer model. J.Atmos. Sci. 76, 16271643.CrossRefGoogle Scholar
Charney, J.G. 1971 Geostrophic turbulence. J.Atmos. Sci. 28 (6), 10871095.2.0.CO;2>CrossRefGoogle Scholar
Dritschel, D.G. & McIntyre, M.E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J.Atmos. Sci. 65 (3), 855874.CrossRefGoogle Scholar
Gallet, B. & Ferrari, R. 2020 The vortex gas scaling regime of baroclinic turbulence. Proc. Natl Acad. Sci. USA 117, 44914497.CrossRefGoogle ScholarPubMed
Gallet, B. & Ferrari, R. 2021 A quantitative scaling theory for meridional heat transport in planetary atmospheres and oceans. AGU Adv. 2 (3), e2020AV000362.CrossRefGoogle Scholar
Gallet, B., Miquel, B., Hadjerci, G., Burns, K.J., Flierl, G.R. & Ferrari, R. 2022 Transport and emergent stratification in the equilibrated Eady model: the vortex–gas scaling regime. J. Fluid Mech. 948, A31.CrossRefGoogle Scholar
Gent, P.R. 2011 The Gent–McWilliams parameterization: 20/20 hindsight. Ocean Modelling 39 (1-2), 29.CrossRefGoogle Scholar
Gent, P.R. & McWilliams, J.C. 1990 Isopycnal mixing in ocean circulation models. J. Phys. Oceanogr. 20 (1), 150155.2.0.CO;2>CrossRefGoogle Scholar
Gent, P.R., Willebrand, J., McDougall, T.J. & McWilliams, J.C. 1995 Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr. 25 (4), 463474.2.0.CO;2>CrossRefGoogle Scholar
Griffies, S.M. 1998 The Gent–McWilliams skew flux. J. Phys. Oceanogr. 28 (5), 831841.2.0.CO;2>CrossRefGoogle Scholar
Held, I.M. & Larichev, V.D. 1996 A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. J.Atmos. Sci. 53, 946952.2.0.CO;2>CrossRefGoogle Scholar
Lapeyre, G. 2017 Surface quasi-geostrophy. Fluids 2 (1), 7.CrossRefGoogle Scholar
Larichev, V.D. & Held, I.M. 1995 Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. J.Phys. Oceanogr. 25, 22852297.2.0.CO;2>CrossRefGoogle Scholar
Linden, P.F. 1979 Mixing in stratified fluids. Geophys. Astrophys. Fluid Dyn. 13 (1), 323.CrossRefGoogle Scholar
Maddison, J.R. & Marshall, D.P. 2013 The Eliassen–Palm flux tensor. J. Fluid Mech. 729, 69102.CrossRefGoogle Scholar
Maffioli, A., Brethouwer, G. & Lindborg, E. 2016 Mixing efficiency in stratified turbulence. J. Fluid Mech. 794, R3.CrossRefGoogle Scholar
McDougall, T.J. & McIntosh, P.C. 2001 The temporal-residual-mean velocity. Part II. Isopycnal interpretation and the tracer and momentum equations. Journal of Physical Oceanography J. Phys. Oceanogr. 31 (5), 12221246.2.0.CO;2>CrossRefGoogle Scholar
Miquel, B. 2021 Coral: a parallel spectral solver for fluid dynamics and partial differential equations. J.Open Source Softw. 6 (65), 2978.CrossRefGoogle Scholar
Miquel, B., Bouillaut, V., Aumaître, S & Gallet, B. 2020 On the role of the Prandtl number in convection driven by heat sources and sinks. J. Fluid Mech. 900, R1.CrossRefGoogle Scholar
Miquel, B., Lepot, S., Bouillaut, V. & Gallet, B. 2019 Convection driven by internal heat sources and sinks: heat transport beyond the mixing-length or ‘ultimate’ scaling regime. Phys. Rev. Fluids 4, 121501.CrossRefGoogle Scholar
Pedlosky, J. 1979 Geophysical Fluid Dynamics. Springer.CrossRefGoogle Scholar
Peltier, W.R. & Caulfield, C.P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35 (1), 135167.CrossRefGoogle Scholar
Phillips, N.A. 1954 Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic model. Tellus 6 (3), 274286.CrossRefGoogle Scholar
Redi, M.H. 1982 Oceanic isopycnal mixing by coordinate rotation. J. Phys. Oceanogr. 12 (10), 11541158.2.0.CO;2>CrossRefGoogle Scholar
Salmon, R. 1978 Two-layer quasigeostrophic turbulence in a simple special case. Geophys. Astrophys. Fluid Dyn. 10, 2552.CrossRefGoogle Scholar
Salmon, R. 1980 Baroclinic instability and geostrophic turbulence. Geophys. Astrophys. Fluid Dyn. 15, 157211.CrossRefGoogle Scholar
Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.CrossRefGoogle Scholar
Smith, K.S. & Marshall, J. 2009 Evidence for enhanced eddy mixing at middepth in the Southern Ocean. J. Phys. Oceanogr. 39 (1), 5069.CrossRefGoogle Scholar
Taylor, G.I. 1915 Eddy motion in the atmosphere. Phil. Trans. R. Soc. Lond. A 215 (523-537), 126.Google Scholar
Thompson, A.F. & Young, W.R. 2006 Scaling baroclinic eddy fluxes: vortices and energy balance. J.Phys. Oceanogr. 36, 720736.CrossRefGoogle Scholar
Thompson, A.F. & Young, W.R. 2007 Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance. J.Atmos. Sci. 64, 32143231.CrossRefGoogle Scholar
Tréguier, A.-M. 1999 Evaluating eddy mixing coefficients from eddy-resolving ocean models: a case study. J.Mar. Res. 57 (1), 89108.CrossRefGoogle Scholar
Vallis, G.K. 2006 Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-scale Circulation. Cambridge University Press.CrossRefGoogle Scholar
Venaille, A., Vallis, G.K. & Smith, K.S. 2011 Baroclinic turbulence in the ocean: analysis with primitive equation and quasigeostrophic simulations. J. Phys. Oceanogr. 41 (9), 16051623.CrossRefGoogle Scholar
Young, W.R. 2012 An exact thickness-weighted average formulation of the Boussinesq equations. J. Phys. Oceanogr. 42 (5), 692707.CrossRefGoogle Scholar