Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T03:39:14.404Z Has data issue: false hasContentIssue false

Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine

Published online by Cambridge University Press:  16 May 2023

Sachin Aryal
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Ishan Manandhar
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Xue Mei
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Beng S. Yeoh
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Ramakumar Tummala
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Piu Saha
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Islam Osman
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Jasenka Zubcevic
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
David J. Durgan
Affiliation:
Integrative Physiology & Anesthesiology, Baylor College of Medicine, Houston, TX, USA
Matam Vijay-Kumar
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
Bina Joe*
Affiliation:
Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
*
Corresponding author: Bina Joe; Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

The single largest contributor to human mortality is cardiovascular disease, the top risk factor for which is hypertension (HTN). The last two decades have placed much emphasis on the identification of genetic factors contributing to HTN. As a result, over 1,500 genetic alleles have been associated with human HTN. Mapping studies using genetic models of HTN have yielded hundreds of blood pressure (BP) loci but their individual effects on BP are minor, which limits opportunities to target them in the clinic. The value of collecting genome-wide association data is evident in ongoing research, which is beginning to utilize these data at individual-level genetic disparities combined with artificial intelligence (AI) strategies to develop a polygenic risk score (PRS) for the prediction of HTN. However, PRS alone may or may not be sufficient to account for the incidence and progression of HTN because genetics is responsible for <30% of the risk factors influencing the etiology of HTN pathogenesis. Therefore, integrating data from other nongenetic factors influencing BP regulation will be important to enhance the power of PRS. One such factor is the composition of gut microbiota, which constitute a more recently discovered important contributor to HTN. Studies to-date have clearly demonstrated that the transition from normal BP homeostasis to a state of elevated BP is linked to compositional changes in gut microbiota and its interaction with the host. Here, we first document evidence from studies on gut dysbiosis in animal models and patients with HTN followed by a discussion on the prospects of using microbiota data to develop a metagenomic risk score (MRS) for HTN to be combined with PRS and a clinical risk score (CRS). Finally, we propose that integrating AI to learn from the combined PRS, MRS and CRS may further enhance predictive power for the susceptibility and progression of HTN.

Type
Review
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Impact statement

More than half of the world’s adult population suffers from hypertension (HTN), which is the single largest risk factor for human mortality. Despite available medications, susceptibility to develop HTN has not decreased because current knowledge on the risk assessment for susceptibility is severely limited. In this context, genome-wide association studies for HTN are factoring the genetic contributions toward the development of a polygenic risk score (PRS) for HTN. However, given that nongenetic factors also contribute to the etiology of HTN, PRS alone may be insufficient to account for the incidence and progression of HTN. One such nongenetic factor is gut microbiota, which is acquired at birth and demonstrated to be a definitive link to the etiology of HTN. Therefore, here we discuss the prospects for developing and integrating a microbiota-based ‘metagenomic risk score’ with PRS, and a clinical risk score to construct an artificial intelligence-based model for precision diagnosis and management of HTN.

Introduction

Despite improvements in health care, cardiovascular disease (CVD) remains the leading cause of human mortality globally (Vos et al., Reference Vos, Lim, Abbafati, Abbas, Abbasi, Abbasifard, Abbasi-Kangevari, Abbastabar, Abd-Allah, Abdelalim, Abdollahi, Abdollahpour, Abolhassani, Aboyans, Abrams, Abreu, Abrigo, Abu-Raddad, Abushouk, Acebedo, Ackerman, Adabi, Adamu, Adebayo, Adekanmbi, Adelson, Adetokunboh, Adham, Afshari, Afshin, Agardh, Agarwal, Agesa, Aghaali, Aghamir, Agrawal, Ahmad, Ahmadi, Ahmadi, Ahmadieh, Ahmadpour, Akalu, Akinyemi, Akinyemiju, Akombi, al-Aly, Alam, Alam, Alam, Alam, Alanzi, Albertson, Alcalde-Rabanal, Alema, Ali, Ali, Alicandro, Alijanzadeh, Alinia, Alipour, Aljunid, Alla, Allebeck, Almasi-Hashiani, Alonso, al-Raddadi, Altirkawi, Alvis-Guzman, Alvis-Zakzuk, Amini, Amini-Rarani, Aminorroaya, Amiri, Amit, Amugsi, Amul, Anderlini, Andrei, Andrei, Anjomshoa, Ansari, Ansari, Ansari-Moghaddam, Antonio, Antony, Antriyandarti, Anvari, Anwer, Arabloo, Arab-Zozani, Aravkin, Ariani, Ärnlöv, Aryal, Arzani, Asadi-Aliabadi, Asadi-Pooya, Asghari, Ashbaugh, Atnafu, Atre, Ausloos, Ausloos, Ayala Quintanilla, Ayano, Ayanore, Aynalem, Azari, Azarian, Azene, Babaee, Badawi, Bagherzadeh, Bakhshaei, Bakhtiari, Balakrishnan, Balalla, Balassyano, Banach, Banik, Bannick, Bante, Baraki, Barboza, Barker-Collo, Barthelemy, Barua, Barzegar, Basu, Baune, Bayati, Bazmandegan, Bedi, Beghi, Béjot, Bello, Bender, Bennett, Bennitt, Bensenor, Benziger, Berhe, Bernabe, Bertolacci, Bhageerathy, Bhala, Bhandari, Bhardwaj, Bhattacharyya, Bhutta, Bibi, Biehl, Bikbov, Bin Sayeed, Biondi, Birihane, Bisanzio, Bisignano, Biswas, Bohlouli, Bohluli, Bolla, Boloor, Boon-Dooley, Borges, Borzì, Bourne, Brady, Brauer, Brayne, Breitborde, Brenner, Briant, Briggs, Briko, Britton, Bryazka, Buchbinder, Bumgarner, Busse, Butt, Caetano dos Santos, Cámera, Campos-Nonato, Car, Cárdenas, Carreras, Carrero, Carvalho, Castaldelli-Maia, Castañeda-Orjuela, Castelpietra, Castle, Castro, Catalá-López, Causey, Cederroth, Cercy, Cerin, Chandan, Chang, Charlson, Chattu, Chaturvedi, Chimed-Ochir, Chin, Cho, Christensen, Chu, Chung, Cicuttini, Ciobanu, Cirillo, Collins, Compton, Conti, Cortesi, Costa, Cousin, Cowden, Cowie, Cromwell, Cross, Crowe, Cruz, Cunningham, Dahlawi, Damiani, Dandona, Dandona, Darwesh, Daryani, das, das Gupta, das Neves, Dávila-Cervantes, Davletov, de Leo, Dean, DeCleene, Deen, Degenhardt, Dellavalle, Demeke, Demsie, Denova-Gutiérrez, Dereje, Dervenis, Desai, Desalew, Dessie, Dharmaratne, Dhungana, Dianatinasab, Diaz, Dibaji Forooshani, Dingels, Dirac, Djalalinia, do, Dokova, Dorostkar, Doshi, Doshmangir, Douiri, Doxey, Driscoll, Dunachie, Duncan, Duraes, Eagan, Ebrahimi Kalan, Edvardsson, Ehrlich, el Nahas, el Sayed, el Tantawi, Elbarazi, Elgendy, Elhabashy, el-Jaafary, Elyazar, Emamian, Emmons-Bell, Erskine, Eshrati, Eskandarieh, Esmaeilnejad, Esmaeilzadeh, Esteghamati, Estep, Etemadi, Etisso, Farahmand, Faraj, Fareed, Faridnia, Farinha, Farioli, Faro, Faruque, Farzadfar, Fattahi, Fazlzadeh, Feigin, Feldman, Fereshtehnejad, Fernandes, Ferrari, Ferreira, Filip, Fischer, Fisher, Fitzgerald, Flohr, Flor, Foigt, Folayan, Force, Fornari, Foroutan, Fox, Freitas, Fu, Fukumoto, Furtado, Gad, Gakidou, Galles, Gallus, Gamkrelidze, Garcia-Basteiro, Gardner, Geberemariyam, Gebrehiwot, Gebremedhin, Gebreslassie, Gershberg Hayoon, Gething, Ghadimi, Ghadiri, Ghafourifard, Ghajar, Ghamari, Ghashghaee, Ghiasvand, Ghith, Gholamian, Gilani, Gill, Gitimoghaddam, Giussani, Goli, Gomez, Gopalani, Gorini, Gorman, Gottlich, Goudarzi, Goulart, Goulart, Grada, Grivna, Grosso, Gubari, Gugnani, Guimaraes, Guimarães, Guled, Guo, Guo, Gupta, Haagsma, Haddock, Hafezi-Nejad, Hafiz, Hagins, Haile, Hall, Halvaei, Hamadeh, Hamagharib Abdullah, Hamilton, Han, Han, Hankey, Haro, Harvey, Hasaballah, Hasanzadeh, Hashemian, Hassanipour, Hassankhani, Havmoeller, Hay, Hay, Hayat, Heidari, Heidari, Heidari-Soureshjani, Hendrie, Henrikson, Henry, Herteliu, Heydarpour, Hird, Hoek, Hole, Holla, Hoogar, Hosgood, Hosseinzadeh, Hostiuc, Hostiuc, Househ, Hoy, Hsairi, Hsieh, Hu, Huda, Hugo, Huynh, Hwang, Iannucci, Ibitoye, Ikuta, Ilesanmi, Ilic, Ilic, Inbaraj, Ippolito, Irvani, Islam, Islam, Islam, Islami, Iso, Ivers, Iwu, Iyamu, Jaafari, Jacobsen, Jadidi-Niaragh, Jafari, Jafarinia, Jahagirdar, Jahani, Jahanmehr, Jakovljevic, Jalali, Jalilian, James, Janjani, Janodia, Jayatilleke, Jeemon, Jenabi, Jha, Jha, Ji, Jia, John, John-Akinola, Johnson, Johnson, Jonas, Joo, Joshi, Jozwiak, Jürisson, Kabir, Kabir, Kalani, Kalani, Kalankesh, Kalhor, Kamiab, Kanchan, Karami Matin, Karch, Karim, Karimi, Kassa, Kassebaum, Katikireddi, Kawakami, Kayode, Keddie, Keller, Kereselidze, Khafaie, Khalid, Khan, Khatab, Khater, Khatib, Khayamzadeh, Khodayari, Khundkar, Kianipour, Kieling, Kim, Kim, Kim, Kimokoti, Kisa, Kisa, Kissimova-Skarbek, Kivimäki, Kneib, Knudsen, Kocarnik, Kolola, Kopec, Kosen, Koul, Koyanagi, Kravchenko, Krishan, Krohn, Kuate Defo, Kucuk Bicer, Kumar, Kumar, Kumar, Kumar, Kumaresh, Kurmi, Kusuma, Kyu, la Vecchia, Lacey, Lal, Lalloo, Lam, Lami, Landires, Lang, Lansingh, Larson, Larsson, Lasrado, Lassi, Lau, Lavados, Lazarus, Ledesma, Lee, Lee, LeGrand, Leigh, Leonardi, Lescinsky, Leung, Levi, Lewington, Li, Lim, Lin, Lin, Linehan, Linn, Liu, Liu, Liu, Looker, Lopez, Lopukhov, Lorkowski, Lotufo, Lucas, Lugo, Lunevicius, Lyons, Ma, MacLachlan, Maddison, Maddison, Madotto, Mahasha, Mai, Majeed, Maled, Maleki, Malekzadeh, Malta, Mamun, Manafi, Manafi, Manguerra, Mansouri, Mansournia, Mantilla Herrera, Maravilla, Marks, Martins-Melo, Martopullo, Masoumi, Massano, Massenburg, Mathur, Maulik, McAlinden, McGrath, McKee, Mehndiratta, Mehri, Mehta, Meitei, Memiah, Mendoza, Menezes, Mengesha, Mengesha, Mereke, Meretoja, Meretoja, Mestrovic, Miazgowski, Miazgowski, Michalek, Mihretie, Miller, Mills, Mirica, Mirrakhimov, Mirzaei, Mirzaei, Mirzaei-Alavijeh, Misganaw, Mithra, Moazen, Moghadaszadeh, Mohamadi, Mohammad, Mohammad, Mohammad Gholi Mezerji, Mohammadian-Hafshejani, Mohammadifard, Mohammadpourhodki, Mohammed, Mokdad, Molokhia, Momen, Monasta, Mondello, Mooney, Moosazadeh, Moradi, Moradi, Moradi-Lakeh, Moradzadeh, Moraga, Morales, Morawska, Moreno Velásquez, Morgado-da-Costa, Morrison, Mosser, Mouodi, Mousavi, Mousavi Khaneghah, Mueller, Munro, Muriithi, Musa, Muthupandian, Naderi, Nagarajan, Nagel, Naghshtabrizi, Nair, Nandi, Nangia, Nansseu, Nayak, Nazari, Negoi, Negoi, Netsere, Ngunjiri, Nguyen, Nguyen, Nguyen, Nguyen, Nichols, Nigatu, Nigatu, Nikbakhsh, Nixon, Nnaji, Nomura, Norrving, Noubiap, Nowak, Nunez-Samudio, Oţoiu, Oancea, Odell, Ogbo, Oh, Okunga, Oladnabi, Olagunju, Olusanya, Olusanya, Oluwasanu, Omar Bali, Omer, Ong, Onwujekwe, Orji, Orpana, Ortiz, Ostroff, Otstavnov, Otstavnov, Øverland, Owolabi, P A, Padubidri, Pakhare, Palladino, Pana, Panda-Jonas, Pandey, Park, Parmar, Pasupula, Patel, Paternina-Caicedo, Pathak, Pathak, Patten, Patton, Paudel, Pazoki Toroudi, Peden, Pennini, Pepito, Peprah, Pereira, Pereira, Perico, Pham, Phillips, Pigott, Pilgrim, Pilz, Pirsaheb, Plana-Ripoll, Plass, Pokhrel, Polibin, Polinder, Polkinghorne, Postma, Pourjafar, Pourmalek, Pourmirza Kalhori, Pourshams, Poznańska, Prada, Prakash, Pribadi, Pupillo, Quazi Syed, Rabiee, Rabiee, Radfar, Rafiee, Rafiei, Raggi, Rahimi-Movaghar, Rahman, Rajabpour-Sanati, Rajati, Ramezanzadeh, Ranabhat, Rao, Rao, Rasella, Rastogi, Rathi, Rawaf, Rawaf, Rawal, Razo, Redford, Reiner, Reinig, Reitsma, Remuzzi, Renjith, Renzaho, Resnikoff, Rezaei, Rezai, Rezapour, Rhinehart, Riahi, Ribeiro, Ribeiro, Ribeiro, Rickard, Roberts, Roberts, Robinson, Roever, Rolfe, Ronfani, Roshandel, Roth, Rubagotti, Rumisha, Sabour, Sachdev, Saddik, Sadeghi, Sadeghi, Saeidi, Safi, Safiri, Sagar, Sahebkar, Sahraian, Sajadi, Salahshoor, Salamati, Salehi Zahabi, Salem, Salem, Salimzadeh, Salomon, Salz, Samad, Samy, Sanabria, Santomauro, Santos, Santos, Santric-Milicevic, Saraswathy, Sarmiento-Suárez, Sarrafzadegan, Sartorius, Sarveazad, Sathian, Sathish, Sattin, Sbarra, Schaeffer, Schiavolin, Schmidt, Schutte, Schwebel, Schwendicke, Senbeta, Senthilkumaran, Sepanlou, Shackelford, Shadid, Shahabi, Shaheen, Shaikh, Shalash, Shams-Beyranvand, Shamsizadeh, Shannawaz, Sharafi, Sharara, Sheena, Sheikhtaheri, Shetty, Shibuya, Shiferaw, Shigematsu, Shin, Shiri, Shirkoohi, Shrime, Shuval, Siabani, Sigfusdottir, Sigurvinsdottir, Silva, Simpson, Singh, Singh, Skiadaresi, Skou, Skryabin, Sobngwi, Sokhan, Soltani, Sorensen, Soriano, Sorrie, Soyiri, Sreeramareddy, Stanaway, Stark, Ştefan, Stein, Steiner, Steiner, Stokes, Stovner, Stubbs, Sudaryanto, Sufiyan, Sulo, Sultan, Sykes, Sylte, Szócska, Tabarés-Seisdedos, Tabb, Tadakamadla, Taherkhani, Tajdini, Takahashi, Taveira, Teagle, Teame, Tehrani-Banihashemi, Teklehaimanot, Terrason, Tessema, Thankappan, Thomson, Tohidinik, Tonelli, Topor-Madry, Torre, Touvier, Tovani-Palone, Tran, Travillian, Troeger, Truelsen, Tsai, Tsatsakis, Tudor Car, Tyrovolas, Uddin, Ullah, Undurraga, Unnikrishnan, Vacante, Vakilian, Valdez, Varughese, Vasankari, Vasseghian, Venketasubramanian, Violante, Vlassov, Vollset, Vongpradith, Vukovic, Vukovic, Waheed, Walters, Wang, Wang, Wang, Ward, Watson, Wei, Weintraub, Weiss, Weiss, Westerman, Whisnant, Whiteford, Wiangkham, Wiens, Wijeratne, Wilner, Wilson, Wojtyniak, Wolfe, Wool, Wu, Wulf Hanson, Wunrow, Xu, Xu, Yadgir, Yahyazadeh Jabbari, Yamagishi, Yaminfirooz, Yano, Yaya, Yazdi-Feyzabadi, Yearwood, Yeheyis, Yeshitila, Yip, Yonemoto, Yoon, Yoosefi Lebni, Younis, Younker, Yousefi, Yousefifard, Yousefinezhadi, Yousuf, Yu, Yusefzadeh, Zahirian Moghadam, Zaki, Zaman, Zamani, Zamanian, Zandian, Zangeneh, Zastrozhin, Zewdie, Zhang, Zhang, Zhao, Zhao, Zheng, Zhou, Ziapour, Zimsen, Naghavi and Murray2020). The propensity to develop CVDs is fueled by chronically elevated blood pressure (BP) or hypertension (HTN). Among others, essential HTN is the most frequent type of HTN in adults (accounts for 95%). It is caused when there is sustained increase in the BP greater than 140/90 mmHg and when no etiology can be determined for the HTN (Gupta-Malhotra et al., Reference Gupta-Malhotra, Banker, Shete, Hashmi, Tyson, Barratt, Hecht, Milewicz and Boerwinkle2015). According to the World Health Organization, an estimated 1.28 billion adults of the age-group 30–79 years worldwide suffer from HTN (https://www.who.int/news-room/fact-sheets/detail/hypertension). Therefore, controlling the incidence of HTN is critical for improving the quality of life and prevention of premature death.

Research on HTN over the last few decades has established that the susceptibility to HTN is determined both by genetic and environmental factors. The estimated contribution of heritability of HTN is ~30%, while environmental factors contribute to ~70% (Biino et al., Reference Biino, Parati, Concas, Adamo, Angius, Vaccargiu and Pirastu2013). Despite the relatively lower contributions of genetics to HTN, there has been considerable focus on mining the genomic contributions to the genesis of HTN. There are two major factors propelling the momentum for understanding the genetics of HTN, (i) the desire to find novel druggable targets and (ii) advances in whole-genome sequencing, which alleviated the technical limitation of detecting human genetic variation on a large scale. Such efforts have thus far identified over 1,500 loci in human HTN (Evangelou et al., Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018; Buniello et al., Reference Buniello, MacArthur, Cerezo, Harris, Hayhurst, Malangone, McMahon, Morales, Mountjoy, Sollis, Suveges, Vrousgou, Whetzel, Amode, Guillen, Riat, Trevanion, Hall, Junkins, Flicek, Burdett, Hindorff, Cunningham and Parkinson2019; Cabrera et al., Reference Cabrera, Ng, Nicholls, Gupta, Barnes, Munroe and Caulfield2019; Giri et al., Reference Giri, Hellwege, Keaton, Park, Qiu, Warren, Torstenson, Kovesdy, Sun, Wilson, Robinson-Cohen, Roumie, Chung, Birdwell, Damrauer, DuVall, Klarin, Cho, Wang, Evangelou, Cabrera, Wain, Shrestha, Mautz, Akwo, Sargurupremraj, Debette, Boehnke, Scott, Luan, Zhao, Willems, Thériault, Shah, Oldmeadow, Almgren, Li-Gao, Verweij, Boutin, Mangino, Ntalla, Feofanova, Surendran, Cook, Karthikeyan, Lahrouchi, Liu, Sepúlveda, Richardson, Kraja, Amouyel, Farrall, Poulter, Laakso, Zeggini, Sever, Scott, Langenberg, Wareham, Conen, Palmer, Attia, Chasman, Ridker, Melander, Mook-Kanamori, Harst, Cucca, Schlessinger, Hayward, Spector, Jarvelin, Hennig, Timpson, Wei, Smith, Xu, Matheny, Siew, Lindgren, Herzig, Dedoussis, Denny, Psaty, Howson, Munroe, Newton-Cheh, Caulfield, Elliott, Gaziano, Concato, Wilson, Tsao, Velez Edwards, Susztak, O’Donnell, Hung and Edwards2019). However, while they collectively define the genomic landscape for association with HTN in humans, individually, they are not druggable targets because each of these loci contribute very little to BP regulation.

In experimental studies using animal models, the genomic landscape for association with HTN was similar to that of humans. Animal model studies identified over 400 BP quantitative trait loci (https://rgd.mcw.edu/rgdweb/elasticResults.html?term=blood+pressure&chr=ALL&start=&stop=&species=Rat&category=QTL&objectSearch=true). Details on these investigations are documented in our previous review (Padmanabhan and Joe, Reference Padmanabhan and Joe2017) and updated in recent articles (Warren et al., Reference Warren, Evangelou, Cabrera, Gao, Ren, Mifsud, Ntalla, Surendran, Liu, Cook, Kraja, Drenos, Loh, Verweij, Marten, Karaman, Lepe, O’Reilly, Knight, Snieder, Kato, He, Tai, Said, Porteous, Alver, Poulter, Farrall, Gansevoort, Padmanabhan, Mägi, Stanton, Connell, Bakker, Metspalu, Shields, Thom, Brown, Sever, Esko, Hayward, van der Harst, Saleheen, Chowdhury, Chambers, Chasman, Chakravarti, Newton-Cheh, Lindgren, Levy, Kooner, Keavney, Tomaszewski, Samani, Howson, Tobin, Munroe, Ehret and Wain2017; Evangelou et al., Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018; Giri et al., Reference Giri, Hellwege, Keaton, Park, Qiu, Warren, Torstenson, Kovesdy, Sun, Wilson, Robinson-Cohen, Roumie, Chung, Birdwell, Damrauer, DuVall, Klarin, Cho, Wang, Evangelou, Cabrera, Wain, Shrestha, Mautz, Akwo, Sargurupremraj, Debette, Boehnke, Scott, Luan, Zhao, Willems, Thériault, Shah, Oldmeadow, Almgren, Li-Gao, Verweij, Boutin, Mangino, Ntalla, Feofanova, Surendran, Cook, Karthikeyan, Lahrouchi, Liu, Sepúlveda, Richardson, Kraja, Amouyel, Farrall, Poulter, Laakso, Zeggini, Sever, Scott, Langenberg, Wareham, Conen, Palmer, Attia, Chasman, Ridker, Melander, Mook-Kanamori, Harst, Cucca, Schlessinger, Hayward, Spector, Jarvelin, Hennig, Timpson, Wei, Smith, Xu, Matheny, Siew, Lindgren, Herzig, Dedoussis, Denny, Psaty, Howson, Munroe, Newton-Cheh, Caulfield, Elliott, Gaziano, Concato, Wilson, Tsao, Velez Edwards, Susztak, O’Donnell, Hung and Edwards2019; Surendran et al., Reference Surendran, Feofanova, Lahrouchi, Ntalla, Karthikeyan, Cook, Chen, Mifsud, Yao, Kraja, Cartwright, Hellwege, Giri, Tragante, Thorleifsson, Liu, Prins, Stewart, Cabrera, Eales, Akbarov, Auer, Bielak, Bis, Braithwaite, Brody, Daw, Warren, Drenos, Nielsen, Faul, Fauman, Fava, Ferreira, Foley, Franceschini, Gao, Giannakopoulou, Giulianini, Gudbjartsson, Guo, Harris, Havulinna, Helgadottir, Huffman, Hwang, Kanoni, Kontto, Larson, Li-Gao, Lindström, Lotta, Lu, Luan, Mahajan, Malerba, Masca, Mei, Menni, Mook-Kanamori, Mosen-Ansorena, Müller-Nurasyid, Paré, Paul, Perola, Poveda, Rauramaa, Richard, Richardson, Sepúlveda, Sim, Smith, Smith, Staley, Stanáková, Sulem, Thériault, Thorsteinsdottir, Trompet, Varga, Velez Edwards, Veronesi, Weiss, Willems, Yao, Young, Yu, Zhang, Zhao, Zhao, Zhao, Evangelou, Aeschbacher, Asllanaj, Blankenberg, Bonnycastle, Bork-Jensen, Brandslund, Braund, Burgess, Cho, Christensen, Connell, Mutsert, Dominiczak, Dörr, Eiriksdottir, Farmaki, Gaziano, Grarup, Grove, Hallmans, Hansen, Have, Heiss, Jørgensen, Jousilahti, Kajantie, Kamat, Käräjämäki, Karpe, Koistinen, Kovesdy, Kuulasmaa, Laatikainen, Lannfelt, Lee, Lee, de Boer, van der Harst, van der Meer, Verweij, Linneberg, Martin, Moitry, Nadkarni, Neville, Palmer, Papanicolaou, Pedersen, Peters, Poulter, Rasheed, Rasmussen, Rayner, Mägi, Renström, Rettig, Rossouw, Schreiner, Sever, Sigurdsson, Skaaby, Sun, Sundstrom, Thorgeirsson, Esko, Trabetti, Tsao, Tuomi, Turner, Tzoulaki, Vaartjes, Vergnaud, Willer, Wilson, Witte, Yonova-Doing, Zhang, Aliya, Almgren, Amouyel, Asselbergs, Barnes, Blakemore, Boehnke, Bots, Bottinger, Buring, Chambers, Chen, Chowdhury, Conen, Correa, Davey Smith, Boer, Deary, Dedoussis, Deloukas, di Angelantonio, Elliott, Butterworth, Danesh, Langenberg, Deloukas, McCarthy, Franks, Rolandsson, Wareham, Felix, Ferrières, Ford, Fornage, Franks, Franks, Frossard, Gambaro, Gaunt, Groop, Gudnason, Harris, Hayward, Hennig, Herzig, Ingelsson, Tuomilehto, Järvelin, Jukema, Kardia, Kee, Kooner, Kooperberg, Launer, Lind, Loos, Majumder, Laakso, McCarthy, Melander, Mohlke, Murray, Nordestgaard, Orho-Melander, Packard, Padmanabhan, Palmas, Polasek, Porteous, Prentice, Province, Relton, Rice, Ridker, Rolandsson, Rosendaal, Rotter, Rudan, Salomaa, Samani, Sattar, Sheu, Smith, Soranzo, Spector, Starr, Sebert, Taylor, Lakka, Timpson, Tobin, Prins, Zeggini, van der Harst, van der Meer, Ramachandran, Verweij, Virtamo, Völker, Weir, Zeggini, Charchar, Hellwege, Giri, Edwards, Cho, Gaziano, Kovesdy, Sun, Tsao, Wilson, Edwards, Hung, O’Donnell, Wareham, Langenberg, Tomaszewski, Butterworth, Caulfield, Danesh, Edwards, Holm, Hung, Lindgren, Liu, Manning, Morris, Morrison, O’Donnell, Psaty, Saleheen, Stefansson, Boerwinkle, Chasman, Levy, Newton-Cheh, Munroe and Howson2020; Olczak et al., Reference Olczak, Taylor‐Bateman, Nicholls, Traylor, Cabrera and Munroe2021; Padmanabhan and Dominiczak, Reference Padmanabhan and Dominiczak2021). Meanwhile, research beyond genomic analyses has led to the profound realization that gut microbiota is an important nongenomic factor which was not previously accounted for in the etiology of HTN. Specifically, our group was the first to report the evidence of gut microbiota dysbiosis in both hypertensive animal models and patients (Mell et al., Reference Mell, Jala, Mathew, Byun, Waghulde, Zhang, Haribabu, Vijay-Kumar, Pennathur and Joe2015; Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015). Following this pioneering discovery, associations between gut microbiota are reported between hypertensive and normotensive animal models and humans (Tables 1 and 2). In this article, we review the literature on gut microbiota and HTN and propose developing a gut metagenomic risk score (MRS) for HTN. Further, we discuss the value of combining MRS with polygenic risk score (PRS), CRS and artificial intelligence (AI) for clinical management of HTN (Graphical Abstract).

Table 1. The association observed between animal hypertension, gut microbiota and various interventions

Table 2. The association observed between human hypertension, gut microbiota and various interventions

From GWAS to PRS for HTN

Genome-wide association studies (GWAS) aim to analyze genetic variants across genomes to detect associations with complex traits (Dehghan, Reference Dehghan2018). GWAS for HTN began in 2007 with the first report of associations in the Wellcome Trust Case Control Consortium (Burton et al., 2007). GWAS for HTN soon outpaced all linkage analyses in humans (Figure 1b). Even so, the collective effect of all BP loci identified through GWAS accounts for ~3.5% of BP variance (Manolio et al., Reference Manolio, Collins, Cox, Goldstein, Hindorff, Hunter, McCarthy, Ramos, Cardon, Chakravarti, Cho, Guttmacher, Kong, Kruglyak, Mardis, Rotimi, Slatkin, Valle, Whittemore, Boehnke, Clark, Eichler, Gibson, Haines, Mackay, McCarroll and Visscher2009; Sung et al., Reference Sung, Winkler, de Las Fuentes, Bentley, Brown, Kraja, Schwander, Ntalla, Guo, Franceschini, Lu, Cheng, Sim, Vojinovic, Marten, Musani, Li, Feitosa, Kilpeläinen, Richard, Noordam, Aslibekyan, Aschard, Bartz, Dorajoo, Liu, Manning, Rankinen, Smith, Tajuddin, Tayo, Warren, Zhao, Zhou, Matoba, Sofer, Alver, Amini, Boissel, Chai, Chen, Divers, Gandin, Gao, Giulianini, Goel, Harris, Hartwig, Horimoto, Hsu, Jackson, Kähönen, Kasturiratne, Kühnel, Leander, Lee, Lin, ’an Luan, McKenzie, Meian, Nelson, Rauramaa, Schupf, Scott, Sheu, Stančáková, Takeuchi, van der Most, Varga, Wang, Wang, Ware, Weiss, Wen, Yanek, Zhang, Zhao, Afaq, Alfred, Amin, Arking, Aung, Barr, Bielak, Boerwinkle, Bottinger, Braund, Brody, Broeckel, Cabrera, Cade, Caizheng, Campbell, Canouil, Chakravarti, Chauhan, Christensen, Cocca, Collins, Connell, de Mutsert, de Silva, Debette, Dörr, Duan, Eaton, Ehret, Evangelou, Faul, Fisher, Forouhi, Franco, Friedlander, Gao, Gigante, Graff, Gu, Gu, Gupta, Hagenaars, Harris, He, Heikkinen, Heng, Hirata, Hofman, Howard, Hunt, Irvin, Jia, Joehanes, Justice, Katsuya, Kaufman, Kerrison, Khor, Koh, Koistinen, Komulainen, Kooperberg, Krieger, Kubo, Kuusisto, Langefeld, Langenberg, Launer, Lehne, Lewis, Li, Lim, Lin, Liu, Liu, Liu, Liu, Liu, Loh, Lohman, Long, Louie, Mägi, Mahajan, Meitinger, Metspalu, Milani, Momozawa, Morris, Mosley, Munson, Murray, Nalls, Nasri, Norris, North, Ogunniyi, Padmanabhan, Palmas, Palmer, Pankow, Pedersen, Peters, Peyser, Polasek, Raitakari, Renström, Rice, Ridker, Robino, Robinson, Rose, Rudan, Sabanayagam, Salako, Sandow, Schmidt, Schreiner, Scott, Seshadri, Sever, Sitlani, Smith, Snieder, Starr, Strauch, Tang, Taylor, Teo, Tham, Uitterlinden, Waldenberger, Wang, Wang, Wei, Williams, Wilson, Wojczynski, Yao, Yuan, Zonderman, Becker, Boehnke, Bowden, Chambers, Chen, de Faire, Deary, Esko, Farrall, Forrester, Franks, Freedman, Froguel, Gasparini, Gieger, Horta, Hung, Jonas, Kato, Kooner, Laakso, Lehtimäki, Liang, Magnusson, Newman, Oldehinkel, Pereira, Redline, Rettig, Samani, Scott, Shu, van der Harst, Wagenknecht, Wareham, Watkins, Weir, Wickremasinghe, Wu, Zheng, Kamatani, Laurie, Bouchard, Cooper, Evans, Gudnason, Kardia, Kritchevsky, Levy, O’Connell, Psaty, van Dam, Sims, Arnett, Mook-Kanamori, Kelly, Fox, Hayward, Fornage, Rotimi, Province, van Duijn, Tai, Wong, Loos, Reiner, Rotter, Zhu, Bierut, Gauderman, Caulfield, Elliott, Rice, Munroe, Morrison, Cupples, Rao and Chasman2018). This begs the question: ‘What is the expectation from continued investments in GWAS for clinical management of HTN?’ From the perspective of disease risk prediction, continued research in GWAS for HTN is essential for developing, defining and refining the predictive power for HTN using a genomic index, which is known as PRS (Choi et al., Reference Choi, Mak and O’Reilly2020; Lewis and Vassos, Reference Lewis and Vassos2020; Padmanabhan and Dominiczak, Reference Padmanabhan and Dominiczak2021). It is computed as the sum of an individual’s genome-wide genotype that is weighted by corresponding genotype effect size estimates (or Z scores) generated from a relevant GWAS data (Lewis and Vassos, Reference Lewis and Vassos2020). Although PRSs often explain only a small portion of trait variance, their link with genetic liability, the single biggest source of phenotypic variation, has rendered PRS as an attractive prediction tool in biomedical research (Choi et al., Reference Choi, Mak and O’Reilly2020). PRS is used to assess shared etiologies between phenotypes and to investigate the clinical applicability of genetic information for complex diseases (Choi et al., Reference Choi, Mak and O’Reilly2020). Previously, a PRS constructed utilizing genome-wide important single nucleotide polymorphisms from GWAS for BP showed a significant relationship with heart failure, left ventricular mass, coronary artery disease and stroke (Studies, 2011; Ference et al., Reference Ference, Julius, Mahajan, Levy, Williams and Flack2014). Currently, there is considerable excitement in the field for developing reliable PRS for HTN as evident from multiple reports of PRS indices from different cohorts (Steinthorsdottir et al., Reference Steinthorsdottir, McGinnis, Williams, Stefansdottir, Thorleifsson, Shooter, Fadista, Sigurdsson, Auro, Berezina, Borges, Bumpstead, Bybjerg-Grauholm, Colgiu, Dolby, Dudbridge, Engel, Franklin, Frigge, Frisbaek, Geirsson, Geller, Gretarsdottir, Gudbjartsson, Harmon, Hougaard, Hegay, Helgadottir, Hjartardottir, Jääskeläinen, Johannsdottir, Jonsdottir, Juliusdottir, Kalsheker, Kasimov, Kemp, Kivinen, Klungsøyr, Lee, Melbye, Miedzybrodska, Moffett, Najmutdinova, Nishanova, Olafsdottir, Perola, Pipkin, Poston, Prescott, Saevarsdottir, Salimbayeva, Scaife, Skotte, Staines-Urias, Stefansson, Sørensen, Thomsen, Tragante, Trogstad, Simpson, Aripova, Casas, Dominiczak, Walker, Thorsteinsdottir, Iversen, Feenstra, Lawlor, Boyd, Magnus, Laivuori, Zakhidova, Svyatova, Stefansson and Morgan2020; Sapkota et al., Reference Sapkota, Li, Pierzynski, Mulrooney, Ness, Morton, Michael, Zhang, Bhatia, Armstrong, Hudson, Robison and Yasui2021; Sato et al., Reference Sato, Fudono, Imai, Takimoto, Tarui, Aoyama, Yago, Okamitsu, Mizutani and Miyasaka2021; Fujii et al., Reference Fujii, Hishida, Nakatochi, Tsuboi, Suzuki, Kondo, Ikezaki, Hara, Okada, Tamura, Shimoshikiryo, Suzuki, Koyama, Kuriki, Takashima, Arisawa, Momozawa, Kubo, Takeuchi and Wakai2022; Parcha et al., Reference Parcha, Pampana, Bress, Irvin, Arora and Arora2022; Quintanilha et al., Reference Quintanilha, Etheridge, Graynor, Larson, Crona, Mitchell and Innocenti2022). Recently, Weng et al. (Reference Weng, Liu, Yan, Liang, Zhang, Xu, Li, Xu and Gu2022) included 391,366 participants from the UK Biobank database and established a PRS for HTN assessing the combined effect of genetic susceptibility and air pollution on incident of HTN. They demonstrated that long-term exposure to air pollution is associated with increased risk of HTN particularly in individuals with high genetic risk (Weng et al., Reference Weng, Liu, Yan, Liang, Zhang, Xu, Li, Xu and Gu2022). Another study from Finland revealed that a BP (systolic and diastolic) PRS could predict HTN in the FINRISK cohort, a Finnish population survey on risk factors on chronic, noncommunicable diseases (Vaura et al., Reference Vaura, Kauko, Suvila, Havulinna, Mars, Salomaa, Cheng and Niiranen2021, https://thl.fi/en/web/thl-biobank/). This study highlights the potential of PRS as a predictive tool that may be better than the established clinical risk factors for the prediction of HTN (Vaura et al., Reference Vaura, Kauko, Suvila, Havulinna, Mars, Salomaa, Cheng and Niiranen2021). But both studies are limited by their reliance on genetic data from European ancestries, which could limit the predictive power of a PRS in other populations. With the availability of recent, large multi-ethnic and non-European GWAS of BP phenotypes, such as those from the Million Veteran Program, the UK Biobank and Biobank Japan (Kanai et al., Reference Kanai, Akiyama, Takahashi, Matoba, Momozawa, Ikeda, Iwata, Ikegawa, Hirata, Matsuda, Kubo, Okada and Kamatani2018; Giri et al., Reference Giri, Hellwege, Keaton, Park, Qiu, Warren, Torstenson, Kovesdy, Sun, Wilson, Robinson-Cohen, Roumie, Chung, Birdwell, Damrauer, DuVall, Klarin, Cho, Wang, Evangelou, Cabrera, Wain, Shrestha, Mautz, Akwo, Sargurupremraj, Debette, Boehnke, Scott, Luan, Zhao, Willems, Thériault, Shah, Oldmeadow, Almgren, Li-Gao, Verweij, Boutin, Mangino, Ntalla, Feofanova, Surendran, Cook, Karthikeyan, Lahrouchi, Liu, Sepúlveda, Richardson, Kraja, Amouyel, Farrall, Poulter, Laakso, Zeggini, Sever, Scott, Langenberg, Wareham, Conen, Palmer, Attia, Chasman, Ridker, Melander, Mook-Kanamori, Harst, Cucca, Schlessinger, Hayward, Spector, Jarvelin, Hennig, Timpson, Wei, Smith, Xu, Matheny, Siew, Lindgren, Herzig, Dedoussis, Denny, Psaty, Howson, Munroe, Newton-Cheh, Caulfield, Elliott, Gaziano, Concato, Wilson, Tsao, Velez Edwards, Susztak, O’Donnell, Hung and Edwards2019), PRS predictions are now expanded to other demographics, which is a promising outlook for the construction of multi-ethnic PRS for HTN risk prediction (Cavazos and Witte, Reference Cavazos and Witte2021). More recently, the Trans-Omics in Precision Medicine Initiative program (Stilp et al., Reference Stilp, Emery, Broome, Buth, Khan, Laurie, Wang, Wong, Chen, D’Augustine, Heard-Costa, Hohensee, Johnson, Juarez, Liu, Mutalik, Raffield, Wiggins, de Vries, Kelly, Kooperberg, Natarajan, Peloso, Peyser, Reiner, Arnett, Aslibekyan, Barnes, Bielak, Bis, Cade, Chen, Correa, Cupples, de Andrade, Ellinor, Fornage, Franceschini, Gan, Ganesh, Graffelman, Grove, Guo, Hawley, Hsu, Jackson, Jaquish, Johnson, Kardia, Kelly, Lee, Mathias, McGarvey, Mitchell, Montasser, Morrison, North, Nouraie, Oelsner, Pankratz, Rich, Rotter, Smith, Taylor, Vasan, Weeks, Weiss, Wilson, Yanek, Psaty, Heckbert and Laurie2021; Taliun et al., Reference Taliun, Harris, Kessler, Carlson, Szpiech, Torres, Taliun, Corvelo, Gogarten, Kang, Pitsillides, LeFaive, Lee, Tian, Browning, das, Emde, Clarke, Loesch, Shetty, Blackwell, Smith, Wong, Liu, Conomos, Bobo, Aguet, Albert, Alonso, Ardlie, Arking, Aslibekyan, Auer, Barnard, Barr, Barwick, Becker, Beer, Benjamin, Bielak, Blangero, Boehnke, Bowden, Brody, Burchard, Cade, Casella, Chalazan, Chasman, Chen, Cho, Choi, Chung, Clish, Correa, Curran, Custer, Darbar, Daya, de Andrade, DeMeo, Dutcher, Ellinor, Emery, Eng, Fatkin, Fingerlin, Forer, Fornage, Franceschini, Fuchsberger, Fullerton, Germer, Gladwin, Gottlieb, Guo, Hall, He, Heard-Costa, Heckbert, Irvin, Johnsen, Johnson, Kaplan, Kardia, Kelly, Kelly, Kenny, Kiel, Klemmer, Konkle, Kooperberg, Köttgen, Lange, Lasky-Su, Levy, Lin, Lin, Liu, Loos, Garman, Gerszten, Lubitz, Lunetta, Mak, Manichaikul, Manning, Mathias, McManus, McGarvey, Meigs, Meyers, Mikulla, Minear, Mitchell, Mohanty, Montasser, Montgomery, Morrison, Murabito, Natale, Natarajan, Nelson, North, O’Connell, Palmer, Pankratz, Peloso, Peyser, Pleiness, Post, Psaty, Rao, Redline, Reiner, Roden, Rotter, Ruczinski, Sarnowski, Schoenherr, Schwartz, Seo, Seshadri, Sheehan, Sheu, Shoemaker, Smith, Smith, Sotoodehnia, Stilp, Tang, Taylor, Telen, Thornton, Tracy, van den Berg, Vasan, Viaud-Martinez, Vrieze, Weeks, Weir, Weiss, Weng, Willer, Zhang, Zhao, Arnett, Ashley-Koch, Barnes, Boerwinkle, Gabriel, Gibbs, Rice, Rich, Silverman, Qasba, Gan, Abe, Almasy, Ament, Anderson, Anugu, Applebaum-Bowden, Assimes, Avramopoulos, Barron-Casella, Beaty, Beck, Becker, Beitelshees, Benos, Bezerra, Bis, Bowler, Broeckel, Broome, Bunting, Bustamante, Buth, Cardwell, Carey, Carty, Casaburi, Castaldi, Chaffin, Chang, Chang, Chavan, Chen, Chen, Chuang, Chung, Comhair, Cornell, Crandall, Crapo, Curtis, Damcott, David, Davis, Fuentes, DeBaun, Deka, Devine, Duan, Duggirala, Durda, Eaton, Ekunwe, el Boueiz, Erzurum, Farber, Flickinger, Fornage, Frazar, Fu, Fulton, Gao, Gao, Gass, Gelb, Geng, Geraci, Ghosh, Gignoux, Glahn, Gong, Goring, Graw, Grine, Gu, Guan, Gupta, Haessler, Hawley, Heavner, Herrington, Hersh, Hidalgo, Hixson, Hobbs, Hokanson, Hong, Hoth, Hsiung, Hung, Huston, Hwu, Jackson, Jain, Jhun, Johnson, Johnston, Jones, Kathiresan, Khan, Kim, Kinney, Kramer, Lange, Lange, Lange, Laurie, LeBoff, Lee, Lee, Lee, Levine, Lewis, Li, Li, Lin, Lin, Lin, Liu, Liu, Liu, Luo, Mahaney, Make, Manson, Margolin, Martin, Mathai, May, McArdle, McDonald, McFarland, McGoldrick, McHugh, Mei, Mestroni, Min, Minster, Moll, Moscati, Musani, Mwasongwe, Mychaleckyj, Nadkarni, Naik, Naseri, Nekhai, Neltner, Ochs-Balcom, Paik, Pankow, Parsa, Peralta, Perez, Perry, Peters, Phillips, Pollin, Becker, Boorgula, Preuss, Qiao, Qin, Rafaels, Raffield, Rasmussen-Torvik, Ratan, Reed, Regan, Reupena, Roselli, Russell, Ruuska, Ryan, Sabino, Saleheen, Salimi, Salzberg, Sandow, Sankaran, Scheller, Schmidt, Schwander, Sciurba, Seidman, Seidman, Sherman, Shetty, Sheu, Silver, Smith, Smith, Smoller, Snively, Snyder, Sofer, Storm, Streeten, Sung, Sylvia, Szpiro, Sztalryd, Tang, Taub, Taylor, Taylor, Threlkeld, Tinker, Tirschwell, Tishkoff, Tiwari, Tong, Tsai, Vaidya, VandeHaar, Walker, Wallace, Walts, Wang, Wang, Watson, Wessel, Williams, Williams, Wilson, Wu, Xu, Yanek, Yang, Yang, Zaghloul, Zekavat, Zhao, Zhao, Zhi, Zhou, Zhu, Papanicolaou, Nickerson, Browning, Zody, Zöllner, Wilson, Cupples, Laurie, Jaquish, Hernandez, O’Connor and Abecasis2021) reported the assessment of PRS for HTN across major U.S. demographic segments. This included African Americans, Hispanic/Latino Americans, Asian Americans and European Americans in the assessment of PRS associations with HTN across the lifespan. The final HTN-PRS was compared with incident outcomes in the Mass General Brigham Biobank as well as with Multi-ethnic Independent Biobank that included 40,201 subjects, leading to associations that supported the links between PRS and HTN. The resulting PRS was also predictive of an elevated risk of type 2 diabetes, chronic renal disease, coronary artery disease and ischemic stroke (Kurniansyah et al., Reference Kurniansyah, Goodman, Kelly, Elfassy, Wiggins, Bis, Guo, Palmas, Taylor, Lin, Haessler, Gao, Shimbo, Smith, Yu, Feofanova, Smit, Wang, Hwang, Liu, Wassertheil-Smoller, Manson, Lloyd-Jones, Rich, Loos, Redline, Correa, Kooperberg, Fornage, Kaplan, Psaty, Rotter, Arnett, Morrison, Franceschini, Levy, Bis, Guo, Taylor, Lin, Haessler, Gao, Smith, Liu, Wassertheil-Smoller, Manson, Rich, Redline, Correa, Kooperberg, Fornage, Kaplan, Psaty, Rotter, Arnett, Franceschini, Levy, Sofer and Sofer2022). Based on these results, Kurniansyah et al. (Reference Kurniansyah, Goodman, Kelly, Elfassy, Wiggins, Bis, Guo, Palmas, Taylor, Lin, Haessler, Gao, Shimbo, Smith, Yu, Feofanova, Smit, Wang, Hwang, Liu, Wassertheil-Smoller, Manson, Lloyd-Jones, Rich, Loos, Redline, Correa, Kooperberg, Fornage, Kaplan, Psaty, Rotter, Arnett, Morrison, Franceschini, Levy, Bis, Guo, Taylor, Lin, Haessler, Gao, Smith, Liu, Wassertheil-Smoller, Manson, Rich, Redline, Correa, Kooperberg, Fornage, Kaplan, Psaty, Rotter, Arnett, Franceschini, Levy, Sofer and Sofer2022) proposed a new approach for tuning parameters for PRS construction including optimization of the coefficient of variation of the effect size estimates and combining PRS based on GWAS of multiple BP phenotypes into a single PRS. Collectively, the next phase of GWAS in HTN should focus on prediction rather than treatment, the implementation of which will depend on the accuracy for applicability of a PRS for HTN in a global setting. To this end, the ‘All of Us’ research program in the United States is enrolling a million individuals from diverse populations for building a repository that includes genomic data, along with variables such as lifestyle, socioeconomic factors, environment and biological factors (All of Us Research Program Investigators, 2019). The United States is a melting pot of diverse populations from around the world. It is therefore particularly interesting to explore this database for further enhancing the power of PRS for HTN.

Figure 1. (a) The numbers of PubMed publications (2000–2022) related to quantitative trait locus (QTL), genome-wide association studies (GWAS), microbiota, artificial intelligence in rats and mice hypertension. The search keywords were QTL, hypertension, rats, mice, GWAS, microbiota and artificial intelligence. (b) The numbers of PubMed publications (2000–2022) related to linkage, genome-wide association studies (GWAS), microbiota and artificial intelligence in human hypertension. The search keywords were linkage, hypertension, humans, GWAS, microbiota and artificial intelligence.

Limitations for PRS-based predictions for HTN

Despite the promise and potential of PRS for HTN, there are clear barriers for its application in a clinical setting. One of the main concerns is the environmental component, which has larger effects than the genetic component on BP and may skew the prediction scores. Additionally, PRS analyses are not well-standardized and may lead to faulty interpretations (Choi et al., Reference Choi, Mak and O’Reilly2020). Thus, the focus must move from association with case–control status to individualized PRS for enhancing disease prediction (Lewis and Vassos, Reference Lewis and Vassos2020). Additionally, absolute risks for the disease should be converted from relative risks that compare people across the PRS continuum with a control group (Torkamani et al., Reference Torkamani, Wineinger and Topol2018; Sugrue and Desikan, Reference Sugrue and Desikan2019). When using PRS for HTN prediction, management and treatment, it is also required to rigorously differentiate between essential HTN and secondary HTN. Finally, as is the case with all diseases, there are ethical concerns regarding the application of PRS for HTN, which may escalate health inequities (Minari et al., Reference Minari, Brothers and Morrison2018; Martin et al., Reference Martin, Kanai, Kamatani, Okada, Neale and Daly2019; Vaura et al., Reference Vaura, Kauko, Suvila, Havulinna, Mars, Salomaa, Cheng and Niiranen2021).

Progress beyond GWAS: What are we missing?

As mentioned above, the premise of using PRS alone for HTN lacks power because of the environmental factors contributing to its etiology. In this context, it is important to note that a prominent, previously unknown, and relatively recent factor identified as contributing to BP regulation is the composition of gut microbiota. As shown in Figure 1a,b, the numbers of studies on microbiota and HTN is sharply rising in both animal models and humans. Interestingly, the sheer numbers of such studies currently surpasses that of GWAS studies, indicating its importance. In the following sections, we review these studies and propose that the inclusion of microbiota signatures and their functional readouts along with the genetic makeup of the host may enhance the power of PRS for HTN.

Gut microbiota and HTN

A large body of evidence has emerged in the last decade supporting the role of the microbiota in BP regulation. Our group has been at the forefront of this research. In 2010, it was shown that knockout of toll-like receptor 5 (Tlr5) in mice resulted in elevated BP (Vijay-Kumar et al., Reference Vijay-Kumar, Aitken, Carvalho, Cullender, Mwangi, Srinivasan, Sitaraman, Knight, Ley and Gewirtz2010). Tlr5 is a receptor for the bacterial protein flagellin, suggesting a link between gut microbiota and HTN. However, the major focus of this report was on metabolic syndrome, of which BP is a hallmark. The first evidence for a direct link between gut microbiota and BP regulation in a genetic model of HTN was reported in 2015 in Dahl salt-sensitive (DSS) rat (Mell et al., Reference Mell, Jala, Mathew, Byun, Waghulde, Zhang, Haribabu, Vijay-Kumar, Pennathur and Joe2015). Shortly thereafter, an association between gut dysbiosis and HTN in spontaneously hypertensive rats (SHR), angiotensin II-induced hypertensive rats, sleep apnea-induced hypertensive rats (Lloyd et al., Reference Lloyd, Durgan, Martini and Bryan2015) and hypertensive humans were reported (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015). Since these initial groundbreaking reports, multiple publications have demonstrated associations of gut microbiota with BP regulation in animal models and humans (Tables 1 and 2).

One question of assessing microbiota composition in rats is whether they are translationally relevant for humans. Human gut microbiota composition is more similar to rats than to mice (Flemer et al., Reference Flemer, Gaci, Borrel, Sanderson, Chaudhary, Tottey, O’Toole and Brugère2017), although this question is evolving with continued development of sequencing methods. Here, we access the commonalities in taxonomic rearrangements occurring during HTN in rats and humans. One of the themes emanating from BP association studies using rat as model organism is the application of the Firmicutes/Bacteroidetes (F/B) ratio in assessment of gut dysbiosis in HTN. Increased F/B ratio is regarded as a marker of gut dysbiosis and is consistently reported both in genetic and induced hypertensive rat models including the SHR (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015; Hsu et al., Reference Hsu, Hou, Chang-Chien, Lin and Tain2020; Li et al., Reference Li, Yang, Richards, Pepine and Raizada2020), DSS rats (Mell et al., Reference Mell, Jala, Mathew, Byun, Waghulde, Zhang, Haribabu, Vijay-Kumar, Pennathur and Joe2015; Waghulde et al., Reference Waghulde, Cheng, Galla, Mell, Cai, Pruett-Miller, Vazquez, Patterson, Vijay Kumar and Joe2018) high-fat diet fed rats (Hsu et al., Reference Hsu, Hou, Lee, Chan and Tain2019), NG-nitro-l-arginine methyl ester (l-NAME) treated rats (Robles-Vera et al., Reference Robles-Vera, Toral, de la Visitación, Sánchez, Romero, Olivares, Jiménez and Duarte2018) and angiotensin II induced HTN rats (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015). In further support, normalizing the F/B ratio by administration of the anti-inflammatory antibiotic, minocycline, alleviated angiotensin II-induced HTN (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015). This direct relationship between F/B ratio and BP has also been documented in various mouse models (Marques et al., Reference Marques, Nelson, Chu, Horlock, Fiedler, Ziemann, Tan, Kuruppu, Rajapakse, el-Osta, Mackay and Kaye2017; Toral et al., Reference Toral, Romero, Rodríguez-Nogales, Jiménez, Robles-Vera, Algieri, Chueca-Porcuna, Sánchez, de la Visitación, Olivares, García, Pérez-Vizcaíno, Gálvez and Duarte2018). Similarly, human studies (Mushtaq et al., Reference Mushtaq, Hussain, Zhang, Yuan, Li, Ullah, Wang and Xu2019; Silveira-Nunes et al., Reference Silveira-Nunes, Durso, Cunha, Maioli, Vieira, Speziali, Corrêa-Oliveira, Martins-Filho, Teixeira-Carvalho, Franceschi, Rampelli, Turroni, Brigidi and Faria2020; Joishy et al., Reference Joishy, Jha, Oudah, das, Adak, Deb and Khan2022) also support a direct relationship between F/B ratio and BP. In contrast, cold-induced HTN (Wang et al., Reference Wang, Liu, Lei, Xue, Li, Tian, Zhang and Luo2022) is one of the rare contexts wherein F/B ratio was not altered significantly. Nevertheless, more robust markers of gut dysbiosis should be developed to posit strong correlation between decreased microbial diversity and HTN.

Beyond the F/B ratio, remodeling of the overall composition of gut microbiota has been documented in the context of HTN. For example, enrichment in gut bacterial lactate producers such as Streptococcus and Turicibacter (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015; Toral et al., Reference Toral, Robles-Vera, de la Visitación, Romero, Sánchez, Gómez-Guzmán, Rodriguez-Nogales, Yang, Jiménez, Algieri, Gálvez, Raizada and Duarte2019b; Robles-Vera et al., Reference Robles-Vera, Toral, Visitación, Sánchez, Gómez-Guzmán, Muñoz, Algieri, Vezza, Jiménez, Gálvez, Romero, Redondo and Duarte2020b) and depletion of butyrate producers such as Coprococcus, and Pseudobutyrivibrio (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015; Durgan et al., Reference Durgan, Ganesh, Cope, Ajami, Phillips, Petrosino, Hollister and Bryan2016) are reported in hypertensive rodents. Importantly, Streptococcus and Coprococcus are also taxa similarly associated with human HTN (Yan et al., Reference Yan, Gu, Li, Yang, Jia, Chen, Han, Huang, Zhao, Li, Fang, Zhou, Guan, Ding, Wang, Khan, Xin, Li and Ma2017; de la Cuesta-Zuluaga et al., Reference de la Cuesta-Zuluaga, Mueller, Álvarez-Quintero, Velásquez-Mejía, Sierra, Corrales-Agudelo, Carmona, Abad and Escobar2018; Palmu et al., Reference Palmu, Salosensaari, Havulinna, Cheng, Inouye, Jain, Salido, Sanders, Brennan, Humphrey, Sanders, Vartiainen, Laatikainen, Jousilahti, Salomaa, Knight, Lahti and Niiranen2020; Verhaar et al., Reference Verhaar, Collard, Prodan, Levels, Zwinderman, Bäckhed, Vogt, Peters, Muller, Nieuwdorp and van den Born2020), and normalizing abundance of these with minocycline and captopril (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015; Li et al., Reference Li, Yang, Richards, Pepine and Raizada2020) lowered BP, further supporting their associations with BP.

Dietary interventions have also been used to study the relationship between gut microbiota and BP. Dietary salt can modulate the composition of microbiota by depleting the abundance of beneficial microbiota including several Lactobacilli species (Mell et al., Reference Mell, Jala, Mathew, Byun, Waghulde, Zhang, Haribabu, Vijay-Kumar, Pennathur and Joe2015; Wilck et al., Reference Wilck, Matus, Kearney, Olesen, Forslund, Bartolomaeus, Haase, Mähler, Balogh, Markó, Vvedenskaya, Kleiner, Tsvetkov, Klug, Costea, Sunagawa, Maier, Rakova, Schatz, Neubert, Frätzer, Krannich, Gollasch, Grohme, Côrte-Real, Gerlach, Basic, Typas, Wu, Titze, Jantsch, Boschmann, Dechend, Kleinewietfeld, Kempa, Bork, Linker, Alm and Müller2017; Bier et al., Reference Bier, Braun, Khasbab, Di Segni, Grossman, Haberman and Leibowitz2018; Yan et al., Reference Yan, Jin, Su, Yin, Gao, Wang, Zhang, Bu, Wang, Zhang, Wang and Zhang2020). An association between the depletion of Lactobacillus and HTN has also been noted in response to maternal and post-weaning high-fat diet, and it suggested that Lactobacillus may be beneficial in curbing developmental HTN (Tain et al., Reference Tain, Lee, Wu, Leu and Chan2018; Hsu et al., Reference Hsu, Hou, Lee, Chan and Tain2019). Although the mechanisms remain to be clarified, administration of Lactobacillus murinus prevented the expansion of proinflammatory IL-17A-producing CD4+ TH17 lymphocytes in small intestine, colon, and the splenic lamina propria (Wilck et al., Reference Wilck, Matus, Kearney, Olesen, Forslund, Bartolomaeus, Haase, Mähler, Balogh, Markó, Vvedenskaya, Kleiner, Tsvetkov, Klug, Costea, Sunagawa, Maier, Rakova, Schatz, Neubert, Frätzer, Krannich, Gollasch, Grohme, Côrte-Real, Gerlach, Basic, Typas, Wu, Titze, Jantsch, Boschmann, Dechend, Kleinewietfeld, Kempa, Bork, Linker, Alm and Müller2017). Data from human studies with Lactobacillus are however conflicting, as they may be enriched or depleted in hypertensive patients (Wilck et al., Reference Wilck, Matus, Kearney, Olesen, Forslund, Bartolomaeus, Haase, Mähler, Balogh, Markó, Vvedenskaya, Kleiner, Tsvetkov, Klug, Costea, Sunagawa, Maier, Rakova, Schatz, Neubert, Frätzer, Krannich, Gollasch, Grohme, Côrte-Real, Gerlach, Basic, Typas, Wu, Titze, Jantsch, Boschmann, Dechend, Kleinewietfeld, Kempa, Bork, Linker, Alm and Müller2017; Palmu et al., Reference Palmu, Salosensaari, Havulinna, Cheng, Inouye, Jain, Salido, Sanders, Brennan, Humphrey, Sanders, Vartiainen, Laatikainen, Jousilahti, Salomaa, Knight, Lahti and Niiranen2020; Silveira-Nunes et al., Reference Silveira-Nunes, Durso, Cunha, Maioli, Vieira, Speziali, Corrêa-Oliveira, Martins-Filho, Teixeira-Carvalho, Franceschi, Rampelli, Turroni, Brigidi and Faria2020; Wan et al., Reference Wan, Jiang, Lu, Tong, Zhou, Li, Yuan, Wang and Li2020; Liu et al., Reference Liu, Jiang, Liu, Shen, Ai, Zhu and Zhou2021b).

Gut metabolities, derived either from gut microbiota or involving both gut microbiota and host is of growing interest in the context of HTN. One such important class of microbial metabolites is short-chain fatty acid (SCFA). SCFAs such as acetate, propionate and butyrate are produced by bacterial fermentation of dietary carbohydrates and have been linked with BP regulation. It is reported that decreased SCFA production and the supplementation of SCFA lowered BP in rat and mouse HTN models, indicating the potential for antihypertensive therapy (Marques et al., Reference Marques, Nelson, Chu, Horlock, Fiedler, Ziemann, Tan, Kuruppu, Rajapakse, el-Osta, Mackay and Kaye2017; Kim et al., Reference Kim, Goel, Kumar, Qi, Lobaton, Hosaka, Mohammed, Handberg, Richards, Pepine and Raizada2018; Bartolomaeus et al., Reference Bartolomaeus, Balogh, Yakoub, Homann, Markó, Höges, Tsvetkov, Krannich, Wundersitz, Avery, Haase, Kräker, Hering, Maase, Kusche-Vihrog, Grandoch, Fielitz, Kempa, Gollasch, Zhumadilov, Kozhakhmetov, Kushugulova, Eckardt, Dechend, Rump, Forslund, Müller, Stegbauer and Avery2019; Robles-Vera et al., Reference Robles-Vera, Toral, la Visitación, Sánchez, Gómez-Guzmán, Romero, Yang, Izquierdo-Garcia, Jiménez, Ruiz-Cabello, Guerra-Hernández, Raizada, Pérez-Vizcaíno and Duarte2020c). In deoxycorticosterone acetate (DOCA)-salt-induced HTN, high-fiber diet lowered BP and enriched abundance of gut microbes producing acetate (Marques et al., Reference Marques, Nelson, Chu, Horlock, Fiedler, Ziemann, Tan, Kuruppu, Rajapakse, el-Osta, Mackay and Kaye2017). Interestingly, higher fecal levels of SCFA were associated with hypertensive individuals compared to normotensives (de la Cuesta-Zuluaga et al., Reference de la Cuesta-Zuluaga, Mueller, Álvarez-Quintero, Velásquez-Mejía, Sierra, Corrales-Agudelo, Carmona, Abad and Escobar2018; Huart et al., Reference Huart, Leenders, Taminiau, Descy, Saint-Remy, Daube, Krzesinski, Melin, de Tullio and Jouret2019; Calderón-Pérez et al., Reference Calderón-Pérez, Gosalbes, Yuste, Valls, Pedret, Llauradó, Jimenez-Hernandez, Artacho, Pla-Pagà, Companys, Ludwig, Romero, Rubió and Solà2020). Further, increased fecal SCFA was accompanied by decreased plasma SCFA and depleted butyrate-producing bacteria which suggests dysregulated production of SCFA in HTN condition (Calderón-Pérez et al., Reference Calderón-Pérez, Gosalbes, Yuste, Valls, Pedret, Llauradó, Jimenez-Hernandez, Artacho, Pla-Pagà, Companys, Ludwig, Romero, Rubió and Solà2020). The translational relevance and progress of animal as well as clinical studies in SCFA and BP have resulted in a clinical trial to determine the full efficacy of SCFA to treat HTN (Australian New Zealand Clinical Trials Registry ACTRN12619000916145). This phase II clinical trial used two SCFAs, acetate and butyrate which were supplemented with high-amylose maize, and the patients receiving the treatment showed 24-h BP lowering effect with the increase in gut microbes producing SCFA (Jama et al., Reference Jama, Rhys-Jones, Nakai, Yao, Climie, Sata, Anderson, Creek, Head, Kaye, Mackay, Muir and Marques2023), which is another evidence of the promising potential of targeting gut microbiota in HTN treatment. Another notable microbial metabolite is trimethylamine-N oxide (TMAO). Trimethylamine is produced by gut microbiota, and subsequently oxidized in the liver to form TMAO. Studies have shown the associations between higher plasma levels of TMAO and CVDs (Koeth et al., Reference Koeth, Wang, Levison, Buffa, Org, Sheehy, Britt, Fu, Wu, Li, Smith, DiDonato, Chen, Li, Wu, Lewis, Warrier, Brown, Krauss, Tang, Bushman, Lusis and Hazen2013, Reference Koeth, Lam-Galvez, Kirsop, Wang, Levison, Gu, Copeland, Bartlett, Cody, Dai, Culley, Li, Fu, Wu, Li, DiDonato, Tang, Garcia-Garcia and Hazen2019; Wang et al., Reference Wang, Tang, Buffa, Fu, Britt, Koeth, Levison, Fan, Wu and Hazen2014). In a meta-analysis involving human studies, higher circulating TMAO concentration was positively associated with an increased risk of HTN (Ge et al., Reference Ge, Zheng, Zhuang, Yu, Xu, Liu, Xi, Zhou and Fan2020). TMAO feeding further increased BP and promoted vasoconstriction in angiotensin II-induced hypertensive mice (Jiang et al., Reference Jiang, Shui, Cui, Tang, Wang, Qiu, Hu, Fei, Li, Zhang, Zhao, Xu, Dong, Ren, Liu, Persson, Patzak, Lai, Wei and Zheng2021). Besides SCFA and TMAO, there are many microbiota-derived metabolites such as indole, indole-3-acetic acids and secondary bile acids among others, that may have significant roles in BP regulation (Huć et al., Reference Huć, Nowinski, Drapala, Konopelski and Ufnal2018; Chakraborty et al., Reference Chakraborty, Lulla, Cheng, McCarthy, Yeo, Mandal, Alimadadi, Saha, Yeoh, Mell, Jia, Putluri, Putluri, Sreekumar, Wenceslau, Kumar, Meyer and Joe2020a). The knowledge on the effects of these microbial metabolites is growing, however, the precise underlying working mechanisms remain largely unknown.

Gut microbiota restructured in HTN: Cause, consequence or adaptation?

While an association between the reprogramming of gut microbiota and HTN is established, whether gut dysbiosis is a cause or a consequence of HTN is an important question to focus on. Initial experiments were designed to address this question by using antibiotics to eliminate endogenous gut microbiota. However, such studies did not provide conclusive evidence for cause or consequence because different antibiotics affected BP differently depending on both the type of antibiotic and the rodent strain (Galla et al., Reference Galla, Chakraborty, Cheng, Yeo, Mell, Zhang, Mathew, Vijay-Kumar and Joe2018, Reference Galla, Chakraborty, Cheng, Yeo, Mell, Chiu, Wenceslau, Vijay-Kumar and Joe2020). More convincing evidence for microbiota to cause a BP effect was obtained using germ-free Sprague Dawley (SD) rats. We showed that these rats which lack microbiota are hypotensive, with a prominent loss of vascular tone (Joe et al., Reference Joe, McCarthy, Edwards, Cheng, Chakraborty, Yang, Golonka, Mell, Yeo, Bearss, Furtado, Saha, Yeoh, Vijay-Kumar and Wenceslau2020). These findings are the first to clearly demonstrate that the host requires gut microbiota for BP homeostasis and maintenance of vascular tone (Joe et al., Reference Joe, McCarthy, Edwards, Cheng, Chakraborty, Yang, Golonka, Mell, Yeo, Bearss, Furtado, Saha, Yeoh, Vijay-Kumar and Wenceslau2020). One caveat to these studies is that the model used is not hypertensive. To establish the cause-effect relationship between HTN and gut microbiota, animal models such as germ-free hypertensive rat models can be developed. Such hypertensive germ-free rats will allow for testing the hypothesis that lack of microbiota will render them resistant to HTN. Currently, the lack of germ-free hypertensive rats as tools is a technical barrier to understand whether microbiota cause HTN.

To examine the causality of gut dysbiosis, Adnan et al. (Reference Adnan, Nelson, Ajami, Venna, Petrosino, Bryan and Durgan2017) performed gut microbiota cross-transplants between WKY and spontaneously hypertensive stroke-prone rats (SHRSP, a rodent model of HTN associated with high incidence of stroke. They observed that a stable transplant of SHRSP gut microbiota to normotensive WKY recipients, by oral gavage, led to a significant elevation in BP (Adnan et al., Reference Adnan, Nelson, Ajami, Venna, Petrosino, Bryan and Durgan2017). Similar trend was observed in another study after fecal microbiotal transplantation from SHR to WKY (Toral et al., Reference Toral, Robles-Vera, de la Visitación, Romero, Sánchez, Gómez-Guzmán, Rodriguez-Nogales, Yang, Jiménez, Algieri, Gálvez, Raizada and Duarte2019b). As an alternative approach to oral gavage transplants, which involve exposure to antibiotics, Nelson et al. (Reference Nelson, Phillips, Ganesh, Petrosino, Durgan and Bryan2021) swapped WKY and SHRSP gut microbiota using a cross-fostering protocol. By fostering newborn rat pups with a dam of the opposite strain, SHRSP rats were populated with a WKY gut microbiota and vice versa. Under these conditions, WKY rats harboring SHRSP gut microbiota developed a significantly elevated BP in adulthood compared to WKY rats with native WKY microbiota. Conversely, adult SHRSP rats harboring the WKY gut microbiota presented with significantly lower BP compared to SHRSP with their native SHRSP microbiota (Nelson et al., Reference Nelson, Phillips, Ganesh, Petrosino, Durgan and Bryan2021). These data signify that initial colonization of gut microbiota is critical and has long-lasting consequences on host pathophysiology.

As highlighted above, research focus has shifted to better understanding the mechanisms of host-microbiota interactions. Emerging studies address molecular mechanisms and demonstrate how BP may be regulated by bacterial metabolites via effects on the aryl hydrocarbon receptor (Natividad et al., Reference Natividad, Agus, Planchais, Lamas, Jarry, Martin, Michel, Chong-Nguyen, Roussel, Straube, Jegou, McQuitty, le Gall, da Costa, Lecornet, Michaudel, Modoux, Glodt, Bridonneau, Sovran, Dupraz, Bado, Richard, Langella, Hansel, Launay, Xavier, Duboc and Sokol2018; Liu et al., Reference Liu, Miao, Deng, Vaziri, Li and Zhao2021a), and G-protein coupled receptors (Marques et al., Reference Marques, Mackay and Kaye2018; Xu and Marques, Reference Xu and Marques2022) among others, which may impact end organ functions of the kidney, vasculature, brain and heart. Emerging work from Durgan et al. shows that a new mechanism by which signals derived from the gut microbiota (i.e., metabolites, neurotransmitters, endotoxins) may be distributed throughout the host via packaging into outer membrane vesicles (OMVs). These OMVs are lipid-bound vesicles (as known as bacterial liposomes) released from the gut microbiota that are capable of crossing the gut barrier and entering the systemic circulation. Bacterial OMVs can carry a wide range of ‘cargo’ including proteins, lipids, and small RNA, that can be delivered to and exert effects on distant host cells. They have shown that OMVs from the SHRSP microbiota have unique protein and lipid cargo as compared to OMVs from the WKY microbiota. Additionally, they find that SHRSP OMVs gavaged to WKY rats leads to significant elevations in BP (Shi et al., Reference Shi, Shi, Phillips, Zhang, Ayyaswamy, Bryan and Durgan2021a).

Previous reports showed no gut dysbiosis in pre-hypertensive SHR (Santisteban et al., Reference Santisteban, Qi, Zubcevic, Kim, Yang, Shenoy, Cole-Jeffrey, Lobaton, Stewart, Rubiano, Simmons, Garcia-Pereira, Johnson, Pepine and Raizada2017; Yang et al., Reference Yang, Li, Oliveira, Goel, Richards, Pepine and Raizada2020), suggesting that gut dysbiosis may arise as a consequence of HTN. However, these studies demonstrated colonic changes in pre-hypertensive SHR indicating a dysregulated gut barrier before developing HTN. Future studies should address this more specifically. Nevertheless, transplant experiments show that gut dysbiosis contributes to HTN and that manipulation of gut microbiota can alleviate HTN, suggesting that gut microbiota could be a potential therapeutic target.

Gut microbiota as therapeutic targets

There is considerable excitement of targeting gut microbiota for translational applications as evident from ongoing clinical trials for microbiota-guided therapies for HTN (https://clinicaltrials.gov/ct2/results?cond=hypertension&term=minocycline&cntry=&state=&city=&dist=). In preclinical studies, our group recently proposed Faecalibacterium prausnitzii as a novel probiotic to attenuate chronic kidney disease (CKD) conditions, following demonstrated depletion of F. prausnitzii in CKD patients in eastern and western human hypertensive populations. Importantly, supplementation of F. prausnitzii in a CKD mouse model not only ameliorated renal dysfunction, renal inflammation, and the levels of uremic toxins, but also improved gut ecology and intestinal integrity (Li et al., Reference Li, Xu, Xu, Tang, Jiang, Li, Xia, Cui, Bai, Dai, Han, Li, Peng, Dong, Aryal, Manandhar, Eladawi, Shukla, Kang, Joe and Yang2022). Since F. prausnitzii has also been reported to be depleted in CVD (Jie et al., Reference Jie, Xia, Zhong, Feng, Li, Liang, Zhong, Liu, Gao, Zhao, Zhang, Su, Fang, Lan, Li, Xiao, Li, Li, Li, Li, Ren, Huang, Peng, Li, Wen, Dong, Chen, Geng, Zhang, Yang, Wang, Wang, Zhang, Madsen, Brix, Ning, Xu, Liu, Hou, Jia, He and Kristiansen2017; Aryal et al., Reference Aryal, Alimadadi, Manandhar, Joe and Cheng2020), and CVD and CKD are highly correlated, it is possible that enhancing F. prausnitzii could be beneficial for CVD, for which HTN is a major risk factor (Li et al., Reference Li, Xu, Xu, Tang, Jiang, Li, Xia, Cui, Bai, Dai, Han, Li, Peng, Dong, Aryal, Manandhar, Eladawi, Shukla, Kang, Joe and Yang2022). Supporting this notion, studies have shown that F. prausnitzii is significantly abundant in normotensive compared to hypertensive humans, demonstrating strong correlation of this specific microbe with BP (Yan et al., Reference Yan, Gu, Li, Yang, Jia, Chen, Han, Huang, Zhao, Li, Fang, Zhou, Guan, Ding, Wang, Khan, Xin, Li and Ma2017; Calderón-Pérez et al., Reference Calderón-Pérez, Gosalbes, Yuste, Valls, Pedret, Llauradó, Jimenez-Hernandez, Artacho, Pla-Pagà, Companys, Ludwig, Romero, Rubió and Solà2020). However, in contradiction, Faecalibacterium was more enriched in individuals with high BP (Joishy et al., Reference Joishy, Jha, Oudah, das, Adak, Deb and Khan2022). Therefore, there is a need to directly examine the potential of F. prausnitzii in rigorous animal model studies.

In addition to being considered as therapeutic agents, gut microbiota may be involved in the modulation of our responses to antihypertensive medications (Kyoung et al., Reference Kyoung, Atluri and Yang2022). The efficacy of angiotensin-converting enzyme (ACE) inhibitors is reportedly modulated by the gut microbiota (Kyoung and Yang, Reference Kyoung and Yang2022; Yang et al., Reference Yang, Mei, Tackie-Yarboi, Akere, Kyoung, Mell, Yeo, Cheng, Zubcevic, Richards, Pepine, Raizada, Schiefer and Joe2022). Our group has recently demonstrated that quinapril, which is absorbed in the gut and metabolized by esterases in the liver to yield an active metabolite in circulation is prematurely catabolized in the gut by microbiota. This led to reduced availability of the active metabolite, quinaprilatin in circulation, which was associated with reduced BP responses to oral administration of quinalapril (Yang et al., Reference Yang, Mei, Tackie-Yarboi, Akere, Kyoung, Mell, Yeo, Cheng, Zubcevic, Richards, Pepine, Raizada, Schiefer and Joe2022). We further identified that a specific microbiota, Coprococcus comes, contains a bacterial form of esterase and may be one of the culprits for the premature quinalapril degradation and reduction in its efficacy as a BP-lowering agent. Interestingly, a higher abundance of C. comes is present in the African American hypertensive population (Yang et al., Reference Yang, Mei, Tackie-Yarboi, Akere, Kyoung, Mell, Yeo, Cheng, Zubcevic, Richards, Pepine, Raizada, Schiefer and Joe2022) who are known to respond poorly to ACE inhibitor treatments compared to Caucasian hypertensive patients (Yang et al., Reference Yang, Mei, Tackie-Yarboi, Akere, Kyoung, Mell, Yeo, Cheng, Zubcevic, Richards, Pepine, Raizada, Schiefer and Joe2022). This proof-of-concept study implicates that gut microbiota is a crucial factor defining individualized responses to hypertensive medications that should be addressed in future efficacy studies of antihypertensive drugs.

Current limitations in microbiome research for HTN

While such physiological studies are clearly important, drawing conclusions about the role of individual microbes in BP regulation, based on 16S analysis alone, can be problematic. The issue stems from the fact that multiple species can carry out the same function (e.g., generate the same metabolite), also referred to as functional redundancy. This redundancy likely contributes to the disparate candidate bacteria identified across hypertensive models and research facilities (Table 1). Another limitation of 16S analysis is that it captures a limited portion of the bacterial genome (Lewis et al., Reference Lewis, Nash, Li and Ahn2021). These limitations can be addressed by sequencing of whole bacterial genomes known as metagenomic sequencing, which is an emerging area in HTN research (Walejko et al., Reference Walejko, Kim, Goel, Handberg, Richards, Pepine and Raizada2018; Shi et al., Reference Shi, Zhang, Abo-Hamzy, Nelson, Ambati, Petrosino, Bryan and Durgan2021b). It should be noted that at the current stage, it is a misnomer to use the term ‘microbiome’ until metagenomes are reported. With the advent of rapid and cost-effective technologies, progress in reporting of metagenomes is anticipated to provide a platform for association studies of metagenomes with HTN. Metagenomics however falls short in assessing activity of the identified bacterial genes. Thus, combining metagenomics with an assessment of the functional output from the microbiota (i.e., proteomics, metabolomics, lipidomics) can be especially powerful. A recent study by the Durgan laboratory examined the role of gut dysbiosis in the SHRSP model by combining metagenomics with metabolomics analysis of the cecal bacterial content and the host plasma. While metabolomics revealed significant reductions in cecal and plasma primary and secondary bile acids in the SHRSP, metagenomics pinpointed that specific genes encoding bacterial enzymes involved in bile acid transformation were also reduced in the SHRSP microbiota. Thus, assessing changes in microbiota function will be useful in the development of targeted approaches for the treatment of HTN.

One other limitation in elucidation of functional consequences of host-microbiota interactions is addressing the complexity of such interactions. Gut microbiota and the host have evolved for centuries to live in complete symbiosis. This means that they are mutually dependent for survival and homeostasis. For example, humans are not capable of degrading fiber (Kaoutari et al., Reference Kaoutari, Armougom, Gordon, Raoult and Henrissat2013; Cockburn and Koropatkin, Reference Cockburn and Koropatkin2016). Gut bacteria aid the host by fermentation of fiber, thus generating SCFAs which are the main source of energy for the host colonic epithelium (Koh et al., Reference Koh, De Vadder, Kovatcheva-Datchary and Bäckhed2016; Baxter et al., Reference Baxter, Schmidt, Venkataraman, Kim, Waldron and Schmidt2019). Thus, the reduction of beneficial SCFA-producing bacteria, as seen in human and rodent HTN (Yang et al., Reference Yang, Santisteban, Rodriguez, Li, Ahmari, Carvajal, Zadeh, Gong, Qi, Zubcevic, Sahay, Pepine, Raizada and Mohamadzadeh2015; Gomez-Arango et al., Reference Gomez-Arango, Barrett, McIntyre, Callaway, Morrison and Dekker Nitert2016; Kim et al., Reference Kim, Goel, Kumar, Qi, Lobaton, Hosaka, Mohammed, Handberg, Richards, Pepine and Raizada2018; Yang et al., Reference Yang, Magee, Colon-Perez, Larkin, Liao, Balazic, Cowart, Arocha, Redler, Febo, Vickroy, Martyniuk, Reznikov and Zubcevic2019b; Calderón-Pérez et al., Reference Calderón-Pérez, Gosalbes, Yuste, Valls, Pedret, Llauradó, Jimenez-Hernandez, Artacho, Pla-Pagà, Companys, Ludwig, Romero, Rubió and Solà2020; Overby and Ferguson, Reference Overby and Ferguson2021), disrupts the symbiotic host-microbiota relationship leading to disease. In return, the bacteria have most likely evolved by adapting and responding to the host, as evidenced by the effects of genetic host manipulations on gut bacterial composition (Yang et al., Reference Yang, Ahmari, Schmidt, Redler, Arocha, Pacholec, Magee, Malphurs, Owen, Krane, Li, Wang, Vickroy, Raizada, Martyniuk and Zubcevic2017; Bartley et al., Reference Bartley, Yang, Arocha, Malphurs, Larkin, Magee, Vickroy and Zubcevic2018). Recent studies have attempted to address the complexity of host-microbiota interactions in symbiosis and dysbiosis. Of note, a recent study using isotope tracing found that the host can regulate the composition of gut bacteria by allowing the passage of host-circulating metabolites into the gut (Zeng et al., Reference Zeng, Xing, Gupta, Keber, Lopez, Lee, Roichman, Wang, Neinast, Donia, Wühr, Jang and Rabinowitz2022). These host/gut cometabolites were found to be beta-hydroxybutyrate (BHB), lactate and urea, among other, which are preferentially utilized as nutrients by certain bacterial communities. Future studies should investigate how these cometabolites contribute to regulation of gut microbiota eubiosis and how this interaction reflects on BP regulation. We have recently shown that the circulating BHB and gut microbiota are both salt-responsive (Chakraborty et al., Reference Chakraborty, Galla, Cheng, Yeo, Mell, Singh, Yeoh, Saha, Mathew, Vijay-Kumar and Joe2018). Moreover, we found that circulating BHB was decreased with high salt feeding, and that supplementation with BHB alleviated salt-sensitive HTN, but the contribution of gut microbiota to BHB generation or the potential direct effect of BHB on gut microbiota in BP regulation remains unknown. Thus, gut microbiota may have coevolved with the host to produce, utilize and respond to a variety of the same metabolite-substrate-effectors, reflected in the expression of some of the same genes by the bacteria and the host (Bartley et al., Reference Bartley, Yang, Arocha, Malphurs, Larkin, Magee, Vickroy and Zubcevic2018; Yang et al., Reference Yang, Richards, Pepine and Raizada2018, Reference Yang, Mei, Tackie-Yarboi, Akere, Kyoung, Mell, Yeo, Cheng, Zubcevic, Richards, Pepine, Raizada, Schiefer and Joe2022; Hsu et al., Reference Hsu, Yu, Lin, Tiao, Huang, Hou, Chang-Chien, Lin and Tain2022). Thus, the utilization of combined omics, employed at both microbiota and host levels, will lead to better predictions and targeting of host-microbiota interactions for therapeutics.

In conclusion, as noted through the numbers of studies reported in PubMed, microbiota is an emerging and important research area in HTN, surpassing that of GWAS and QTL studies of HTN (Figure 1a,b). Although research is still in early conception, given that the gut metagenomes co-evolve with the host and are critical for BP regulation, risk prediction for HTN using a PRS may be more informative in combination with new bacterial analysis approaches leading up to a ‘MRS’ that encompass both the metagenomic profiles and the functional bacterial readouts. The groundwork required for accumulating metagenomic signatures is admittedly daunting because of the fluctuating nature of microbiota, but collecting these data is important for its ultimate convergence with PRS for enhancing predictive strategies for HTN. Such an endeavor demands intense computational analyses that may only be addressable with AI strategies.

An application of AI and machine learning in HTN research

AI refers to methods for transferring human intellect to computers that can stimulate human learning and thought processes by using sophisticated algorithms and powerful computing capacity to process large amounts of data (Chaikijurajai et al., Reference Chaikijurajai, Laffin and Tang2020; Tsoi et al., Reference Tsoi, Yiu, Lee, Cheng, Wang, Tay, Teo, Turana, Soenarta, Sogunuru, Siddique, Chia, Shin, Chen, Wang and Kario2021). Machine learning (ML) and deep learning (DL) are the two subclasses of AI (Tsoi et al., Reference Tsoi, Yiu, Lee, Cheng, Wang, Tay, Teo, Turana, Soenarta, Sogunuru, Siddique, Chia, Shin, Chen, Wang and Kario2021). ML finds the association between the provided training datasets with variables and then performs predictive analyses on the new sets of data (Tsoi et al., Reference Tsoi, Yiu, Lee, Cheng, Wang, Tay, Teo, Turana, Soenarta, Sogunuru, Siddique, Chia, Shin, Chen, Wang and Kario2021). ML is further classified into supervised and unsupervised learning (Chaikijurajai et al., Reference Chaikijurajai, Laffin and Tang2020). Supervised ML relies on the labeled input–output paired data which is then used for the prediction of known output (Cheng et al., Reference Cheng, Manandhar, Aryal and Joe2011). It employs a variety of methods, including neural networks, support vector machines, random forest and naive Bayes (Cheng et al., Reference Cheng, Manandhar, Aryal and Joe2011). On the other hand, unsupervised ML employs unlabeled datasets to predict unknown outputs by detecting underlying patterns or correlations among the variables (Cheng et al., Reference Cheng, Manandhar, Aryal and Joe2011; Chaikijurajai et al., Reference Chaikijurajai, Laffin and Tang2020). The principal use of DL is pattern recognition, such as in voice and image analysis (Chaikijurajai et al., Reference Chaikijurajai, Laffin and Tang2020).

AI is increasingly being used in human HTN research (Figure 1b). Recent studies have shown how AI has the ability to reduce the worldwide burden of HTN and promote the development of HTN-related precision medicine (Golino et al., Reference Golino, Amaral, Duarte, Gomes, Soares, Reis and Santos2014; Ye et al., Reference Ye, Fu, Hao, Zhang, Wang, Jin, Xia, Liu, Zhou, Wu, Guo, Zhu, Li, Culver, Alfreds, Stearns, Sylvester, Widen, McElhinney and Ling2018; Lacson et al., Reference Lacson, Baker, Suresh, Andriole, Szolovits and Lacson2019; Kanegae et al., Reference Kanegae, Suzuki, Fukatani, Ito, Harada and Kario2020; López-Martínez et al., Reference López-Martínez, Núñez-Valdez, Crespo and García-Díaz2020; Soh et al., Reference Soh, Ng, Jahmunah, Oh, San and Acharya2020; Schrumpf et al., Reference Schrumpf, Frenzel, Aust, Osterhoff and Fuchs2021). As a result, the main goal of these investigations is to enhance the clinical management of HTN. Persell et al. conducted a randomized clinical trial of 297 persons with uncontrolled HTN to examine the impact of AI, smartphone coaching apps monitoring systolic BP and HTN-associated behavior. At the 6-month follow-up, the researchers did not discover decreased BP, but they did create a space for the possibility of different treatment effects among age subgroups (Persell et al., Reference Persell, Peprah, Lipiszko, Lee, Li, Ciolino, Karmali and Sato2020). Pan et al. (Reference Pan, He, Chen, Pu, Zhao and Zheng2019) coupled auscultatory waveforms data with ML to measure BP from Korotkoff sound recordings and examine the impact of movement disturbance on BP regulation. Among 40 healthy volunteers, their brand-new DL-based automatic BP measurement instrument showed encouraging accuracy in BP monitoring both when resting and not resting (Pan et al., Reference Pan, He, Chen, Pu, Zhao and Zheng2019). In 965 participants, Li et al. employed ML to identify genetic and environmental risk factors for HTN. To identify risk factors for HTN in the Northern Han Chinese population, they created two separate models for systolic BP (composed of age, body mass index, waist circumference, exercise [times per week], parental history of HTN [either or both], and 1 SNP (rs7305099)) and diastolic BP {composed of weight, drinking, exercise [times per week], triglyceride, parental history of HTN [either or both] and 3 SNPs (rs5193, rs7305099, rs3889728)} with an AUC (area under the curve) of 0.673 and 0.817 for the systolic BP and diastolic BP models respectively (Li et al., Reference Li, Sun, Liu, Li, Zhang, Liu, Wang, Wen and Zhou2019a). Future use of these AI/ML technologies to HTN may be combined to create a ‘clinical risk score’ (CRS).

To investigate the multifactorial causes of high BP, Louca et al. recently combined environmental, dietary, genetic, metabolite, biochemical and clinical data from two different cohorts. Then they applied the ML XGBoost algorithm to this multimodal domain. They included 4,863 TwinsUK subjects for the study and used 2,807 subjects from the Qatari Biobank to validate their findings. They discovered 30 overlapping features between the two groups, including age, BMI, sex, dihomo-linolenate, urate, cis-4-decenoyl cartinine, lactate, glucose, cortisol, chloride, histidine and creatinine to be associated with HTN. These BP biomarkers are crucial for prioritizing mechanistic investigations and for finding effective novel therapies for HTN (Louca et al., Reference Louca, Tran, Toit, Christofidou, Spector, Mangino, Suhre, Padmanabhan and Menni2022). Although this research examined a number of significant CRS and PRS domains to pinpoint the critical elements involved in the regulation of BP, gut microbiota features, which are crucial for building MRS, were not taken into account. Nakai et al. in their recent study performed the first gut microbiome multisite study involving 70 human subjects with HTN and without HTN. The authors combined ML with microbiome pathway analysis and reported differential microbial gene pathways between hypertensive and normotensive participants despite similar gut microbiota profile (Nakai et al., Reference Nakai, Ribeiro, Stevens, Gill, Muralitharan, Yiallourou, Muir, Carrington, Head, Kaye and Marques2021).

As one of the initial steps toward application of AI/ML in development of a MRS for HTN, our group had recently interrogated if the composition of microbiota may be used to classify patients with or without CVDs (Aryal et al., Reference Aryal, Alimadadi, Manandhar, Joe and Cheng2020). Due to the lack of information on the status of HTN in the American Gut Project, we resorted to classification of a broader group of patients. Using the top operational taxonomic unit features obtained from fecal 16S ribosomal RNA sequencing data of 478 CVD and 473 non-CVD human subjects, random forest, a supervised ML algorithm, was able to correctly classify between patients with CVD and without CVD, with an AUC value of 0.70. It denotes the prospective capacity of ML for case and control distinction (Aryal et al., Reference Aryal, Alimadadi, Manandhar, Joe and Cheng2020). Considering the wide range of variability in binning CVD as a single phenotype, an AUC of 0.7 further signifies that microbiota contribute to CVD, and that an association between disease and microbiota can be identified using AI. To move closer to the eventual objective of creating MRS for HTN, such data are required in the context of HTN.

Beyond its usage in healthcare, AI/ML can be used to understand GWAS results by spotting intricate underlying data patterns that make predictions easier. Such methodology improved the prediction of PRS for height, body mass index and diabetes (Paré et al., Reference Paré, Mao and Deng2017). Since there exist high-quality GWAS data for HTN, there is a possibility that similar AI/ML methodologies will be merged with CRS and MRS to improve the translational capacities of PRS for HTN (Figure 2).

Figure 2. The integration of polygenic risk score, metagenomic risk score and clinical risk score using artificial intelligence is required for the precision medicine in hypertension.

Limitations of AI in HTN research

Although the use of AI in HTN has the potential to revolutionize risk prediction, this goal has significant constraints as listed below: (i) There are currently no standards for reporting AI investigations in HTN cases with sufficient rigor. In many publications, for instance, external validation datasets are not used. Very few research articles report the model calibration metrics and, bias brought about by algorithms is typically disregarded (Du Toit et al., Reference du Toit, Tran, Deo, Aryal, Lip, Sykes and Padmanabhan2023). (ii) There is a paucity of open-access databases that provide information on the genotypic and phenotypic characteristics of HTN. (iii) a major current limitation is that large cohort data containing both genomic and microbiota data are lacking. (iv) AI/ML operates in a ‘black box’ (i.e., it is unclear how it does what it does), which is claimed to be the main reason why physicians are reluctant to implement AI technology in clinical practice (Cheng et al., Reference Cheng, Manandhar, Aryal and Joe2011). (v) the interpretability of the AI models, the absence of cause-and-effect reasoning, the capacity to self-monitor errors, and the presence of societal biases are a few more drawbacks (Padmanabhan et al., Reference Padmanabhan, Tran and Dominiczak2021).

Some solutions for the limitations mentioned above could be to (i) develop easily interpretable AI models which can discern the relationship between the variables contributing to HTN, (ii) promote initiatives for setting up large-scale and rapid data-sharing of large cohort data specifically pertinent to HTN and (iii) development of standardized methodologies to control for rigor of human judgment into the AI systems for determining errors (Padmanabhan et al., Reference Padmanabhan, Tran and Dominiczak2021).

In conclusion, this review has summarized the mounting evidence that BP is closely correlated with the microbiota, which make up the second-largest genome after the host genome. In light of this borgeoning evidence, we propose exploiting such data for the development of a MRS as a predictive index for HTN. Additionally, we propose using MRS as part of a larger framework that incorporates PRS and CRS to build an AI-based model. Considerable research efforts to generate MRS may serve as a tool to enhance the existing, primarily insufficient predictive capability for the management of HTN.

Open peer review

To view the open peer review materials for this article, please visit http://doi.org/10.1017/pcm.2023.13.

Data availability statement

Data availability is not applicable to this article as no new data were created or analyzed in this study.

Acknowledgments

The authors thank Mr. Sarbesh Rijal, MS, Nepal for generating Figure 2. Graphical abstract was created with BioRender.com.

Author contribution

Conceptualization: S.A., I.M., B.J.; Drafting the original manuscript: S.A., I.M., B.S.Y., J.Z., D.J.D., M.V.-K., B.J.; Revision, editing and final approval of the manuscript: S.A., I.M., X.M., B.S.Y., R.T., P.S., I.O., J.Z., D.J.D., M.V-K., B.J.

Financial support

This work was supported by the National, Heart, Lung, and Blood Institute (NHLBI) (B.J., R01HL143082); the National Institutes of Health (NIH)-National Cancer Institute (NCI) grant (M.V.-K, R01CA219144); NHLBI and Research Corporation for Science Advancement (D.J.D., R01HL134838, RCSA27917); NHLBI (J.Z., R01HL152162); NHLBI (I.O., R00HL153896); American Heart Association Career Development Award (P.S., 855256) and American Heart Association Award (B.S.Y., 831112).

Competing interest

The authors declare none.

Footnotes

S.A. and I.M. contributed equally to this work.

References

Abboud, FM, Cicha, MZ, Ericsson, A, Chapleau, MW and Singh, MV (2021) Altering early life gut microbiota has long-term effect on immune system and hypertension in spontaneously hypertensive rats. Frontiers in Physiology 1920, 752924.CrossRefGoogle Scholar
Adnan, S, Nelson, JW, Ajami, NJ, Venna, VR, Petrosino, JF, Bryan, RM and Durgan, DJ (2017) Alterations in the gut microbiota can elicit hypertension in rats. Physiological Genomics 49(2), 96104.CrossRefGoogle ScholarPubMed
All of Us Research Program Investigators (2019) The “all of us” research program. New England Journal of Medicine 381(7), 668676.CrossRefGoogle Scholar
Aryal, S, Alimadadi, A, Manandhar, I, Joe, B and Cheng, X (2020) Machine learning strategy for gut microbiome-based diagnostic screening of cardiovascular disease. Hypertension 76, 15551562.CrossRefGoogle ScholarPubMed
Avery, EG, Bartolomaeus, H, Rauch, A, Chen, CY, N’Diaye, G, Löber, U, Bartolomaeus, TUP, Fritsche-Guenther, R, Rodrigues, AF, Yarritu, A, Zhong, C, Fei, L, Tsvetkov, D, Todiras, M, Park, JK, Markó, L, Maifeld, A, Patzak, A, Bader, M, Kempa, S, Kirwan, JA, Forslund, SK, Müller, DN and Wilck, N (2022) Quantifying the impact of gut microbiota on inflammation and hypertensive organ damage. Cardiovascular Research. 00, 112 https://doi.org/10.1093/cvr/cvac121.Google Scholar
Bartley, A, Yang, T, Arocha, R, Malphurs, WL, Larkin, R, Magee, KL, Vickroy, TW and Zubcevic, J (2018) Increased abundance of Lactobacillales in the colon of beta-adrenergic receptor knock out mouse is associated with increased gut bacterial production of short chain fatty acids and reduced IL17 expression in circulating CD4+ immune cells. Frontiers in Physiology 9, 1593.CrossRefGoogle ScholarPubMed
Bartolomaeus, H, Balogh, A, Yakoub, M, Homann, S, Markó, L, Höges, S, Tsvetkov, D, Krannich, A, Wundersitz, S, Avery, EG, Haase, N, Kräker, K, Hering, L, Maase, M, Kusche-Vihrog, K, Grandoch, M, Fielitz, J, Kempa, S, Gollasch, M, Zhumadilov, Z, Kozhakhmetov, S, Kushugulova, A, Eckardt, KU, Dechend, R, Rump, LC, Forslund, SK, Müller, DN, Stegbauer, J and Avery, EG (2019) Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation 139(11), 14071421.CrossRefGoogle ScholarPubMed
Baxter, NT, Schmidt, AW, Venkataraman, A, Kim, KS, Waldron, C and Schmidt, TM (2019) Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio 10(1), e02566e02518.CrossRefGoogle ScholarPubMed
Bellikci-Koyu, E, Sarer-Yurekli, BP, Akyon, Y, Aydin-Kose, F, Karagozlu, C, Ozgen, AG, Brinkmann, A, Nitsche, A, Ergunay, K, Yilmaz, E and Buyuktuncer, Z (2019) Effects of regular kefir consumption on gut microbiota in patients with metabolic syndrome: A parallel-group, randomized, controlled study. Nutrients 11(9), 2089.CrossRefGoogle ScholarPubMed
Bier, A, Braun, T, Khasbab, R, Di Segni, A, Grossman, E, Haberman, Y and Leibowitz, A (2018) A high salt diet modulates the gut microbiota and short chain fatty acids production in a salt-sensitive hypertension rat model. Nutrients 10(9), 1154.CrossRefGoogle Scholar
Biino, G, Parati, G, Concas, MP, Adamo, M, Angius, A, Vaccargiu, S and Pirastu, M (2013) Environmental and genetic contribution to hypertension prevalence: Data from an epidemiological survey on Sardinian genetic isolates. PLoS One 8(3), e59612.CrossRefGoogle ScholarPubMed
Buniello, A, MacArthur, JAL, Cerezo, M, Harris, LW, Hayhurst, J, Malangone, C, McMahon, A, Morales, J, Mountjoy, E, Sollis, E, Suveges, D, Vrousgou, O, Whetzel, PL, Amode, R, Guillen, JA, Riat, HS, Trevanion, SJ, Hall, P, Junkins, H, Flicek, P, Burdett, T, Hindorff, LA, Cunningham, F and Parkinson, H (2019) The NHGRI-EBI GWAS catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Research 47(D1), D1005D1012.CrossRefGoogle Scholar
Cabrera, CP, Ng, FL, Nicholls, HL, Gupta, A, Barnes, MR, Munroe, PB and Caulfield, MJ (2019) Over 1000 genetic loci influencing blood pressure with multiple systems and tissues implicated. Human Molecular Genetics 28(R2), R151R161.CrossRefGoogle ScholarPubMed
Calderón-Pérez, L, Gosalbes, MJ, Yuste, S, Valls, RM, Pedret, A, Llauradó, E, Jimenez-Hernandez, N, Artacho, A, Pla-Pagà, L, Companys, J, Ludwig, I, Romero, MP, Rubió, L and Solà, R (2020) Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study. Scientific Reports 10(1), 116.CrossRefGoogle ScholarPubMed
Calderón-Pérez, L, Llauradó, E, Companys, J, Pla-Pagà, L, Pedret, A, Rubió, L, Gosalbes, MJ, Yuste, S, Solà, R and Valls, RM (2021) Interplay between dietary phenolic compound intake and the human gut microbiome in hypertension: A cross-sectional study. Food Chemistry 344, 128567.CrossRefGoogle ScholarPubMed
Capper, TE, Houghton, D, Stewart, CJ, Blain, AP, McMahon, N, Siervo, M, West, DJ and Stevenson, EJ (2020) Whole beetroot consumption reduces systolic blood pressure and modulates diversity and composition of the gut microbiota in older participants. NFS Journal 21, 2837.CrossRefGoogle Scholar
Cavazos, TB and Witte, JS (2021) Inclusion of variants discovered from diverse populations improves polygenic risk score transferability. Human Genetics and Genomics Advances 2(1), 100017.CrossRefGoogle ScholarPubMed
Chaikijurajai, T, Laffin, LJ and Tang, WHW (2020) Artificial intelligence and hypertension: Recent advances and future outlook. American Journal of Hypertension 33(11), 967974.CrossRefGoogle ScholarPubMed
Chakraborty, S, Galla, S, Cheng, X, Yeo, JY, Mell, B, Singh, V, Yeoh, BS, Saha, P, Mathew, AV, Vijay-Kumar, M and Joe, B (2018) Salt-responsive metabolite, β-hydroxybutyrate, attenuates hypertension. Cell Reports 25(3), 677689.CrossRefGoogle ScholarPubMed
Chakraborty, S, Mandal, J, Cheng, X, Galla, S, Hindupur, A, Saha, P, Yeoh, BS, Mell, B, Yeo, JY, Vijay-Kumar, M, Yang, T and Joe, B (2020b) Diurnal timing dependent alterations in gut microbial composition are synchronously linked to salt-sensitive hypertension and renal damage. Hypertension 76(1), 5972.CrossRefGoogle ScholarPubMed
Chakraborty, S, Lulla, A, Cheng, X, McCarthy, C, Yeo, JY, Mandal, J, Alimadadi, A, Saha, P, Yeoh, BS, Mell, B, Jia, W, Putluri, V, Putluri, N, Sreekumar, A, Wenceslau, CF, Kumar, MV, Meyer, KA and Joe, B (2020a) Abstract P238: Bile acid metabolites modulate hypertension. Hypertension 76(Suppl_1), AP238.CrossRefGoogle Scholar
Chang, Y, Chen, Y, Zhou, Q, Wang, C, Chen, L, di, W and Zhang, Y (2020) Short-chain fatty acids accompanying changes in the gut microbiome contribute to the development of hypertension in patients with preeclampsia. Clinical Science 134(2), 289302.CrossRefGoogle Scholar
Chen, Y, Zhu, Y, Wu, C, Lu, A, Deng, M, Yu, H, Huang, C, Wang, W, Li, C, Zhu, Q and Wang, L (2020) Gut dysbiosis contributes to high fructose-induced salt-sensitive hypertension in Sprague-Dawley rats. Nutrition 75, 110766.CrossRefGoogle ScholarPubMed
Cheng, X, Manandhar, I, Aryal, S and Joe, B (2011) Application of artificial intelligence in cardiovascular medicine. Comprehensive Physiology 11(4), 24552466.Google Scholar
Choi, SW, Mak, TS-H and O’Reilly, PF (2020) Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols 15(9), 27592772.CrossRefGoogle ScholarPubMed
Cockburn, DW and Koropatkin, NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. Journal of Molecular Biology 428(16), 32303252.CrossRefGoogle ScholarPubMed
Dan, X, Mushi, Z, Baili, W, Han, L, Enqi, W, Huanhu, Z and Shuchun, L (2019) Differential analysis of hypertension-associated intestinal microbiota. International Journal of Medical Sciences 16(6), 872.CrossRefGoogle ScholarPubMed
de la Cuesta-Zuluaga, J, Mueller, NT, Álvarez-Quintero, R, Velásquez-Mejía, E, Sierra, J, Corrales-Agudelo, V, Carmona, J, Abad, J and Escobar, JS (2018) Higher fecal short-chain fatty acid levels are associated with gut microbiome dysbiosis, obesity, hypertension and cardiometabolic disease risk factors. Nutrients 11(1), 51.CrossRefGoogle ScholarPubMed
Dehghan, A (2018) Genome-wide association studies. Methods in Molecular Biology 1793, 3749.CrossRefGoogle ScholarPubMed
Durgan, DJ, Ganesh, BP, Cope, JL, Ajami, NJ, Phillips, SC, Petrosino, JF, Hollister, EB and Bryan, RM (2016) Role of the gut microbiome in obstructive sleep apnea-induced hypertension. Hypertension 67(2), 469474.CrossRefGoogle ScholarPubMed
du Toit, C, Tran, TQB, Deo, N, Aryal, S, Lip, S, Sykes, R, … & Padmanabhan, S (2023). Survey and Evaluation of Hypertension Machine Learning Research. Journal of the American Heart Association 12(1) e027896. https://doi.org/10.1161/JAHA.122.027896.CrossRefGoogle ScholarPubMed
Ference, BA, Julius, S, Mahajan, N, Levy, PD, Williams, KA Sr and Flack, JM (2014) Clinical effect of naturally random allocation to lower systolic blood pressure beginning before the development of hypertension. Hypertension 63(6), 11821188.CrossRefGoogle ScholarPubMed
Ferguson, JF, Aden, LA, Barbaro, NR, van Beusecum, JP, Xiao, L, Simons, AJ, Warden, C, Pasic, L, Himmel, LE, Washington, MK, Revetta, FL, Zhao, S, Kumaresan, S, Scholz, MB, Tang, Z, Chen, G, Reilly, MP and Kirabo, A (2019) High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight 5(13), 2019.Google ScholarPubMed
Flemer, B, Gaci, N, Borrel, G, Sanderson, IR, Chaudhary, PP, Tottey, W, O’Toole, PW and Brugère, J-F (2017) Fecal microbiota variation across the lifespan of the healthy laboratory rat. Gut Microbes 8(5), 428439.CrossRefGoogle ScholarPubMed
Fujii, R, Hishida, A, Nakatochi, M, Tsuboi, Y, Suzuki, K, Kondo, T, Ikezaki, H, Hara, M, Okada, R, Tamura, T, Shimoshikiryo, I, Suzuki, S, Koyama, T, Kuriki, K, Takashima, N, Arisawa, K, Momozawa, Y, Kubo, M, Takeuchi, K, Wakai, K and J-MICC Study Group (2022) Associations of genome-wide polygenic risk score and risk factors with hypertension in a Japanese population. Circulation: Genomic and Precision Medicine 15(4), e003612.Google Scholar
Galla, S, Chakraborty, S, Cheng, X, Yeo, JY, Mell, B, Chiu, N, Wenceslau, CF, Vijay-Kumar, M and Joe, B (2020) Exposure to amoxicillin in early life is associated with changes in gut microbiota and reduction in blood pressure: Findings from a study on rat dams and offspring. Journal of the American Heart Association 9(2), e014373.CrossRefGoogle Scholar
Galla, S, Chakraborty, S, Cheng, X, Yeo, J, Mell, B, Zhang, H, Mathew, AV, Vijay-Kumar, M and Joe, B (2018) Disparate effects of antibiotics on hypertension. Physiological Genomics 50(10), 837845.CrossRefGoogle ScholarPubMed
Ge, X, Zheng, L, Zhuang, R, Yu, P, Xu, Z, Liu, G, Xi, X, Zhou, X and Fan, H (2020) The gut microbial metabolite trimethylamine N-oxide and hypertension risk: A systematic review and dose-response meta-analysis. Advances in Nutrition 11(1), 6676.CrossRefGoogle Scholar
Golino, HF, Amaral, LSDB, Duarte, SFP, Gomes, CMA, Soares, T J, Reis, LA and Santos, J (2014) Predicting increased blood pressure using machine learning. Journal of Obesity 2014, 637635.CrossRefGoogle ScholarPubMed
Gomez-Arango, LF, Barrett, HL, McIntyre, HD, Callaway, LK, Morrison, M and Dekker Nitert, M (2016) Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and butyrate production in early pregnancy. Hypertension 68(4), 974981.CrossRefGoogle ScholarPubMed
Gupta-Malhotra, M, Banker, A, Shete, S, Hashmi, SS, Tyson, JE, Barratt, MS, Hecht, JT, Milewicz, DM and Boerwinkle, E (2015) Essential hypertension vs. secondary hypertension among children. American Journal of Hypertension 28(1), 7380.CrossRefGoogle ScholarPubMed
Han, M, Yang, P, Zhong, C and Ning, K (2018) The human gut virome in hypertension. Frontiers in Microbiology 9, 3150.CrossRefGoogle ScholarPubMed
Hsu, C-N, Hou, C-Y, Chang-Chien, G-P, Lin, S and Tain, Y-L (2020) Maternal N-acetylcysteine therapy prevents hypertension in spontaneously hypertensive rat offspring: Implications of hydrogen sulfide-generating pathway and gut microbiota. Antioxidants 9(9), 856.CrossRefGoogle ScholarPubMed
Hsu, C-N, Hou, C-Y, Lee, C-T, Chan, JYH and Tain, Y-L (2019) The interplay between maternal and post-weaning high-fat diet and gut microbiota in the developmental programming of hypertension. Nutrients 11(9), 1982.CrossRefGoogle ScholarPubMed
Hsu, CN, Yu, HR, Lin, IC, Tiao, MM, Huang, LT, Hou, CY, Chang-Chien, GP, Lin, S and Tain, YL (2022) Sodium butyrate modulates blood pressure and gut microbiota in maternal tryptophan-free diet-induced hypertension rat offspring. Journal of Nutritional Biochemistry 108, 109090.CrossRefGoogle ScholarPubMed
Huart, J, Leenders, J, Taminiau, B, Descy, J, Saint-Remy, A, Daube, G, Krzesinski, JM, Melin, P, de Tullio, P and Jouret, F (2019) Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension 74(4), 10051013.CrossRefGoogle ScholarPubMed
Huć, T, Nowinski, A, Drapala, A, Konopelski, P and Ufnal, M (2018) Indole and indoxyl sulfate, gut bacteria metabolites of tryptophan, change arterial blood pressure via peripheral and central mechanisms in rats. Pharmacological Research 130, 172179.CrossRefGoogle ScholarPubMed
International Consortium for Blood Pressure Genome-Wide Association Studies (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367), 103.CrossRefGoogle Scholar
Jackson, MA, Verdi, S, Maxan, M-E, Shin, CM, Zierer, J, Bowyer, RCE, Martin, T, Williams, FMK, Menni, C, Bell, JT, Spector, TD and Steves, CJ (2018) Gut microbiota associations with common diseases and prescription medications in a population-based cohort. Nature Communications 9(1), 18.CrossRefGoogle Scholar
Jama, HA, Rhys-Jones, D, Nakai, M, Yao, CK, Climie, RE, Sata, Y, Anderson, D, Creek, DJ, Head, GA, Kaye, DM, Mackay, CR, Muir, J and Marques, FZ (2023) Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. Nature Cardiovascular Research 2, 3543.CrossRefGoogle Scholar
Jiang, S, Shui, Y, Cui, Y, Tang, C, Wang, X, Qiu, X, Hu, W, Fei, L, Li, Y, Zhang, S, Zhao, L, Xu, N, Dong, F, Ren, X, Liu, R, Persson, PB, Patzak, A, Lai, EY, Wei, Q and Zheng, Z (2021) Gut microbiota dependent trimethylamine N-oxide aggravates angiotensin II-induced hypertension. Redox Biology 46, 102115.CrossRefGoogle ScholarPubMed
Jie, Z, Xia, H, Zhong, S-L, Feng, Q, Li, S, Liang, S, Zhong, H, Liu, Z, Gao, Y, Zhao, H, Zhang, D, Su, Z, Fang, Z, Lan, Z, Li, J, Xiao, L, Li, J, Li, R, Li, X, Li, F, Ren, H, Huang, Y, Peng, Y, Li, G, Wen, B, Dong, B, Chen, JY, Geng, QS, Zhang, ZW, Yang, H, Wang, J, Wang, J, Zhang, X, Madsen, L, Brix, S, Ning, G, Xu, X, Liu, X, Hou, Y, Jia, H, He, K and Kristiansen, K (2017) The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications 8(1), 845.CrossRefGoogle ScholarPubMed
Joe, B, McCarthy, CG, Edwards, JM, Cheng, X, Chakraborty, S, Yang, T, Golonka, RM, Mell, B, Yeo, JY, Bearss, NR, Furtado, J, Saha, P, Yeoh, BS, Vijay-Kumar, M and Wenceslau, CF (2020) Microbiota introduced to germ-free rats restores vascular contractility and blood pressure. Hypertension 76(6), 18471855.CrossRefGoogle ScholarPubMed
Joishy, TK, Jha, A, Oudah, M, das, S, Adak, A, Deb, D and Khan, MR (2022) Human gut microbes associated with systolic blood pressure. International Journal of Hypertension 2022, 2923941.CrossRefGoogle ScholarPubMed
Kanai, M, Akiyama, M, Takahashi, A, Matoba, N, Momozawa, Y, Ikeda, M, Iwata, N, Ikegawa, S, Hirata, M, Matsuda, K, Kubo, M, Okada, Y and Kamatani, Y (2018) Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nature Genetics 50(3), 390400.CrossRefGoogle ScholarPubMed
Kanegae, H, Suzuki, K, Fukatani, K, Ito, T, Harada, N and Kario, K (2020) Highly precise risk prediction model for new‐onset hypertension using artificial intelligence techniques. The Journal of Clinical Hypertension 22(3), 445450.CrossRefGoogle ScholarPubMed
Kaoutari, AE, Armougom, F, Gordon, JI, Raoult, D and Henrissat, B (2013) The abundance and variety of carbohydrate-active enzymes in the human gut microbiota. Nature Reviews Microbiology 11(7), 497504.CrossRefGoogle ScholarPubMed
Kim, S, Goel, R, Kumar, A, Qi, Y, Lobaton, G, Hosaka, K, Mohammed, M, Handberg, EM, Richards, EM, Pepine, CJ and Raizada, MK (2018) Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clinical Science 132(6), 701718.CrossRefGoogle ScholarPubMed
Koeth, RA, Lam-Galvez, BR, Kirsop, J, Wang, Z, Levison, BS, Gu, X, Copeland, MF, Bartlett, D, Cody, DB, Dai, HJ, Culley, MK, Li, XS, Fu, X, Wu, Y, Li, L, DiDonato, J, Tang, WHW, Garcia-Garcia, JC and Hazen, SL (2019) L-carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. The Journal of Clinical Investigation 129(1), 373387.CrossRefGoogle ScholarPubMed
Koeth, RA, Wang, Z, Levison, BS, Buffa, JA, Org, E, Sheehy, BT, Britt, EB, Fu, X, Wu, Y, Li, L, Smith, JD, DiDonato, JA, Chen, J, Li, H, Wu, GD, Lewis, JD, Warrier, M, Brown, JM, Krauss, RM, Tang, WHW, Bushman, FD, Lusis, AJ and Hazen, SL (2013) Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine 19(5), 576585.CrossRefGoogle ScholarPubMed
Koh, A, De Vadder, F, Kovatcheva-Datchary, P and Bäckhed, F (2016) From dietary fiber to host physiology: Short-chain fatty acids as key bacterial metabolites. Cell 165(6), 13321345.CrossRefGoogle ScholarPubMed
Kurniansyah, N, Goodman, MO, Kelly, TN, Elfassy, T, Wiggins, KL, Bis, JC, Guo, X, Palmas, W, Taylor, KD, Lin, HJ, Haessler, J, Gao, Y, Shimbo, D, Smith, JA, Yu, B, Feofanova, EV, Smit, RAJ, Wang, Z, Hwang, SJ, Liu, S, Wassertheil-Smoller, S, Manson, JAE, Lloyd-Jones, DM, Rich, SS, Loos, RJF, Redline, S, Correa, A, Kooperberg, C, Fornage, M, Kaplan, RC, Psaty, BM, Rotter, JI, Arnett, DK, Morrison, AC, Franceschini, N, Levy, D, the NHLBI Trans-Omics in Precision Medicine (TOPMed) Consortium, Bis, JC, Guo, X, Taylor, KD, Lin, HJ, Haessler, J, Gao, Y, Smith, JA, Liu, S, Wassertheil-Smoller, S, Manson, JAE, Rich, SS, Redline, S, Correa, A, Kooperberg, C, Fornage, M, Kaplan, RC, Psaty, BM, Rotter, JI, Arnett, DK, Franceschini, N, Levy, D, Sofer, T and Sofer, T (2022) A multi-ethnic polygenic risk score is associated with hypertension prevalence and progression throughout adulthood. Nature Communications 13(1), 113.CrossRefGoogle ScholarPubMed
Kyoung, J, Atluri, RR and Yang, T (2022) Resistance to antihypertensive drugs: Is gut microbiota the missing link? Hypertension 79(10), 21382147.CrossRefGoogle ScholarPubMed
Kyoung, J and Yang, T (2022) Depletion of the gut microbiota enhances the blood pressure-lowering effect of captopril: Implication of the gut microbiota in resistant hypertension. Hypertension Research 45, 15051510.CrossRefGoogle ScholarPubMed
Lacson, RC, Baker, B, Suresh, H, Andriole, K, Szolovits, P and Lacson, E (2019) Use of machine-learning algorithms to determine features of systolic blood pressure variability that predict poor outcomes in hypertensive patients. Clinical Kidney Journal 12(2), 206212.CrossRefGoogle ScholarPubMed
Lewis, S, Nash, A, Li, Q and Ahn, T-H (2021) Comparison of 16S and whole genome dog microbiomes using machine learning. BioData Mining 14(1), 115.CrossRefGoogle ScholarPubMed
Lewis, CM and Vassos, E (2020) Polygenic risk scores: From research tools to clinical instruments. Genome Medicine 12(1), 111.CrossRefGoogle ScholarPubMed
Li, H, Liu, B, Song, J, An, Z, Zeng, X, Li, J, Jiang, J, Xie, L and Wu, W (2019b) Characteristics of gut microbiota in patients with hypertension and/or hyperlipidemia: A cross-sectional study on rural residents in Xinxiang County, Henan Province. Microorganisms 7(10), 399.CrossRefGoogle ScholarPubMed
Li, C, Sun, D, Liu, J, Li, M, Zhang, B, Liu, Y, Wang, Z, Wen, S and Zhou, J (2019a) A prediction model of essential hypertension based on genetic and environmental risk factors in northern Han Chinese. International Journal of Medical Sciences 16(6), 793.CrossRefGoogle ScholarPubMed
Li, HB, Xu, ML, Xu, XD, Tang, YY, Jiang, HL, Li, L, Xia, WJ, Cui, N, Bai, J, Dai, ZM, Han, B, Li, Y, Peng, B, Dong, YY, Aryal, S, Manandhar, I, Eladawi, MA, Shukla, R, Kang, YM, Joe, B and Yang, T (2022) Faecalibacterium Prausnitzii attenuates CKD via butyrate-renal GPR43 axis. Circulation Research 131, e120e134.CrossRefGoogle ScholarPubMed
Li, H-B, Yang, T, Richards, EM, Pepine, CJ and Raizada, MK (2020) Maternal treatment with captopril persistently alters gut-brain communication and attenuates hypertension of male offspring. Hypertension 75(5), 13151324.CrossRefGoogle ScholarPubMed
Li, J, Zhao, F, Wang, Y, Chen, J, Tao, J, Tian, G, Wu, S, Liu, W, Cui, Q, Geng, B, Zhang, W, Weldon, R, Auguste, K, Yang, L, Liu, X, Chen, L, Yang, X, Zhu, B and Cai, J (2017) Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome 5(1), 119.CrossRefGoogle Scholar
Liu, J, An, N, Ma, C, Li, X, Zhang, J, Zhu, W, Zhang, Y and Li, J (2018) Correlation analysis of intestinal flora with hypertension. Experimental and Therapeutic Medicine 16(3), 23252330.Google ScholarPubMed
Liu, Y, Jiang, Q, Liu, Z, Shen, S, Ai, J, Zhu, Y and Zhou, L (2021b) Alteration of gut microbiota relates to metabolic disorders in primary aldosteronism patients. Frontiers in Endocrinology 12, 667951.CrossRefGoogle ScholarPubMed
Liu, J-R, Miao, H, Deng, D-Q, Vaziri, ND, Li, P and Zhao, Y-Y (2021a) Gut microbiota-derived tryptophan metabolism mediates renal fibrosis by aryl hydrocarbon receptor signaling activation. Cellular and Molecular Life Sciences 78(3), 909922.CrossRefGoogle ScholarPubMed
Lloyd, EE, Durgan, DJ, Martini, SR and Bryan, RM (2015) Pathological effects of obstructive apneas during the sleep cycle in an animal model of cerebral small vessel disease. Hypertension 66(4), 913917.CrossRefGoogle Scholar
López-Martínez, F, Núñez-Valdez, ER, Crespo, RG and García-Díaz, V (2020) An artificial neural network approach for predicting hypertension using NHANES data. Scientific Reports 10(1), 114.CrossRefGoogle ScholarPubMed
Louca, P, Nogal, A, Wells, PM, Asnicar, F, Wolf, J, Steves, CJ, Spector, TD, Segata, N, Berry, SE, Valdes, AM and Menni, C (2021) Gut microbiome diversity and composition is associated with hypertension in women. Journal of Hypertension 39(9), 1810.CrossRefGoogle ScholarPubMed
Louca, P, Tran, TQB, Toit, C, Christofidou, P, Spector, TD, Mangino, M, Suhre, K, Padmanabhan, S and Menni, C (2022) Machine learning integration of multimodal data identifies key features of blood pressure regulation. Ebiomedicine 84, 104243.CrossRefGoogle ScholarPubMed
Manolio, TA, Collins, FS, Cox, NJ, Goldstein, DB, Hindorff, LA, Hunter, DJ, McCarthy, MI, Ramos, EM, Cardon, LR, Chakravarti, A, Cho, JH, Guttmacher, AE, Kong, A, Kruglyak, L, Mardis, E, Rotimi, CN, Slatkin, M, Valle, D, Whittemore, AS, Boehnke, M, Clark, AG, Eichler, EE, Gibson, G, Haines, JL, Mackay, TFC, McCarroll, SA and Visscher, PM (2009) Finding the missing heritability of complex diseases. Nature 461(7265), 747753.CrossRefGoogle ScholarPubMed
Marques, FZ, Mackay, CR and Kaye, DM (2018) Beyond gut feelings: How the gut microbiota regulates blood pressure. Nature Reviews Cardiology 15(1), 2032.CrossRefGoogle ScholarPubMed
Marques, FZ, Nelson, E, Chu, P-Y, Horlock, D, Fiedler, A, Ziemann, M, Tan, JK, Kuruppu, S, Rajapakse, NW, el-Osta, A, Mackay, CR and Kaye, DM (2017) High-fiber diet and acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation 135(10), 964977.CrossRefGoogle ScholarPubMed
Martin, AR, Kanai, M, Kamatani, Y, Okada, Y, Neale, BM and Daly, MJ (2019) Clinical use of current polygenic risk scores may exacerbate health disparities. Nature Genetics 51(4), 584591.CrossRefGoogle ScholarPubMed
Mei, X, Mell, B, Cheng, X, Yeo, JY, Yang, T, Chiu, N and Joe, B (2022) Beyond the gastrointestinal tract: Oral and sex-specific skin microbiota are associated with hypertension in rats with genetic disparities. Physiological Genomics 54, 242250.CrossRefGoogle ScholarPubMed
Mell, B, Jala, VR, Mathew, AV, Byun, J, Waghulde, H, Zhang, Y, Haribabu, B, Vijay-Kumar, M, Pennathur, S and Joe, B (2015) Evidence for a link between gut microbiota and hypertension in the dahl rat. Physiological Genomics 47(6), 187197.CrossRefGoogle ScholarPubMed
Minari, J, Brothers, KB and Morrison, M (2018) Tensions in ethics and policy created by National Precision Medicine Programs. Human Genomics 12(1), 110.CrossRefGoogle ScholarPubMed
Munukka, E, Wiklund, P, Pekkala, S, Völgyi, E, Xu, L, Cheng, S, Lyytikäinen, A, Marjomäki, V, Alen, M, Vaahtovuo, J, Keinänen-Kiukaanniemi, S and Cheng, S (2012) Women with and without metabolic disorder differ in their gut microbiota composition. Obesity 20(5), 10821087.CrossRefGoogle ScholarPubMed
Mushtaq, N, Hussain, S, Zhang, S, Yuan, L, Li, H, Ullah, S, Wang, Y and Xu, J (2019) Molecular characterization of alterations in the intestinal microbiota of patients with grade 3 hypertension. International Journal of Molecular Medicine 44(2), 513522.Google ScholarPubMed
Nakai, M, Ribeiro, RV, Stevens, BR, Gill, P, Muralitharan, RR, Yiallourou, S, Muir, J, Carrington, M, Head, GA, Kaye, DM and Marques, FZ (2021) Essential hypertension is associated with changes in gut microbial metabolic pathways: A multisite analysis of ambulatory blood pressure. Hypertension 78(3), 804815.CrossRefGoogle ScholarPubMed
Natividad, JM, Agus, A, Planchais, J, Lamas, B, Jarry, AC, Martin, R, Michel, ML, Chong-Nguyen, C, Roussel, R, Straube, M, Jegou, S, McQuitty, C, le Gall, M, da Costa, G, Lecornet, E, Michaudel, C, Modoux, M, Glodt, J, Bridonneau, C, Sovran, B, Dupraz, L, Bado, A, Richard, ML, Langella, P, Hansel, B, Launay, JM, Xavier, RJ, Duboc, H and Sokol, H (2018) Impaired aryl hydrocarbon receptor ligand production by the gut microbiota is a key factor in metabolic syndrome. Cell Metabolism 28(5), 737749.CrossRefGoogle ScholarPubMed
Nelson, JW, Phillips, SC, Ganesh, BP, Petrosino, JF, Durgan, DJ and Bryan, RM (2021) The gut microbiome contributes to blood‐brain barrier disruption in spontaneously hypertensive stroke prone rats. The FASEB Journal 35(2), e21201.CrossRefGoogle ScholarPubMed
Olczak, KJ, Taylor‐Bateman, V, Nicholls, HL, Traylor, M, Cabrera, CP and Munroe, PB (2021) Hypertension genetics past, present and future applications. Journal of Internal Medicine 290(6), 11301152.CrossRefGoogle ScholarPubMed
Overby, HB and Ferguson, JF (2021) Gut microbiota-derived short-chain fatty acids facilitate microbiota: Host cross talk and modulate obesity and hypertension. Current Hypertension Reports 23(2), 110.CrossRefGoogle ScholarPubMed
Padmanabhan, S and Dominiczak, AF (2021) Genomics of hypertension: The road to precision medicine. Nature Reviews Cardiology 18(4), 235250.CrossRefGoogle ScholarPubMed
Padmanabhan, S and Joe, B (2017) Towards precision medicine for hypertension: A review of genomic, epigenomic, and microbiomic effects on blood pressure in experimental rat models and humans. Physiological Reviews 97(4), 14691528.CrossRefGoogle ScholarPubMed
Padmanabhan, S, Tran, TQB and Dominiczak, AF (2021) Artificial intelligence in hypertension: Seeing through a glass darkly. Circulation Research 128(7), 11001118.CrossRefGoogle ScholarPubMed
Palmu, J, Salosensaari, A, Havulinna, AS, Cheng, S, Inouye, M, Jain, M, Salido, RA, Sanders, K, Brennan, C, Humphrey, GC, Sanders, JG, Vartiainen, E, Laatikainen, T, Jousilahti, P, Salomaa, V, Knight, R, Lahti, L and Niiranen, TJ (2020) Association between the gut microbiota and blood pressure in a population cohort of 6953 individuals. Journal of the American Heart Association 9(15), e016641.CrossRefGoogle Scholar
Pan, F, He, P, Chen, F, Pu, X, Zhao, Q and Zheng, D (2019) Deep learning-based automatic blood pressure measurement: Evaluation of the effect of deep breathing, talking and arm movement. Annals of Medicine 51(7–8), 397403.CrossRefGoogle ScholarPubMed
Parcha, V, Pampana, A, Bress, AP, Irvin, MR, Arora, G and Arora, P (2022) Association of Polygenic Risk Score with blood pressure and adverse cardiovascular outcomes in individuals with type II diabetes: Insights from the ACCORD trial. Hypertension 79(5), e100e102.CrossRefGoogle ScholarPubMed
Paré, G, Mao, S and Deng, WQ (2017) A machine-learning heuristic to improve gene score prediction of polygenic traits. Scientific Reports 7(1), 111.CrossRefGoogle ScholarPubMed
Persell, SD, Peprah, YA, Lipiszko, D, Lee, JY, Li, JJ, Ciolino, JD, Karmali, KN and Sato, H (2020) Effect of home blood pressure monitoring via a smartphone hypertension coaching application or tracking application on adults with uncontrolled hypertension: A randomized clinical trial. JAMA Network Open 3(3), e200255.CrossRefGoogle ScholarPubMed
Queipo-Ortuño, MI, Boto-Ordóñez, M, Murri, M, Gomez-Zumaquero, JM, Clemente-Postigo, M, Estruch, R, Cardona Diaz, F, Andrés-Lacueva, C and Tinahones, FJ (2012) Influence of red wine polyphenols and ethanol on the gut microbiota ecology and biochemical biomarkers. The American Journal of Clinical Nutrition 95(6), 13231334.CrossRefGoogle ScholarPubMed
Quintanilha, JCF, Etheridge, AS, Graynor, BJ, Larson, NB, Crona, DJ, Mitchell, BD and Innocenti, F (2022) Polygenic risk scores for blood pressure to assess the risk of severe bevacizumab‐induced hypertension in cancer patients (Alliance). Clinical Pharmacology & Therapeutics 112, 364371.CrossRefGoogle ScholarPubMed
Ried, K, Travica, N and Sali, A (2018) The effect of Kyolic aged garlic extract on gut microbiota, inflammation, and cardiovascular markers in hypertensives: The GarGIC trial. Frontiers in Nutrition 5, 122.CrossRefGoogle ScholarPubMed
Robles-Vera, I, de la Visitación, N, Sánchez, M, Gómez-Guzmán, M, Jiménez, R, Moleón, J, González-Correa, C, Romero, M, Yang, T, Raizada, MK, Toral, M and Duarte, J (2020) Mycophenolate improves brain–gut Axis inducing remodeling of gut microbiota in DOCA-salt hypertensive rats. Antioxidants 9(12), 1199.CrossRefGoogle ScholarPubMed
Robles-Vera, I, Toral, M, la Visitación, N, Sánchez, M, Gómez-Guzmán, M, Romero, M, Yang, T, Izquierdo-Garcia, JL, Jiménez, R, Ruiz-Cabello, J, Guerra-Hernández, E, Raizada, MK, Pérez-Vizcaíno, F and Duarte, J (2020c) Probiotics prevent dysbiosis and the rise in blood pressure in genetic hypertension: Role of short‐chain fatty acids. Molecular Nutrition & Food Research 64(6), 1900616.CrossRefGoogle ScholarPubMed
Robles-Vera, I, Toral, M, Visitación, N, Sánchez, M, Gómez-Guzmán, M, Muñoz, R, Algieri, F, Vezza, T, Jiménez, R, Gálvez, J, Romero, M, Redondo, JM and Duarte, J (2020b) Changes to the gut microbiota induced by losartan contributes to its antihypertensive effects. British Journal of Pharmacology 177(9), 20062023.CrossRefGoogle Scholar
Robles-Vera, I, Toral, M, de la Visitación, N, Sánchez, M, Romero, M, Olivares, M, Jiménez, R and Duarte, J (2018) The probiotic lactobacillus fermentum prevents dysbiosis and vascular oxidative stress in rats with hypertension induced by chronic nitric oxide blockade. Molecular Nutrition & Food Research 62(19), 1800298.CrossRefGoogle ScholarPubMed
Robles-Vera, I, Visitación, N, Toral, M, Sánchez, M, Romero, M, Gómez-Guzmán, M, Yang, T, Izquierdo-García, JL, Guerra-Hernández, E, Ruiz-Cabello, J, Raizada, MK, Pérez-Vizcaíno, F, Jiménez, R and Duarte, J (2020a) Probiotic Bifidobacterium breve prevents DOCA‐salt hypertension. The FASEB Journal 34(10), 1362613640.CrossRefGoogle ScholarPubMed
Santisteban, MM, Qi, Y, Zubcevic, J, Kim, S, Yang, T, Shenoy, V, Cole-Jeffrey, CT, Lobaton, GO, Stewart, DC, Rubiano, A, Simmons, CS, Garcia-Pereira, F, Johnson, RD, Pepine, CJ and Raizada, MK (2017) Hypertension-linked pathophysiological alterations in the gut. Circulation Research 120(2), 312323.CrossRefGoogle ScholarPubMed
Sapkota, Y, Li, N, Pierzynski, J, Mulrooney, DA, Ness, KK, Morton, LM, Michael, JR, Zhang, J, Bhatia, S, Armstrong, GT, Hudson, MM, Robison, LL and Yasui, Y (2021) Contribution of polygenic risk to hypertension among long-term survivors of childhood cancer. Cardio Oncology 3(1), 7684.Google ScholarPubMed
Sato, N, Fudono, A, Imai, C, Takimoto, H, Tarui, I, Aoyama, T, Yago, S, Okamitsu, M, Mizutani, S and Miyasaka, N (2021) Placenta mediates the effect of maternal hypertension polygenic score on offspring birth weight: A study of birth cohort with fetal growth velocity data. BMC Medicine 19(1), 113.CrossRefGoogle ScholarPubMed
Schrumpf, F, Frenzel, P, Aust, C, Osterhoff, G and Fuchs, M (2021) Assessment of non-invasive blood pressure prediction from ppg and rppg signals using deep learning. Sensors 21(18), 6022.CrossRefGoogle ScholarPubMed
Shah, RD, Tang, Z-Z, Chen, G, Huang, S and Ferguson, JF (2020) Soy food intake associates with changes in the metabolome and reduced blood pressure in a gut microbiota dependent manner. Nutrition, Metabolism and Cardiovascular Diseases 30(9), 15001511.CrossRefGoogle Scholar
Sharma, RK, Yang, T, Oliveira, AC, Lobaton, GO, Aquino, V, Kim, S, Richards, EM, Pepine, CJ, Sumners, C and Raizada, MK (2019) Microglial cells impact gut microbiota and gut pathology in angiotensin II-induced hypertension. Circulation Research 124(5), 727736.CrossRefGoogle ScholarPubMed
Sherman, SB, Sarsour, N, Salehi, M, Schroering, A, Mell, B, Joe, B and Hill, JW (2018) Prenatal androgen exposure causes hypertension and gut microbiota dysbiosis. Gut Microbes 9(5), 400421.Google ScholarPubMed
Shi, H, Nelson, JW, Phillips, S, Petrosino, JF, Bryan, RM and Durgan, DJ (2022) Alterations of the gut microbial community structure and function with aging in the spontaneously hypertensive stroke prone rat. Scientific Reports 12(1), 19.Google ScholarPubMed
Shi, F, Shi, H, Phillips, S, Zhang, B, Ayyaswamy, S, Bryan, R and Durgan, D (2021a) Examining the role of extacellular vesicles in blood pressure regulation. The FASEB Journal 35(S1).CrossRefGoogle Scholar
Shi, H, Zhang, B, Abo-Hamzy, T, Nelson, JW, Ambati, CSR, Petrosino, JF, Bryan, RM Jr and Durgan, DJ (2021b) Restructuring the gut microbiota by intermittent fasting lowers blood pressure. Circulation Research 128(9), 12401254.CrossRefGoogle ScholarPubMed
Silveira-Nunes, G, Durso, DF Jr, LRAO, Cunha, EHM, Maioli, TU, Vieira, AT, Speziali, E, Corrêa-Oliveira, R, Martins-Filho, OA, Teixeira-Carvalho, A, Franceschi, C, Rampelli, S, Turroni, S, Brigidi, P and Faria, AMC (2020) Hypertension is associated with intestinal microbiota dysbiosis and inflammation in a Brazilian population. Frontiers in Pharmacology 11, 258.CrossRefGoogle Scholar
Soh, DCK, Ng, EYK, Jahmunah, V, Oh, SL, San, TR and Acharya, UR (2020) A computational intelligence tool for the detection of hypertension using empirical mode decomposition. Computers in Biology and Medicine 118, 103630.CrossRefGoogle ScholarPubMed
Steinthorsdottir, V, McGinnis, R, Williams, NO, Stefansdottir, L, Thorleifsson, G, Shooter, S, Fadista, J, Sigurdsson, JK, Auro, KM, Berezina, G, Borges, MC, Bumpstead, S, Bybjerg-Grauholm, J, Colgiu, I, Dolby, VA, Dudbridge, F, Engel, SM, Franklin, CS, Frigge, ML, Frisbaek, Y, Geirsson, RT, Geller, F, Gretarsdottir, S, Gudbjartsson, DF, Harmon, Q, Hougaard, DM, Hegay, T, Helgadottir, A, Hjartardottir, S, Jääskeläinen, T, Johannsdottir, H, Jonsdottir, I, Juliusdottir, T, Kalsheker, N, Kasimov, A, Kemp, JP, Kivinen, K, Klungsøyr, K, Lee, WK, Melbye, M, Miedzybrodska, Z, Moffett, A, Najmutdinova, D, Nishanova, F, Olafsdottir, T, Perola, M, Pipkin, FB, Poston, L, Prescott, G, Saevarsdottir, S, Salimbayeva, D, Scaife, PJ, Skotte, L, Staines-Urias, E, Stefansson, OA, Sørensen, KM, Thomsen, LCV, Tragante, V, Trogstad, L, Simpson, NAB; FINNPEC Consortium; GOPEC Consortium; Aripova, T, Casas, JP, Dominiczak, AF, Walker, JJ, Thorsteinsdottir, U, Iversen, AC, Feenstra, B, Lawlor, DA, Boyd, HA, Magnus, P, Laivuori, H, Zakhidova, N, Svyatova, G, Stefansson, K and Morgan, L (2020) Genetic predisposition to hypertension is associated with preeclampsia in European and central Asian women. Nature Communications 11(1), 114.CrossRefGoogle ScholarPubMed
Stilp, AM, Emery, LS, Broome, JG, Buth, EJ, Khan, AT, Laurie, CA, Wang, FF, Wong, Q, Chen, D, D’Augustine, CM, Heard-Costa, NL, Hohensee, CR, Johnson, WC, Juarez, LD, Liu, J, Mutalik, KM, Raffield, LM, Wiggins, KL, de Vries, PS, Kelly, TN, Kooperberg, C, Natarajan, P, Peloso, GM, Peyser, PA, Reiner, AP, Arnett, DK, Aslibekyan, S, Barnes, KC, Bielak, LF, Bis, JC, Cade, BE, Chen, MH, Correa, A, Cupples, LA, de Andrade, M, Ellinor, PT, Fornage, M, Franceschini, N, Gan, W, Ganesh, SK, Graffelman, J, Grove, ML, Guo, X, Hawley, NL, Hsu, WL, Jackson, RD, Jaquish, CE, Johnson, AD, Kardia, SLR, Kelly, S, Lee, J, Mathias, RA, McGarvey, ST, Mitchell, BD, Montasser, ME, Morrison, AC, North, KE, Nouraie, SM, Oelsner, EC, Pankratz, N, Rich, SS, Rotter, JI, Smith, JA, Taylor, KD, Vasan, RS, Weeks, DE, Weiss, ST, Wilson, CG, Yanek, LR, Psaty, BM, Heckbert, SR and Laurie, CC (2021) A system for phenotype harmonization in the national heart, lung, and blood institute trans-omics for precision medicine (TOPMed) program. American Journal of Epidemiology 190(10), 19771992.CrossRefGoogle ScholarPubMed
Sugrue, LP and Desikan, RS (2019) What are polygenic scores and why are they important? JAMA 321(18), 18201821.CrossRefGoogle ScholarPubMed
Sun, S, Lulla, A, Sioda, M, Winglee, K, Wu, MC, Jacobs, DR Jr, Shikany, JM, Lloyd-Jones, DM, Launer, LJ, Fodor, AA and Meyer, KA (2019) Gut microbiota composition and blood pressure: The CARDIA study. Hypertension 73(5), 9981006.CrossRefGoogle Scholar
Sung, YJ, Winkler, TW, de Las Fuentes, L, Bentley, AR, Brown, MR, Kraja, AT, Schwander, K, Ntalla, I, Guo, X, Franceschini, N, Lu, Y, Cheng, CY, Sim, X, Vojinovic, D, Marten, J, Musani, SK, Li, C, Feitosa, MF, Kilpeläinen, TO, Richard, MA, Noordam, R, Aslibekyan, S, Aschard, H, Bartz, TM, Dorajoo, R, Liu, Y, Manning, AK, Rankinen, T, Smith, AV, Tajuddin, SM, Tayo, BO, Warren, HR, Zhao, W, Zhou, Y, Matoba, N, Sofer, T, Alver, M, Amini, M, Boissel, M, Chai, JF, Chen, X, Divers, J, Gandin, I, Gao, C, Giulianini, F, Goel, A, Harris, SE, Hartwig, FP, Horimoto, ARVR, Hsu, FC, Jackson, AU, Kähönen, M, Kasturiratne, A, Kühnel, B, Leander, K, Lee, WJ, Lin, KH, ’an Luan, J, McKenzie, C, Meian, H, Nelson, CP, Rauramaa, R, Schupf, N, Scott, RA, Sheu, WHH, Stančáková, A, Takeuchi, F, van der Most, P, Varga, TV, Wang, H, Wang, Y, Ware, EB, Weiss, S, Wen, W, Yanek, LR, Zhang, W, Zhao, JH, Afaq, S, Alfred, T, Amin, N, Arking, D, Aung, T, Barr, RG, Bielak, LF, Boerwinkle, E, Bottinger, EP, Braund, PS, Brody, JA, Broeckel, U, Cabrera, CP, Cade, B, Caizheng, Y, Campbell, A, Canouil, M, Chakravarti, A, CHARGE Neurology Working Group, Chauhan, G, Christensen, K, Cocca, M, COGENT-Kidney Consortium, Collins, FS, Connell, JM, de Mutsert, R, de Silva, HJ, Debette, S, Dörr, M, Duan, Q, Eaton, CB, Ehret, G, Evangelou, E, Faul, JD, Fisher, VA, Forouhi, NG, Franco, OH, Friedlander, Y, Gao, H, GIANT Consortium, Gigante, B, Graff, M, Gu, CC, Gu, D, Gupta, P, Hagenaars, SP, Harris, TB, He, J, Heikkinen, S, Heng, CK, Hirata, M, Hofman, A, Howard, BV, Hunt, S, Irvin, MR, Jia, Y, Joehanes, R, Justice, AE, Katsuya, T, Kaufman, J, Kerrison, ND, Khor, CC, Koh, WP, Koistinen, HA, Komulainen, P, Kooperberg, C, Krieger, JE, Kubo, M, Kuusisto, J, Langefeld, CD, Langenberg, C, Launer, LJ, Lehne, B, Lewis, CE, Li, Y, Lifelines Cohort Study, Lim, SH, Lin, S, Liu, CT, Liu, J, Liu, J, Liu, K, Liu, Y, Loh, M, Lohman, KK, Long, J, Louie, T, Mägi, R, Mahajan, A, Meitinger, T, Metspalu, A, Milani, L, Momozawa, Y, Morris, AP, Mosley, TH Jr, Munson, P, Murray, AD, Nalls, MA, Nasri, U, Norris, JM, North, K, Ogunniyi, A, Padmanabhan, S, Palmas, WR, Palmer, ND, Pankow, JS, Pedersen, NL, Peters, A, Peyser, PA, Polasek, O, Raitakari, OT, Renström, F, Rice, TK, Ridker, PM, Robino, A, Robinson, JG, Rose, LM, Rudan, I, Sabanayagam, C, Salako, BL, Sandow, K, Schmidt, CO, Schreiner, PJ, Scott, WR, Seshadri, S, Sever, P, Sitlani, CM, Smith, JA, Snieder, H, Starr, JM, Strauch, K, Tang, H, Taylor, KD, Teo, YY, Tham, YC, Uitterlinden, AG, Waldenberger, M, Wang, L, Wang, YX, Wei, WB, Williams, C, Wilson, G, Wojczynski, MK, Yao, J, Yuan, JM, Zonderman, AB, Becker, DM, Boehnke, M, Bowden, DW, Chambers, JC, Chen, YI, de Faire, U, Deary, IJ, Esko, T, Farrall, M, Forrester, T, Franks, PW, Freedman, BI, Froguel, P, Gasparini, P, Gieger, C, Horta, BL, Hung, YJ, Jonas, JB, Kato, N, Kooner, JS, Laakso, M, Lehtimäki, T, Liang, KW, Magnusson, PKE, Newman, AB, Oldehinkel, AJ, Pereira, AC, Redline, S, Rettig, R, Samani, NJ, Scott, J, Shu, XO, van der Harst, P, Wagenknecht, LE, Wareham, NJ, Watkins, H, Weir, DR, Wickremasinghe, AR, Wu, T, Zheng, W, Kamatani, Y, Laurie, CC, Bouchard, C, Cooper, RS, Evans, MK, Gudnason, V, Kardia, SLR, Kritchevsky, SB, Levy, D, O’Connell, JR, Psaty, BM, van Dam, R, Sims, M, Arnett, DK, Mook-Kanamori, DO, Kelly, TN, Fox, ER, Hayward, C, Fornage, M, Rotimi, CN, Province, MA, van Duijn, C, Tai, ES, Wong, TY, Loos, RJF, Reiner, AP, Rotter, JI, Zhu, X, Bierut, LJ, Gauderman, WJ, Caulfield, MJ, Elliott, P, Rice, K, Munroe, PB, Morrison, AC, Cupples, LA, Rao, DC and Chasman, DI (2018) A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. The American Journal of Human Genetics 102(3), 375400.CrossRefGoogle ScholarPubMed
Surendran, P, Feofanova, EV, Lahrouchi, N, Ntalla, I, Karthikeyan, S, Cook, J, Chen, L, Mifsud, B, Yao, C, Kraja, AT, Cartwright, JH, Hellwege, JN, Giri, A, Tragante, V, Thorleifsson, G, Liu, DJ, Prins, BP, Stewart, ID, Cabrera, CP, Eales, JM, Akbarov, A, Auer, PL, Bielak, LF, Bis, JC, Braithwaite, VS, Brody, JA, Daw, EW, Warren, HR, Drenos, F, Nielsen, SF, Faul, JD, Fauman, EB, Fava, C, Ferreira, T, Foley, CN, Franceschini, N, Gao, H, Giannakopoulou, O, Giulianini, F, Gudbjartsson, DF, Guo, X, Harris, SE, Havulinna, AS, Helgadottir, A, Huffman, JE, Hwang, SJ, Kanoni, S, Kontto, J, Larson, MG, Li-Gao, R, Lindström, J, Lotta, LA, Lu, Y, Luan, J’, Mahajan, A, Malerba, G, Masca, NGD, Mei, H, Menni, C, Mook-Kanamori, DO, Mosen-Ansorena, D, Müller-Nurasyid, M, Paré, G, Paul, DS, Perola, M, Poveda, A, Rauramaa, R, Richard, M, Richardson, TG, Sepúlveda, N, Sim, X, Smith, AV, Smith, JA, Staley, JR, Stanáková, A, Sulem, P, Thériault, S, Thorsteinsdottir, U, Trompet, S, Varga, TV, Velez Edwards, DR, Veronesi, G, Weiss, S, Willems, SM, Yao, J, Young, R, Yu, B, Zhang, W, Zhao, JH, Zhao, W, Zhao, W, Evangelou, E, Aeschbacher, S, Asllanaj, E, Blankenberg, S, Bonnycastle, LL, Bork-Jensen, J, Brandslund, I, Braund, PS, Burgess, S, Cho, K, Christensen, C, Connell, J, Mutsert, R, Dominiczak, AF, Dörr, M, Eiriksdottir, G, Farmaki, AE, Gaziano, JM, Grarup, N, Grove, ML, Hallmans, G, Hansen, T, Have, CT, Heiss, G, Jørgensen, ME, Jousilahti, P, Kajantie, E, Kamat, M, Käräjämäki, AM, Karpe, F, Koistinen, HA, Kovesdy, CP, Kuulasmaa, K, Laatikainen, T, Lannfelt, L, Lee, IT, Lee, WJ, LifeLines Cohort Study, de Boer, RA, van der Harst, P, van der Meer, P, Verweij, N, Linneberg, A, Martin, LW, Moitry, M, Nadkarni, G, Neville, MJ, Palmer, CNA, Papanicolaou, GJ, Pedersen, O, Peters, J, Poulter, N, Rasheed, A, Rasmussen, KL, Rayner, NW, Mägi, R, Renström, F, Rettig, R, Rossouw, J, Schreiner, PJ, Sever, PS, Sigurdsson, EL, Skaaby, T, Sun, YV, Sundstrom, J, Thorgeirsson, G, Esko, T, Trabetti, E, Tsao, PS, Tuomi, T, Turner, ST, Tzoulaki, I, Vaartjes, I, Vergnaud, AC, Willer, CJ, Wilson, PWF, Witte, DR, Yonova-Doing, E, Zhang, H, Aliya, N, Almgren, P, Amouyel, P, Asselbergs, FW, Barnes, MR, Blakemore, AI, Boehnke, M, Bots, ML, Bottinger, EP, Buring, JE, Chambers, JC, Chen, YDI, Chowdhury, R, Conen, D, Correa, A, Davey Smith, G, Boer, RA, Deary, IJ, Dedoussis, G, Deloukas, P, di Angelantonio, E, Elliott, P, EPIC-CVD, Butterworth, AS, Danesh, J, EPIC-InterAct, Langenberg, C, Deloukas, P, McCarthy, MI, Franks, PW, Rolandsson, O, Wareham, NJ, Felix, SB, Ferrières, J, Ford, I, Fornage, M, Franks, PW, Franks, S, Frossard, P, Gambaro, G, Gaunt, TR, Groop, L, Gudnason, V, Harris, TB, Hayward, C, Hennig, BJ, Herzig, KH, Ingelsson, E, Tuomilehto, J, Järvelin, MR, Jukema, JW, Kardia, SLR, Kee, F, Kooner, JS, Kooperberg, C, Launer, LJ, Lind, L, Loos, RJF, Majumder, A S, Laakso, M, McCarthy, MI, Melander, O, Mohlke, KL, Murray, AD, Nordestgaard, BG, Orho-Melander, M, Packard, CJ, Padmanabhan, S, Palmas, W, Polasek, O, Porteous, DJ, Prentice, AM, Province, MA, Relton, CL, Rice, K, Ridker, PM, Rolandsson, O, Rosendaal, FR, Rotter, JI, Rudan, I, Salomaa, V, Samani, NJ, Sattar, N, Sheu, WHH, Smith, BH, Soranzo, N, Spector, TD, Starr, JM, Sebert, S, Taylor, KD, Lakka, TA, Timpson, NJ, Tobin, MD, Understanding Society Scientific Group, Prins, BP, Zeggini, E, van der Harst, P, van der Meer, P, Ramachandran, VS, Verweij, N, Virtamo, J, Völker, U, Weir, DR, Zeggini, E, Charchar, FJ, Million Veteran Program, Hellwege, JN, Giri, A, Edwards, DRV, Cho, K, Gaziano, JM, Kovesdy, CP, Sun, YV, Tsao, PS, Wilson, PWF, Edwards, TL, Hung, AM, O’Donnell, CJ, Wareham, NJ, Langenberg, C, Tomaszewski, M, Butterworth, AS, Caulfield, MJ, Danesh, J, Edwards, TL, Holm, H, Hung, AM, Lindgren, CM, Liu, C, Manning, AK, Morris, AP, Morrison, AC, O’Donnell, CJ, Psaty, BM, Saleheen, D, Stefansson, K, Boerwinkle, E, Chasman, DI, Levy, D, Newton-Cheh, C, Munroe, PB and Howson, JMM (2020) Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics 52(12), 13141332.CrossRefGoogle ScholarPubMed
Tain, YL, Lee, WC, Wu, KLH, Leu, S and Chan, JYH (2018) Resveratrol prevents the development of hypertension programmed by maternal plus post-weaning high-fructose consumption through modulation of oxidative stress, nutrient-sensing signals, and gut microbiota. Molecular Nutrition and Food Research 62(15), 1800066.CrossRefGoogle ScholarPubMed
Takagi, T, Naito, Y, Kashiwagi, S, Uchiyama, K, Mizushima, K, Kamada, K, Ishikawa, T, Inoue, R, Okuda, K, Tsujimoto, Y, Ohnogi, H and Itoh, Y (2020) Changes in the gut microbiota are associated with hypertension, hyperlipidemia, and type 2 diabetes mellitus in Japanese subjects. Nutrients 12(10), 2996.CrossRefGoogle ScholarPubMed
Taliun, D, Harris, DN, Kessler, MD, Carlson, J, Szpiech, ZA, Torres, R, Taliun, SAG, Corvelo, A, Gogarten, SM, Kang, HM, Pitsillides, AN, LeFaive, J, Lee, SB, Tian, X, Browning, BL, das, S, Emde, AK, Clarke, WE, Loesch, DP, Shetty, AC, Blackwell, TW, Smith, AV, Wong, Q, Liu, X, Conomos, MP, Bobo, DM, Aguet, F, Albert, C, Alonso, A, Ardlie, KG, Arking, DE, Aslibekyan, S, Auer, PL, Barnard, J, Barr, RG, Barwick, L, Becker, LC, Beer, RL, Benjamin, EJ, Bielak, LF, Blangero, J, Boehnke, M, Bowden, DW, Brody, JA, Burchard, EG, Cade, BE, Casella, JF, Chalazan, B, Chasman, DI, Chen, YDI, Cho, MH, Choi, SH, Chung, MK, Clish, CB, Correa, A, Curran, JE, Custer, B, Darbar, D, Daya, M, de Andrade, M, DeMeo, DL, Dutcher, SK, Ellinor, PT, Emery, LS, Eng, C, Fatkin, D, Fingerlin, T, Forer, L, Fornage, M, Franceschini, N, Fuchsberger, C, Fullerton, SM, Germer, S, Gladwin, MT, Gottlieb, DJ, Guo, X, Hall, ME, He, J, Heard-Costa, NL, Heckbert, SR, Irvin, MR, Johnsen, JM, Johnson, AD, Kaplan, R, Kardia, SLR, Kelly, T, Kelly, S, Kenny, EE, Kiel, DP, Klemmer, R, Konkle, BA, Kooperberg, C, Köttgen, A, Lange, LA, Lasky-Su, J, Levy, D, Lin, X, Lin, KH, Liu, C, Loos, RJF, Garman, L, Gerszten, R, Lubitz, SA, Lunetta, KL, Mak, ACY, Manichaikul, A, Manning, AK, Mathias, RA, McManus, DD, McGarvey, ST, Meigs, JB, Meyers, DA, Mikulla, JL, Minear, MA, Mitchell, BD, Mohanty, S, Montasser, ME, Montgomery, C, Morrison, AC, Murabito, JM, Natale, A, Natarajan, P, Nelson, SC, North, KE, O’Connell, JR, Palmer, ND, Pankratz, N, Peloso, GM, Peyser, PA, Pleiness, J, Post, WS, Psaty, BM, Rao, DC, Redline, S, Reiner, AP, Roden, D, Rotter, JI, Ruczinski, I, Sarnowski, C, Schoenherr, S, Schwartz, DA, Seo, JS, Seshadri, S, Sheehan, VA, Sheu, WH, Shoemaker, MB, Smith, NL, Smith, JA, Sotoodehnia, N, Stilp, AM, Tang, W, Taylor, KD, Telen, M, Thornton, TA, Tracy, RP, van den Berg, DJ, Vasan, RS, Viaud-Martinez, KA, Vrieze, S, Weeks, DE, Weir, BS, Weiss, ST, Weng, LC, Willer, CJ, Zhang, Y, Zhao, X, Arnett, DK, Ashley-Koch, AE, Barnes, KC, Boerwinkle, E, Gabriel, S, Gibbs, R, Rice, KM, Rich, SS, Silverman, EK, Qasba, P, Gan, W, NHLBI Trans-Omics for Precision Medicine (TOPMed) Consortium, Abe, N, Almasy, L, Ament, S, Anderson, P, Anugu, P, Applebaum-Bowden, D, Assimes, T, Avramopoulos, D, Barron-Casella, E, Beaty, T, Beck, G, Becker, D, Beitelshees, A, Benos, T, Bezerra, M, Bis, J, Bowler, R, Broeckel, U, Broome, J, Bunting, K, Bustamante, C, Buth, E, Cardwell, J, Carey, V, Carty, C, Casaburi, R, Castaldi, P, Chaffin, M, Chang, C, Chang, YC, Chavan, S, Chen, BJ, Chen, WM, Chuang, LM, Chung, RH, Comhair, S, Cornell, E, Crandall, C, Crapo, J, Curtis, J, Damcott, C, David, S, Davis, C, Fuentes, L, DeBaun, M, Deka, R, Devine, S, Duan, Q, Duggirala, R, Durda, JP, Eaton, C, Ekunwe, L, el Boueiz, A, Erzurum, S, Farber, C, Flickinger, M, Fornage, M, Frazar, C, Fu, M, Fulton, L, Gao, S, Gao, Y, Gass, M, Gelb, B, Geng, XP, Geraci, M, Ghosh, A, Gignoux, C, Glahn, D, Gong, DW, Goring, H, Graw, S, Grine, D, Gu, CC, Guan, Y, Gupta, N, Haessler, J, Hawley, NL, Heavner, B, Herrington, D, Hersh, C, Hidalgo, B, Hixson, J, Hobbs, B, Hokanson, J, Hong, E, Hoth, K, Hsiung, CA, Hung, YJ, Huston, H, Hwu, CM, Jackson, R, Jain, D, Jhun, MA, Johnson, C, Johnston, R, Jones, K, Kathiresan, S, Khan, A, Kim, W, Kinney, G, Kramer, H, Lange, C, Lange, E, Lange, L, Laurie, C, LeBoff, M, Lee, J, Lee, SS, Lee, WJ, Levine, D, Lewis, J, Li, X, Li, Y, Lin, H, Lin, H, Lin, KH, Liu, S, Liu, Y, Liu, Y, Luo, J, Mahaney, M, Make, B, Manson, JA, Margolin, L, Martin, L, Mathai, S, May, S, McArdle, P, McDonald, ML, McFarland, S, McGoldrick, D, McHugh, C, Mei, H, Mestroni, L, Min, N, Minster, RL, Moll, M, Moscati, A, Musani, S, Mwasongwe, S, Mychaleckyj, JC, Nadkarni, G, Naik, R, Naseri, T, Nekhai, S, Neltner, B, Ochs-Balcom, H, Paik, D, Pankow, J, Parsa, A, Peralta, JM, Perez, M, Perry, J, Peters, U, Phillips, LS, Pollin, T, Becker, JP, Boorgula, MP, Preuss, M, Qiao, D, Qin, Z, Rafaels, N, Raffield, L, Rasmussen-Torvik, L, Ratan, A, Reed, R, Regan, E, Reupena, M‘S, Roselli, C, Russell, P, Ruuska, S, Ryan, K, Sabino, EC, Saleheen, D, Salimi, S, Salzberg, S, Sandow, K, Sankaran, VG, Scheller, C, Schmidt, E, Schwander, K, Sciurba, F, Seidman, C, Seidman, J, Sherman, SL, Shetty, A, Sheu, WHH, Silver, B, Smith, J, Smith, T, Smoller, S, Snively, B, Snyder, M, Sofer, T, Storm, G, Streeten, E, Sung, YJ, Sylvia, J, Szpiro, A, Sztalryd, C, Tang, H, Taub, M, Taylor, M, Taylor, S, Threlkeld, M, Tinker, L, Tirschwell, D, Tishkoff, S, Tiwari, H, Tong, C, Tsai, M, Vaidya, D, VandeHaar, P, Walker, T, Wallace, R, Walts, A, Wang, FF, Wang, H, Watson, K, Wessel, J, Williams, K, Williams, LK, Wilson, C, Wu, J, Xu, H, Yanek, L, Yang, I, Yang, R, Zaghloul, N, Zekavat, M, Zhao, SX, Zhao, W, Zhi, D, Zhou, X, Zhu, X, Papanicolaou, GJ, Nickerson, DA, Browning, SR, Zody, MC, Zöllner, S, Wilson, JG, Cupples, LA, Laurie, CC, Jaquish, CE, Hernandez, RD, O’Connor, TD and Abecasis, GR (2021) Sequencing of 53,831 diverse genomes from the NHLBI TOPMed program. Nature 590(7845), 290299.CrossRefGoogle Scholar
The Million Veteran Program, Evangelou, E, Warren, HR, Mosen-Ansorena, D, Mifsud, B, Pazoki, R, Gao, H, Ntritsos, G, Dimou, N, Cabrera, CP, Karaman, I, Ng, FL, Evangelou, M, Witkowska, K, Tzanis, E, Hellwege, JN, Giri, A, Velez Edwards, DR, Sun, YV, Cho, K, Gaziano, JM, Wilson, PWF, Tsao, PS, Kovesdy, CP, Esko, T, Mägi, R, Milani, L, Almgren, P, Boutin, T, Debette, S, Ding, J, Giulianini, F, Holliday, EG, Jackson, AU, Li-Gao, R, Lin, WY, Luan, J’, Mangino, M, Oldmeadow, C, Prins, BP, Qian, Y, Sargurupremraj, M, Shah, N, Surendran, P, Thériault, S, Verweij, N, Willems, SM, Zhao, JH, Amouyel, P, Connell, J, de Mutsert, R, Doney, ASF, Farrall, M, Menni, C, Morris, AD, Noordam, R, Paré, G, Poulter, NR, Shields, DC, Stanton, A, Thom, S, Abecasis, G, Amin, N, Arking, DE, Ayers, KL, Barbieri, CM, Batini, C, Bis, JC, Blake, T, Bochud, M, Boehnke, M, Boerwinkle, E, Boomsma, DI, Bottinger, EP, Braund, PS, Brumat, M, Campbell, A, Campbell, H, Chakravarti, A, Chambers, JC, Chauhan, G, Ciullo, M, Cocca, M, Collins, F, Cordell, HJ, Davies, G, de Borst, MH, de Geus, EJ, Deary, IJ, Deelen, J, del Greco, M. F, Demirkale, CY, Dörr, M, Ehret, GB, Elosua, R, Enroth, S, Erzurumluoglu, AM, Ferreira, T, Frånberg, M, Franco, OH, Gandin, I, Gasparini, P, Giedraitis, V, Gieger, C, Girotto, G, Goel, A, Gow, AJ, Gudnason, V, Guo, X, Gyllensten, U, Hamsten, A, Harris, TB, Harris, SE, Hartman, CA, Havulinna, AS, Hicks, AA, Hofer, E, Hofman, A, Hottenga, JJ, Huffman, JE, Hwang, SJ, Ingelsson, E, James, A, Jansen, R, Jarvelin, MR, Joehanes, R, Johansson, Å, Johnson, AD, Joshi, PK, Jousilahti, P, Jukema, JW, Jula, A, Kähönen, M, Kathiresan, S, Keavney, BD, Khaw, KT, Knekt, P, Knight, J, Kolcic, I, Kooner, JS, Koskinen, S, Kristiansson, K, Kutalik, Z, Laan, M, Larson, M, Launer, LJ, Lehne, B, Lehtimäki, T, Liewald, DCM, Lin, L, Lind, L, Lindgren, CM, Liu, YM, Loos, RJF, Lopez, LM, Lu, Y, Lyytikäinen, LP, Mahajan, A, Mamasoula, C, Marrugat, J, Marten, J, Milaneschi, Y, Morgan, A, Morris, AP, Morrison, AC, Munson, PJ, Nalls, MA, Nandakumar, P, Nelson, CP, Niiranen, T, Nolte, IM, Nutile, T, Oldehinkel, AJ, Oostra, BA, O’Reilly, PF, Org, E, Padmanabhan, S, Palmas, W, Palotie, A, Pattie, A, Penninx, BWJH, Perola, M, Peters, A, Polasek, O, Pramstaller, PP, Nguyen, QT, Raitakari, OT, Ren, M, Rettig, R, Rice, K, Ridker, PM, Ried, JS, Riese, H, Ripatti, S, Robino, A, Rose, LM, Rotter, JI, Rudan, I, Ruggiero, D, Saba, Y, Sala, CF, Salomaa, V, Samani, NJ, Sarin, AP, Schmidt, R, Schmidt, H, Shrine, N, Siscovick, D, Smith, AV, Snieder, H, Sõber, S, Sorice, R, Starr, JM, Stott, DJ, Strachan, DP, Strawbridge, RJ, Sundström, J, Swertz, MA, Taylor, KD, Teumer, A, Tobin, MD, Tomaszewski, M, Toniolo, D, Traglia, M, Trompet, S, Tuomilehto, J, Tzourio, C, Uitterlinden, AG, Vaez, A, van der Most, PJ, van Duijn, CM, Vergnaud, AC, Verwoert, GC, Vitart, V, Völker, U, Vollenweider, P, Vuckovic, D, Watkins, H, Wild, SH, Willemsen, G, Wilson, JF, Wright, AF, Yao, J, Zemunik, T, Zhang, W, Attia, JR, Butterworth, AS, Chasman, DI, Conen, D, Cucca, F, Danesh, J, Hayward, C, Howson, JMM, Laakso, M, Lakatta, EG, Langenberg, C, Melander, O, Mook-Kanamori, DO, Palmer, CNA, Risch, L, Scott, RA, Scott, RJ, Sever, P, Spector, TD, van der Harst, P, Wareham, NJ, Zeggini, E, Levy, D, Munroe, PB, Newton-Cheh, C, Brown, MJ, Metspalu, A, Hung, AM, O’Donnell, CJ, Edwards, TL, Psaty, BM, Tzoulaki, I, Barnes, MR, Wain, LV, Elliott, P and Caulfield, MJ (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics 50(10), 14121425.CrossRefGoogle ScholarPubMed
Tindall, AM, McLimans, CJ, Petersen, KS, Kris-Etherton, PM and Lamendella, R (2020) Walnuts and vegetable oils containing oleic acid differentially affect the gut microbiota and associations with cardiovascular risk factors: Follow-up of a randomized, controlled, feeding trial in adults at risk for cardiovascular disease. The Journal of Nutrition 150(4), 806817.CrossRefGoogle ScholarPubMed
Toral, M, Robles-Vera, I, de la Visitación, N, Romero, M, Sánchez, M, Gómez-Guzmán, M, Rodriguez-Nogales, A, Yang, T, Jiménez, R, Algieri, F, Gálvez, J, Raizada, MK and Duarte, J (2019b) Role of the immune system in vascular function and blood pressure control induced by faecal microbiota transplantation in rats. Acta Physiologica 227(1), e13285.CrossRefGoogle ScholarPubMed
Toral, M, Robles-Vera, I, de la Visitación, N, Romero, M, Yang, T, Sánchez, M, Gómez-Guzmán, M, Jiménez, R, Raizada, MK and Duarte, J (2019a) Critical role of the interaction gut microbiota–sympathetic nervous system in the regulation of blood pressure. Frontiers in Physiology 10, 231.CrossRefGoogle ScholarPubMed
Toral, M, Romero, M, Rodríguez-Nogales, A, Jiménez, R, Robles-Vera, I, Algieri, F, Chueca-Porcuna, N, Sánchez, M, de la Visitación, N, Olivares, M, García, F, Pérez-Vizcaíno, F, Gálvez, J and Duarte, J (2018) Lactobacillus fermentum improves tacrolimus‐induced hypertension by restoring vascular redox state and improving eNOS coupling. Molecular Nutrition & Food Research 62(14), 1800033.CrossRefGoogle ScholarPubMed
Torkamani, A, Wineinger, NE and Topol, EJ (2018) The personal and clinical utility of polygenic risk scores. Nature Reviews Genetics 19(9), 581590.CrossRefGoogle ScholarPubMed
Tsoi, K, Yiu, K, Lee, H, Cheng, HM, Wang, TD, Tay, JC, Teo, BW, Turana, Y, Soenarta, AA, Sogunuru, GP, Siddique, S, Chia, YC, Shin, J, Chen, CH, Wang, JG, Kario, K and the HOPE Asia Network (2021) Applications of artificial intelligence for hypertension management. The Journal of Clinical Hypertension 23(3), 568574.CrossRefGoogle ScholarPubMed
Understanding Society Scientific Group, International Consortium for Blood Pressure, Blood Pressure-International Consortium of Exome Chip Studies, Million Veteran Program, Giri, A, Hellwege, JN, Keaton, JM, Park, J, Qiu, C, Warren, HR, Torstenson, ES, Kovesdy, CP, Sun, YV, Wilson, OD, Robinson-Cohen, C, Roumie, CL, Chung, CP, Birdwell, KA, Damrauer, SM, DuVall, SL, Klarin, D, Cho, K, Wang, Y, Evangelou, E, Cabrera, CP, Wain, LV, Shrestha, R, Mautz, BS, Akwo, EA, Sargurupremraj, M, Debette, S, Boehnke, M, Scott, LJ, Luan, J’, Zhao, JH, Willems, SM, Thériault, S, Shah, N, Oldmeadow, C, Almgren, P, Li-Gao, R, Verweij, N, Boutin, TS, Mangino, M, Ntalla, I, Feofanova, E, Surendran, P, Cook, JP, Karthikeyan, S, Lahrouchi, N, Liu, C, Sepúlveda, N, Richardson, TG, Kraja, A, Amouyel, P, Farrall, M, Poulter, NR, Laakso, M, Zeggini, E, Sever, P, Scott, RA, Langenberg, C, Wareham, NJ, Conen, D, Palmer, CNA, Attia, J, Chasman, DI, Ridker, PM, Melander, O, Mook-Kanamori, DO, Harst, P, Cucca, F, Schlessinger, D, Hayward, C, Spector, TD, Jarvelin, MR, Hennig, BJ, Timpson, NJ, Wei, WQ, Smith, JC, Xu, Y, Matheny, ME, Siew, EE, Lindgren, C, Herzig, KH, Dedoussis, G, Denny, JC, Psaty, BM, Howson, JMM, Munroe, PB, Newton-Cheh, C, Caulfield, MJ, Elliott, P, Gaziano, JM, Concato, J, Wilson, PWF, Tsao, PS, Velez Edwards, DR, Susztak, K, O’Donnell, CJ, Hung, AM and Edwards, TL (2019) Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nature Genetics 51(1), 5162.CrossRefGoogle ScholarPubMed
Vaura, F, Kauko, A, Suvila, K, Havulinna, AS, Mars, N, Salomaa, V, FinnGen, Cheng, S and Niiranen, T (2021) Polygenic risk scores predict hypertension onset and cardiovascular risk. Hypertension 77(4), 11191127.CrossRefGoogle ScholarPubMed
Verhaar, BJH, Collard, D, Prodan, A, Levels, JHM, Zwinderman, AH, Bäckhed, F, Vogt, L, Peters, MJL, Muller, M, Nieuwdorp, M and van den Born, BJH (2020) Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: The HELIUS study. European Heart Journal 41(44), 42594267.CrossRefGoogle ScholarPubMed
Vijay-Kumar, M, Aitken, JD, Carvalho, FA, Cullender, TC, Mwangi, S, Srinivasan, S, Sitaraman, SV, Knight, R, Ley, RE and Gewirtz, AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking toll-like receptor 5. Science 328(5975), 228231.CrossRefGoogle ScholarPubMed
Vos, T, Lim, SS, Abbafati, C, Abbas, KM, Abbasi, M, Abbasifard, M, Abbasi-Kangevari, M, Abbastabar, H, Abd-Allah, F, Abdelalim, A, Abdollahi, M, Abdollahpour, I, Abolhassani, H, Aboyans, V, Abrams, EM, Abreu, LG, Abrigo, MRM, Abu-Raddad, LJ, Abushouk, AI, Acebedo, A, Ackerman, IN, Adabi, M, Adamu, AA, Adebayo, OM, Adekanmbi, V, Adelson, JD, Adetokunboh, OO, Adham, D, Afshari, M, Afshin, A, Agardh, EE, Agarwal, G, Agesa, KM, Aghaali, M, Aghamir, SMK, Agrawal, A, Ahmad, T, Ahmadi, A, Ahmadi, M, Ahmadieh, H, Ahmadpour, E, Akalu, TY, Akinyemi, RO, Akinyemiju, T, Akombi, B, al-Aly, Z, Alam, K, Alam, N, Alam, S, Alam, T, Alanzi, TM, Albertson, SB, Alcalde-Rabanal, JE, Alema, NM, Ali, M, Ali, S, Alicandro, G, Alijanzadeh, M, Alinia, C, Alipour, V, Aljunid, SM, Alla, F, Allebeck, P, Almasi-Hashiani, A, Alonso, J, al-Raddadi, RM, Altirkawi, KA, Alvis-Guzman, N, Alvis-Zakzuk, NJ, Amini, S, Amini-Rarani, M, Aminorroaya, A, Amiri, F, Amit, AML, Amugsi, DA, Amul, GGH, Anderlini, D, Andrei, CL, Andrei, T, Anjomshoa, M, Ansari, F, Ansari, I, Ansari-Moghaddam, A, Antonio, CAT, Antony, CM, Antriyandarti, E, Anvari, D, Anwer, R, Arabloo, J, Arab-Zozani, M, Aravkin, AY, Ariani, F, Ärnlöv, J, Aryal, KK, Arzani, A, Asadi-Aliabadi, M, Asadi-Pooya, AA, Asghari, B, Ashbaugh, C, Atnafu, DD, Atre, SR, Ausloos, F, Ausloos, M, Ayala Quintanilla, BP, Ayano, G, Ayanore, MA, Aynalem, YA, Azari, S, Azarian, G, Azene, ZN, Babaee, E, Badawi, A, Bagherzadeh, M, Bakhshaei, MH, Bakhtiari, A, Balakrishnan, S, Balalla, S, Balassyano, S, Banach, M, Banik, PC, Bannick, MS, Bante, AB, Baraki, AG, Barboza, MA, Barker-Collo, SL, Barthelemy, CM, Barua, L, Barzegar, A, Basu, S, Baune, BT, Bayati, M, Bazmandegan, G, Bedi, N, Beghi, E, Béjot, Y, Bello, AK, Bender, RG, Bennett, DA, Bennitt, FB, Bensenor, IM, Benziger, CP, Berhe, K, Bernabe, E, Bertolacci, GJ, Bhageerathy, R, Bhala, N, Bhandari, D, Bhardwaj, P, Bhattacharyya, K, Bhutta, ZA, Bibi, S, Biehl, MH, Bikbov, B, Bin Sayeed, MS, Biondi, A, Birihane, BM, Bisanzio, D, Bisignano, C, Biswas, RK, Bohlouli, S, Bohluli, M, Bolla, SRR, Boloor, A, Boon-Dooley, AS, Borges, G, Borzì, AM, Bourne, R, Brady, OJ, Brauer, M, Brayne, C, Breitborde, NJK, Brenner, H, Briant, PS, Briggs, AM, Briko, NI, Britton, GB, Bryazka, D, Buchbinder, R, Bumgarner, BR, Busse, R, Butt, ZA, Caetano dos Santos, FL, Cámera, LLAA, Campos-Nonato, IR, Car, J, Cárdenas, R, Carreras, G, Carrero, JJ, Carvalho, F, Castaldelli-Maia, JM, Castañeda-Orjuela, CA, Castelpietra, G, Castle, CD, Castro, F, Catalá-López, F, Causey, K, Cederroth, CR, Cercy, KM, Cerin, E, Chandan, JS, Chang, AR, Charlson, FJ, Chattu, VK, Chaturvedi, S, Chimed-Ochir, O, Chin, KL, Cho, DY, Christensen, H, Chu, DT, Chung, MT, Cicuttini, FM, Ciobanu, LG, Cirillo, M, Collins, EL, Compton, K, Conti, S, Cortesi, PA, Costa, VM, Cousin, E, Cowden, RG, Cowie, BC, Cromwell, EA, Cross, DH, Crowe, CS, Cruz, JA, Cunningham, M, Dahlawi, SMA, Damiani, G, Dandona, L, Dandona, R, Darwesh, AM, Daryani, A, das, JK, das Gupta, R, das Neves, J, Dávila-Cervantes, CA, Davletov, K, de Leo, D, Dean, FE, DeCleene, NK, Deen, A, Degenhardt, L, Dellavalle, RP, Demeke, FM, Demsie, DG, Denova-Gutiérrez, E, Dereje, ND, Dervenis, N, Desai, R, Desalew, A, Dessie, GA, Dharmaratne, SD, Dhungana, GP, Dianatinasab, M, Diaz, D, Dibaji Forooshani, ZS, Dingels, ZV, Dirac, MA, Djalalinia, S, do, HT, Dokova, K, Dorostkar, F, Doshi, CP, Doshmangir, L, Douiri, A, Doxey, MC, Driscoll, TR, Dunachie, SJ, Duncan, BB, Duraes, AR, Eagan, AW, Ebrahimi Kalan, M, Edvardsson, D, Ehrlich, JR, el Nahas, N, el Sayed, I, el Tantawi, M, Elbarazi, I, Elgendy, IY, Elhabashy, HR, el-Jaafary, SI, Elyazar, IRF, Emamian, MH, Emmons-Bell, S, Erskine, HE, Eshrati, B, Eskandarieh, S, Esmaeilnejad, S, Esmaeilzadeh, F, Esteghamati, A, Estep, K, Etemadi, A, Etisso, AE, Farahmand, M, Faraj, A, Fareed, M, Faridnia, R, Farinha, CSS, Farioli, A, Faro, A, Faruque, M, Farzadfar, F, Fattahi, N, Fazlzadeh, M, Feigin, VL, Feldman, R, Fereshtehnejad, SM, Fernandes, E, Ferrari, AJ, Ferreira, ML, Filip, I, Fischer, F, Fisher, JL, Fitzgerald, R, Flohr, C, Flor, LS, Foigt, NA, Folayan, MO, Force, LM, Fornari, C, Foroutan, M, Fox, JT, Freitas, M, Fu, W, Fukumoto, T, Furtado, JM, Gad, MM, Gakidou, E, Galles, NC, Gallus, S, Gamkrelidze, A, Garcia-Basteiro, AL, Gardner, WM, Geberemariyam, BS, Gebrehiwot, AM, Gebremedhin, KB, Gebreslassie, AAAA, Gershberg Hayoon, A, Gething, PW, Ghadimi, M, Ghadiri, K, Ghafourifard, M, Ghajar, A, Ghamari, F, Ghashghaee, A, Ghiasvand, H, Ghith, N, Gholamian, A, Gilani, SA, Gill, PS, Gitimoghaddam, M, Giussani, G, Goli, S, Gomez, RS, Gopalani, SV, Gorini, G, Gorman, TM, Gottlich, HC, Goudarzi, H, Goulart, AC, Goulart, BNG, Grada, A, Grivna, M, Grosso, G, Gubari, MIM, Gugnani, HC, Guimaraes, ALS, Guimarães, RA, Guled, RA, Guo, G, Guo, Y, Gupta, R, Haagsma, JA, Haddock, B, Hafezi-Nejad, N, Hafiz, A, Hagins, H, Haile, LM, Hall, BJ, Halvaei, I, Hamadeh, RR, Hamagharib Abdullah, K, Hamilton, EB, Han, C, Han, H, Hankey, GJ, Haro, JM, Harvey, JD, Hasaballah, AI, Hasanzadeh, A, Hashemian, M, Hassanipour, S, Hassankhani, H, Havmoeller, RJ, Hay, RJ, Hay, SI, Hayat, K, Heidari, B, Heidari, G, Heidari-Soureshjani, R, Hendrie, D, Henrikson, HJ, Henry, NJ, Herteliu, C, Heydarpour, F, Hird, TR, Hoek, HW, Hole, MK, Holla, R, Hoogar, P, Hosgood, HD, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Hoy, DG, Hsairi, M, Hsieh, VCR, Hu, G, Huda, TM, Hugo, FN, Huynh, CK, Hwang, BF, Iannucci, VC, Ibitoye, SE, Ikuta, KS, Ilesanmi, OS, Ilic, IM, Ilic, MD, Inbaraj, LR, Ippolito, H, Irvani, SSN, Islam, MM, Islam, MM, Islam, SMS, Islami, F, Iso, H, Ivers, RQ, Iwu, CCD, Iyamu, IO, Jaafari, J, Jacobsen, KH, Jadidi-Niaragh, F, Jafari, H, Jafarinia, M, Jahagirdar, D, Jahani, MA, Jahanmehr, N, Jakovljevic, M, Jalali, A, Jalilian, F, James, SL, Janjani, H, Janodia, MD, Jayatilleke, AU, Jeemon, P, Jenabi, E, Jha, RP, Jha, V, Ji, JS, Jia, P, John, O, John-Akinola, YO, Johnson, CO, Johnson, SC, Jonas, JB, Joo, T, Joshi, A, Jozwiak, JJ, Jürisson, M, Kabir, A, Kabir, Z, Kalani, H, Kalani, R, Kalankesh, LR, Kalhor, R, Kamiab, Z, Kanchan, T, Karami Matin, B, Karch, A, Karim, MA, Karimi, SE, Kassa, GM, Kassebaum, NJ, Katikireddi, SV, Kawakami, N, Kayode, GA, Keddie, SH, Keller, C, Kereselidze, M, Khafaie, MA, Khalid, N, Khan, M, Khatab, K, Khater, MM, Khatib, MN, Khayamzadeh, M, Khodayari, MT, Khundkar, R, Kianipour, N, Kieling, C, Kim, D, Kim, YE, Kim, YJ, Kimokoti, RW, Kisa, A, Kisa, S, Kissimova-Skarbek, K, Kivimäki, M, Kneib, CJ, Knudsen, AKS, Kocarnik, JM, Kolola, T, Kopec, JA, Kosen, S, Koul, PA, Koyanagi, A, Kravchenko, MA, Krishan, K, Krohn, KJ, Kuate Defo, B, Kucuk Bicer, B, Kumar, GA, Kumar, M, Kumar, P, Kumar, V, Kumaresh, G, Kurmi, OP, Kusuma, D, Kyu, HH, la Vecchia, C, Lacey, B, Lal, DK, Lalloo, R, Lam, JO, Lami, FH, Landires, I, Lang, JJ, Lansingh, VC, Larson, SL, Larsson, AO, Lasrado, S, Lassi, ZS, Lau, KMM, Lavados, PM, Lazarus, JV, Ledesma, JR, Lee, PH, Lee, SWH, LeGrand, KE, Leigh, J, Leonardi, M, Lescinsky, H, Leung, J, Levi, M, Lewington, S, Li, S, Lim, LL, Lin, C, Lin, RT, Linehan, C, Linn, S, Liu, HC, Liu, S, Liu, Z, Looker, KJ, Lopez, AD, Lopukhov, PD, Lorkowski, S, Lotufo, PA, Lucas, TCD, Lugo, A, Lunevicius, R, Lyons, RA, Ma, J, MacLachlan, JH, Maddison, ER, Maddison, R, Madotto, F, Mahasha, PW, Mai, HT, Majeed, A, Maled, V, Maleki, S, Malekzadeh, R, Malta, DC, Mamun, AA, Manafi, A, Manafi, N, Manguerra, H, Mansouri, B, Mansournia, MA, Mantilla Herrera, AM, Maravilla, JC, Marks, A, Martins-Melo, FR, Martopullo, I, Masoumi, SZ, Massano, J, Massenburg, BB, Mathur, MR, Maulik, PK, McAlinden, C, McGrath, JJ, McKee, M, Mehndiratta, MM, Mehri, F, Mehta, KM, Meitei, WB, Memiah, PTN, Mendoza, W, Menezes, RG, Mengesha, EW, Mengesha, MB, Mereke, A, Meretoja, A, Meretoja, TJ, Mestrovic, T, Miazgowski, B, Miazgowski, T, Michalek, IM, Mihretie, KM, Miller, TR, Mills, EJ, Mirica, A, Mirrakhimov, EM, Mirzaei, H, Mirzaei, M, Mirzaei-Alavijeh, M, Misganaw, AT, Mithra, P, Moazen, B, Moghadaszadeh, M, Mohamadi, E, Mohammad, DK, Mohammad, Y, Mohammad Gholi Mezerji, N, Mohammadian-Hafshejani, A, Mohammadifard, N, Mohammadpourhodki, R, Mohammed, S, Mokdad, AH, Molokhia, M, Momen, NC, Monasta, L, Mondello, S, Mooney, MD, Moosazadeh, M, Moradi, G, Moradi, M, Moradi-Lakeh, M, Moradzadeh, R, Moraga, P, Morales, L, Morawska, L, Moreno Velásquez, I, Morgado-da-Costa, J, Morrison, SD, Mosser, JF, Mouodi, S, Mousavi, SM, Mousavi Khaneghah, A, Mueller, UO, Munro, SB, Muriithi, MK, Musa, KI, Muthupandian, S, Naderi, M, Nagarajan, AJ, Nagel, G, Naghshtabrizi, B, Nair, S, Nandi, AK, Nangia, V, Nansseu, JR, Nayak, VC, Nazari, J, Negoi, I, Negoi, RI, Netsere, HBN, Ngunjiri, JW, Nguyen, CT, Nguyen, J, Nguyen, M, Nguyen, M, Nichols, E, Nigatu, D, Nigatu, YT, Nikbakhsh, R, Nixon, MR, Nnaji, CA, Nomura, S, Norrving, B, Noubiap, JJ, Nowak, C, Nunez-Samudio, V, Oţoiu, A, Oancea, B, Odell, CM, Ogbo, FA, Oh, IH, Okunga, EW, Oladnabi, M, Olagunju, AT, Olusanya, BO, Olusanya, JO, Oluwasanu, MM, Omar Bali, A, Omer, MO, Ong, KL, Onwujekwe, OE, Orji, AU, Orpana, HM, Ortiz, A, Ostroff, SM, Otstavnov, N, Otstavnov, SS, Øverland, S, Owolabi, MO, P A, M, Padubidri, JR, Pakhare, AP, Palladino, R, Pana, A, Panda-Jonas, S, Pandey, A, Park, EK, Parmar, PGK, Pasupula, DK, Patel, SK, Paternina-Caicedo, AJ, Pathak, A, Pathak, M, Patten, SB, Patton, GC, Paudel, D, Pazoki Toroudi, H, Peden, AE, Pennini, A, Pepito, VCF, Peprah, EK, Pereira, A, Pereira, DM, Perico, N, Pham, HQ, Phillips, MR, Pigott, DM, Pilgrim, T, Pilz, TM, Pirsaheb, M, Plana-Ripoll, O, Plass, D, Pokhrel, KN, Polibin, RV, Polinder, S, Polkinghorne, KR, Postma, MJ, Pourjafar, H, Pourmalek, F, Pourmirza Kalhori, R, Pourshams, A, Poznańska, A, Prada, SI, Prakash, V, Pribadi, DRA, Pupillo, E, Quazi Syed, Z, Rabiee, M, Rabiee, N, Radfar, A, Rafiee, A, Rafiei, A, Raggi, A, Rahimi-Movaghar, A, Rahman, MA, Rajabpour-Sanati, A, Rajati, F, Ramezanzadeh, K, Ranabhat, CL, Rao, PC, Rao, SJ, Rasella, D, Rastogi, P, Rathi, P, Rawaf, DL, Rawaf, S, Rawal, L, Razo, C, Redford, SB, Reiner, RC Jr, Reinig, N, Reitsma, MB, Remuzzi, G, Renjith, V, Renzaho, AMN, Resnikoff, S, Rezaei, N, Rezai, M, Rezapour, A, Rhinehart, PA, Riahi, SM, Ribeiro, ALP, Ribeiro, DC, Ribeiro, D, Rickard, J, Roberts, NLS, Roberts, S, Robinson, SR, Roever, L, Rolfe, S, Ronfani, L, Roshandel, G, Roth, GA, Rubagotti, E, Rumisha, SF, Sabour, S, Sachdev, PS, Saddik, B, Sadeghi, E, Sadeghi, M, Saeidi, S, Safi, S, Safiri, S, Sagar, R, Sahebkar, A, Sahraian, MA, Sajadi, SM, Salahshoor, MR, Salamati, P, Salehi Zahabi, S, Salem, H, Salem, MRR, Salimzadeh, H, Salomon, JA, Salz, I, Samad, Z, Samy, AM, Sanabria, J, Santomauro, DF, Santos, IS, Santos, JV, Santric-Milicevic, MM, Saraswathy, SYI, Sarmiento-Suárez, R, Sarrafzadegan, N, Sartorius, B, Sarveazad, A, Sathian, B, Sathish, T, Sattin, D, Sbarra, AN, Schaeffer, LE, Schiavolin, S, Schmidt, MI, Schutte, AE, Schwebel, DC, Schwendicke, F, Senbeta, AM, Senthilkumaran, S, Sepanlou, SG, Shackelford, KA, Shadid, J, Shahabi, S, Shaheen, AA, Shaikh, MA, Shalash, AS, Shams-Beyranvand, M, Shamsizadeh, M, Shannawaz, M, Sharafi, K, Sharara, F, Sheena, BS, Sheikhtaheri, A, Shetty, RS, Shibuya, K, Shiferaw, WS, Shigematsu, M, Shin, JI, Shiri, R, Shirkoohi, R, Shrime, MG, Shuval, K, Siabani, S, Sigfusdottir, ID, Sigurvinsdottir, R, Silva, JP, Simpson, KE, Singh, A, Singh, JA, Skiadaresi, E, Skou, ST, Skryabin, VY, Sobngwi, E, Sokhan, A, Soltani, S, Sorensen, RJD, Soriano, JB, Sorrie, MB, Soyiri, IN, Sreeramareddy, CT, Stanaway, JD, Stark, BA, Ştefan, SC, Stein, C, Steiner, C, Steiner, TJ, Stokes, MA, Stovner, LJ, Stubbs, JL, Sudaryanto, A, Sufiyan, M’B, Sulo, G, Sultan, I, Sykes, BL, Sylte, DO, Szócska, M, Tabarés-Seisdedos, R, Tabb, KM, Tadakamadla, SK, Taherkhani, A, Tajdini, M, Takahashi, K, Taveira, N, Teagle, WL, Teame, H, Tehrani-Banihashemi, A, Teklehaimanot, BF, Terrason, S, Tessema, ZT, Thankappan, KR, Thomson, AM, Tohidinik, HR, Tonelli, M, Topor-Madry, R, Torre, AE, Touvier, M, Tovani-Palone, MRR, Tran, BX, Travillian, R, Troeger, CE, Truelsen, TC, Tsai, AC, Tsatsakis, A, Tudor Car, L, Tyrovolas, S, Uddin, R, Ullah, S, Undurraga, EA, Unnikrishnan, B, Vacante, M, Vakilian, A, Valdez, PR, Varughese, S, Vasankari, TJ, Vasseghian, Y, Venketasubramanian, N, Violante, FS, Vlassov, V, Vollset, SE, Vongpradith, A, Vukovic, A, Vukovic, R, Waheed, Y, Walters, MK, Wang, J, Wang, Y, Wang, YP, Ward, JL, Watson, A, Wei, J, Weintraub, RG, Weiss, DJ, Weiss, J, Westerman, R, Whisnant, JL, Whiteford, HA, Wiangkham, T, Wiens, KE, Wijeratne, T, Wilner, LB, Wilson, S, Wojtyniak, B, Wolfe, CDA, Wool, EE, Wu, AM, Wulf Hanson, S, Wunrow, HY, Xu, G, Xu, R, Yadgir, S, Yahyazadeh Jabbari, SH, Yamagishi, K, Yaminfirooz, M, Yano, Y, Yaya, S, Yazdi-Feyzabadi, V, Yearwood, JA, Yeheyis, TY, Yeshitila, YG, Yip, P, Yonemoto, N, Yoon, SJ, Yoosefi Lebni, J, Younis, MZ, Younker, TP, Yousefi, Z, Yousefifard, M, Yousefinezhadi, T, Yousuf, AY, Yu, C, Yusefzadeh, H, Zahirian Moghadam, T, Zaki, L, Zaman, SB, Zamani, M, Zamanian, M, Zandian, H, Zangeneh, A, Zastrozhin, MS, Zewdie, KA, Zhang, Y, Zhang, ZJ, Zhao, JT, Zhao, Y, Zheng, P, Zhou, M, Ziapour, A, Zimsen, SRM, Naghavi, M and Murray, CJL (2020) Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: A systematic analysis for the global burden of disease study 2019. The Lancet 396(10258), 12041222.CrossRefGoogle Scholar
Waghulde, H, Cheng, X, Galla, S, Mell, B, Cai, J, Pruett-Miller, SM, Vazquez, G, Patterson, A, Vijay Kumar, M and Joe, B (2018) Attenuation of microbiotal dysbiosis and hypertension in a CRISPR/Cas9 gene ablation rat model of GPER1. Hypertension 72(5), 11251132.CrossRefGoogle Scholar
Walejko, JM, Kim, S, Goel, R, Handberg, EM, Richards, EM, Pepine, CJ and Raizada, MK (2018) Gut microbiota and serum metabolite differences in African Americans and white Americans with high blood pressure. International Journal of Cardiology 271, 336339.CrossRefGoogle ScholarPubMed
Wan, Y, Jiang, J, Lu, M, Tong, W, Zhou, R, Li, J, Yuan, J, Wang, F and Li, D (2020) Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes 11(5), 14381449.CrossRefGoogle ScholarPubMed
Wan, C, Zhu, C, Jin, G, Zhu, M, Hua, J and He, Y (2021) Analysis of gut microbiota in patients with coronary artery disease and hypertension. Evidence-based Complementary and Alternative Medicine 2021, 7195082.CrossRefGoogle ScholarPubMed
Wang, B, Liu, J, Lei, R, Xue, B, Li, Y, Tian, X, Zhang, K and Luo, B (2022) Cold exposure, gut microbiota, and hypertension: A mechanistic study. Science of the Total Environment 833, 155199.CrossRefGoogle ScholarPubMed
Wang, Z, Tang, WHW, Buffa, JA, Fu, X, Britt, EB, Koeth, RA, Levison, BS, Fan, Y, Wu, Y and Hazen, SL (2014) Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. European Heart Journal 35(14), 904910.CrossRefGoogle ScholarPubMed
Wang, J, Yang, M, Wu, Q, Chen, J, Deng, SF, Chen, L, Wei, DN and Liang, F (2021) Improvement of intestinal flora: Accompany with the antihypertensive effect of electroacupuncture on stage 1 hypertension. Chinese Medicine 16(1), 111.CrossRefGoogle ScholarPubMed
Warren, HR, Evangelou, E, Cabrera, CP, Gao, H, Ren, M, Mifsud, B, Ntalla, I, Surendran, P, Liu, C, Cook, JP, Kraja, AT, Drenos, F, Loh, M, Verweij, N, Marten, J, Karaman, I, Lepe, MP, O’Reilly, PF, Knight, J, Snieder, H, Kato, N, He, J, Tai, ES, Said, MA, Porteous, D, Alver, M, Poulter, N, Farrall, M, Gansevoort, RT, Padmanabhan, S, Mägi, R, Stanton, A, Connell, J, Bakker, SJ, Metspalu, A, Shields, DC, Thom, S, Brown, M, Sever, P, Esko, T, Hayward, C, van der Harst, P, Saleheen, D, Chowdhury, R, Chambers, JC, Chasman, DI, Chakravarti, A, Newton-Cheh, C, Lindgren, CM, Levy, D, Kooner, JS, Keavney, B, Tomaszewski, M, Samani, NJ, Howson, JM, Tobin, MD, Munroe, PB, Ehret, GB, Wain, LV, International Consortium of Blood Pressure (ICBP) 1000G Analyses, BIOS Consortium, Lifelines Cohort Study, Understanding Society Scientific group, CHD Exome+ Consortium, ExomeBP Consortium, T2D-GENES Consortium, GoT2DGenes Consortium, Cohorts for Heart and Ageing Research in Genome Epidemiology (CHARGE) BP Exome Consortium, International Genomics of Blood Pressure (iGEN-BP) Consortium and UK Biobank CardioMetabolic Consortium BP working group (2017) Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics 49(3), 403415.CrossRefGoogle ScholarPubMed
Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661678.CrossRefGoogle Scholar
Weng, Z, Liu, Q, Yan, Q, Liang, J, Zhang, X, Xu, J, Li, W, Xu, C and Gu, A (2022) Associations of genetic risk factors and air pollution with incident hypertension among participants in the UK biobank study. Chemosphere 299, 134398.CrossRefGoogle ScholarPubMed
Wilck, N, Matus, MG, Kearney, SM, Olesen, SW, Forslund, K, Bartolomaeus, H, Haase, S, Mähler, A, Balogh, A, Markó, L, Vvedenskaya, O, Kleiner, FH, Tsvetkov, D, Klug, L, Costea, PI, Sunagawa, S, Maier, L, Rakova, N, Schatz, V, Neubert, P, Frätzer, C, Krannich, A, Gollasch, M, Grohme, DA, Côrte-Real, BF, Gerlach, RG, Basic, M, Typas, A, Wu, C, Titze, JM, Jantsch, J, Boschmann, M, Dechend, R, Kleinewietfeld, M, Kempa, S, Bork, P, Linker, RA, Alm, EJ and Müller, DN (2017) Salt-responsive gut commensal modulates TH17 axis and disease. Nature 551(7682), 585589.CrossRefGoogle ScholarPubMed
Wu, H, Lam, TYC, Shum, T-F, Tsai, T-Y and Chiou, J (2022) Hypotensive effect of captopril on deoxycorticosterone acetate-salt-induced hypertensive rat is associated with gut microbiota alteration. Hypertension Research 45(2), 270282.CrossRefGoogle ScholarPubMed
Xia, W-J, Xu, M-L, Yu, X-J, du, MM, Li, XH, Yang, T, Li, L, Li, Y, Kang, KB, Su, Q, Xu, JX, Shi, XL, Wang, XM, Li, HB and Kang, YM (2021) Antihypertensive effects of exercise involve reshaping of gut microbiota and improvement of gut-brain axis in spontaneously hypertensive rat. Gut Microbes 13(1), 124.CrossRefGoogle ScholarPubMed
Xu, C and Marques, FZ (2022) How dietary fibre, acting via the gut microbiome, lowers blood pressure. Current Hypertension Reports 24, 509521.CrossRefGoogle ScholarPubMed
Yan, Q, Gu, Y, Li, X, Yang, W, Jia, L, Chen, C, Han, X, Huang, Y, Zhao, L, Li, P, Fang, Z, Zhou, J, Guan, X, Ding, Y, Wang, S, Khan, M, Xin, Y, Li, S and Ma, Y (2017) Alterations of the gut microbiome in hypertension. Frontiers in Cellular and Infection Microbiology 7, 381.CrossRefGoogle ScholarPubMed
Yan, X, Jin, J, Su, X, Yin, X, Gao, J, Wang, X, Zhang, S, Bu, P, Wang, M, Zhang, Y, Wang, Z and Zhang, Y (2020) Intestinal flora modulates blood pressure by regulating the synthesis of intestinal-derived corticosterone in high salt-induced hypertension. Circulation Research 126(7), 839853.CrossRefGoogle ScholarPubMed
Yang, T, Ahmari, N, Schmidt, JT, Redler, T, Arocha, R, Pacholec, K, Magee, KL, Malphurs, W, Owen, JL, Krane, GA, Li, E, Wang, GP, Vickroy, TW, Raizada, MK, Martyniuk, CJ and Zubcevic, J (2017) Shifts in the gut microbiota composition due to depleted bone marrow beta adrenergic signaling are associated with suppressed inflammatory transcriptional networks in the mouse colon. Frontiers in Physiology 8, 220.CrossRefGoogle ScholarPubMed
Yang, T, Aquino, V, Lobaton, GO, Li, H, Colon-Perez, L, Goel, R, Qi, Y, Zubcevic, J, Febo, M, Richards, EM, Pepine, CJ and Raizada, MK (2019a) Sustained captopril‐induced reduction in blood pressure is associated with alterations in gut‐brain axis in the spontaneously hypertensive rat. Journal of the American Heart Association 8(4), e010721.CrossRefGoogle ScholarPubMed
Yang, T, Li, H, Oliveira, AC, Goel, R, Richards, EM, Pepine, CJ and Raizada, MK (2020) Transcriptomic signature of gut microbiome-contacting cells in colon of spontaneously hypertensive rats. Physiological Genomics 52(3), 121132.CrossRefGoogle ScholarPubMed
Yang, T, Magee, KL, Colon-Perez, LM, Larkin, R, Liao, YS, Balazic, E, Cowart, JR, Arocha, R, Redler, T, Febo, M, Vickroy, T, Martyniuk, CJ, Reznikov, LR and Zubcevic, J (2019b) Impaired butyrate absorption in the proximal colon, low serum butyrate and diminished central effects of butyrate on blood pressure in spontaneously hypertensive rats. Acta Physiologica 226(2), e13256.CrossRefGoogle ScholarPubMed
Yang, T, Mei, X, Tackie-Yarboi, E, Akere, MT, Kyoung, J, Mell, B, Yeo, JY, Cheng, X, Zubcevic, J, Richards, EM, Pepine, CJ, Raizada, MK, Schiefer, IT and Joe, B (2022) Identification of a gut commensal that compromises the blood pressure-lowering effect of Ester angiotensin-converting enzyme inhibitors. Hypertension 79, 15911601CrossRefGoogle ScholarPubMed
Yang, T, Richards, EM, Pepine, CJ and Raizada, MK (2018) The gut microbiota and the brain–gut–kidney axis in hypertension and chronic kidney disease. Nature Reviews Nephrology 14(7), 442456.CrossRefGoogle ScholarPubMed
Yang, T, Santisteban, MM, Rodriguez, V, Li, E, Ahmari, N, Carvajal, JM, Zadeh, M, Gong, M, Qi, Y, Zubcevic, J, Sahay, B, Pepine, CJ, Raizada, MK and Mohamadzadeh, M (2015) Gut dysbiosis is linked to hypertension. Hypertension 65(6), 13311340.CrossRefGoogle ScholarPubMed
Ye, C, Fu, T, Hao, S, Zhang, Y, Wang, O, Jin, B, Xia, M, Liu, M, Zhou, X, Wu, Q, Guo, Y, Zhu, C, Li, YM, Culver, DS, Alfreds, ST, Stearns, F, Sylvester, KG, Widen, E, McElhinney, D and Ling, X (2018) Prediction of incident hypertension within the next year: Prospective study using statewide electronic health records and machine learning. Journal of Medical Internet Research 20(1), e9268.CrossRefGoogle ScholarPubMed
Zeng, X, Xing, X, Gupta, M, Keber, FC, Lopez, JG, Lee, YCJ, Roichman, A, Wang, L, Neinast, MD, Donia, MS, Wühr, M, Jang, C and Rabinowitz, JD (2022) Gut bacterial nutrient preferences quantified in vivo. Cell 185(18), 34413456.CrossRefGoogle ScholarPubMed
Zheng, T, Wu, Y, Peng, M, Xiao, N, Tan, Z and Yang, T (2022) Hypertension of liver-yang hyperactivity syndrome induced by a high salt diet by altering components of the gut microbiota associated with the glutamate/GABA-glutamine cycle. Frontiers in Nutrition 9, 964273.CrossRefGoogle ScholarPubMed
Zhong, H-J, Zeng, H-L, Cai, Y-L, Zhuang, YP, Liou, YL, Wu, Q and He, X-X (2021) Washed microbiota transplantation lowers blood pressure in patients with hypertension. Frontiers in Cellular and Infection Microbiology 11, 679624.CrossRefGoogle ScholarPubMed
Figure 0

Table 1. The association observed between animal hypertension, gut microbiota and various interventions

Figure 1

Table 2. The association observed between human hypertension, gut microbiota and various interventions

Figure 2

Figure 1. (a) The numbers of PubMed publications (2000–2022) related to quantitative trait locus (QTL), genome-wide association studies (GWAS), microbiota, artificial intelligence in rats and mice hypertension. The search keywords were QTL, hypertension, rats, mice, GWAS, microbiota and artificial intelligence. (b) The numbers of PubMed publications (2000–2022) related to linkage, genome-wide association studies (GWAS), microbiota and artificial intelligence in human hypertension. The search keywords were linkage, hypertension, humans, GWAS, microbiota and artificial intelligence.

Figure 3

Figure 2. The integration of polygenic risk score, metagenomic risk score and clinical risk score using artificial intelligence is required for the precision medicine in hypertension.

Author comment: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R0/PR1

Comments

No accompanying comment.

Review: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R0/PR2

Conflict of interest statement

No competing interests

Comments

Comments to Author: In this review, Sachine and collaborator first report on studies using the polygenic risk score to predict hypertension, they then discuss some of the recent literature on the role of the gut microbiome on HTN regulation and they conclude highlighting the values of AI studies. Though the paper is a broad literature review including many topical papers, the overall focus and main take home message is not clear and the flow is not always there. In particular the section on AI is not very well incorporated.

Impact statement and abstract are poorly written. There are several typos and grammatical mistakes (this is a problem throughout). Also, some sentences are totally unclear (eg lines33-37). Lines 67-71 in the abstract do not mirror what is then written in the introduction.

The gut microbiome part is heavily biased on animal studies. This is to be expected as so far, not many human studies have been conducted. However, I would shorten the animal part and perhaps also discuss the few population based human studies comparing HTN cases and normotensive controls besides the dietary intervention studies.

The section on F Prau as a novel probiotic for CKD is well written, but its relationship with HTN, from what is reported, is far fetched. Can the authors elaborate and discuss papers where the association between F Prau and HTN/BP is reported (eg PMID: 28884091).

I agree with the authors on the importance to investigate microbial metabolites . Could the authors expand on what microbial metabolites have been identified to associate with HNT /BP?

In the AI section, the authors should also discuss some of the more recent literature:

eg doi: 10.1161/hypertensionaha.121.17288

https://doi.org/10.1016/j.ebiom.2022.104243

Finally, I believe one of the main limitation of AI/ML is the lack of (many) large cohorts that currently have genome and microbiome data available

Recommendation: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R0/PR3

Comments

Comments to Author: The review will be strengthened with a bit more human focus and addressing the comments from the reviewer.

Decision: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R0/PR4

Comments

No accompanying comment.

Author comment: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R1/PR5

Comments

No accompanying comment.

Recommendation: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R1/PR6

Comments

Comments to Author: The authors have addressed all the reviewer comments.

Decision: Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine — R1/PR7

Comments

No accompanying comment.