Published online by Cambridge University Press: 01 January 2024
Purification processes performed on natural clays to select specific clay minerals are complex and expensive and can lead to over-exploitation of some deposits. The present study aimed to examine physicochemical (mineralogy, morphology, size, surface charge, chemical composition, cation exchange capacity [CEC], and pH) and hydration (swelling, wettability, water sorption, and rheological behavior) properties of three native clays from Italian deposits for potential pharmaceutical and cosmetic uses due to the presence of phyllosilicate minerals. Particular emphasis was placed on energy dispersive X-ray (EDX) microanalysis coupled with the ‘cesium method’ to assay clay elemental composition and CEC. One bentonite of volcanic origin (BNT) and two kaolins, one of hydrothermal origin (K-H) and another of lacustrine-fluvial origin (K-L), were evaluated in comparison with a commercial, purified bentonite. The CEC assay revealed the complete substitution of exchangeable cations (Na+ and Ca2+) by Cs+ in BNT samples and CEC values consistent with those of typical smectites (100.64 ± 7.33 meq/100 g). For kaolins, partial substitution of Na+ cations occurred only in the K-L samples because of the interstratified mineral component which has small CEC values (11.13 ± 5.46 meq/100 g for the K-H sample and 14.75 ± 6.58 meq/100 g for the K-L sample). The degree of isomorphous substitution of Al3+ by Mg2+ affected the hydration properties of BNT in terms of swelling, water sorption, and rheology, whereas both of the poorly expandable kaolins exhibited significant water-adsorption properties. The EDX microanalysis has proved to be of considerable interest in terms of providing more information about clay properties in comparison with other commonly used methods and to identify the role played by both chemical and mineralogical composition of natural clays for their appropriate use in pharmaceutical and cosmetic fields.
An erratum to this article is available online at https://doi.org/10.1007/BF03406058.