No CrossRef data available.
Article contents
The added value of affective processes for models of human cognition and learning
Published online by Cambridge University Press: 23 September 2024
Abstract
Building on the affectivism approach, we expand on Binz et al.'s meta-learning research program by highlighting that emotion and other affective phenomena should be key to the modeling of human learning. We illustrate the added value of affective processes for models of learning across multiple domains with a focus on reinforcement learning, knowledge acquisition, and social learning.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press
References
Chevrier, M., Muis, K. R., Trevors, G. J., Pekrun, R., & Sinatra, G. M. (2019). Exploring the antecedents and consequences of epistemic emotions. Learning and Instruction, 63, Article 101209. https://doi.org/10.1016/j.learninstruc.2019.05.006CrossRefGoogle Scholar
Dorfman, H. M., Bhui, R., Hughes, B. L., & Gershman, S. J. (2019). Causal inference about good and bad outcomes. Psychological Science, 30(4), 516–525. https://doi.org/10.1177/0956797619828724CrossRefGoogle ScholarPubMed
Dukes, D., Abrams, K., Adolphs, R., Ahmed, M. E., Beatty, A., Berridge, K. C., … …Sander, D. (2021). The rise of affectivism. Nature Human Behaviour, 5, 816–820. https://doi.org/10.1038/s41562-021-01130-8CrossRefGoogle ScholarPubMed
Dukes, D., & Clément, F. (2017). Author reply: Clarifying the importance of ostensive communication in long-life, affective social learning. Emotion Review, 9(3), 267–269. https://doi.org/10.1177/1754073916679006CrossRefGoogle Scholar
Dukes, D., & Clément, F. (Eds.). (2019). Foundations of affective social learning: Conceptualizing the social transmission of value. Cambridge University Press. https://doi.org/10.1017/9781108661362CrossRefGoogle Scholar
Egyed, K., Király, I., & Gergely, G. (2013). Communicating shared knowledge in infancy. Psychological Science, 24(7), 1348–1353. https://doi.org/10.1177/0956797612471952CrossRefGoogle ScholarPubMed
Gruber, T., Bazhydai, M., Sievers, C., Clément, F., & Dukes, D. (2022). The ABC of social learning: Affect, behavior, and cognition. Psychological Review, 129(6), 1296–1318. https://doi.org/10.1037/rev0000311CrossRefGoogle ScholarPubMed
Harris, P. L. (2012). Trusting what you're told: How children learn from others. Harvard University Press. https://doi.org/10.4159/harvard.9780674065192Google Scholar
Harris, P. L., & Koenig, M. A. (2006). Trust in testimony: How children learn about science and religion. Child Development, 77(3), 505–524. https://doi.org/10.1111/j.1467-8624.2006.00886.xCrossRefGoogle ScholarPubMed
Kang, M. J., Hsu, M., Krajbich, I. M., Loewenstein, G., McClure, S. M., Wang, J. T., & Camerer, C. F. (2009). The wick in the candle of learning: Epistemic curiosity activates reward circuitry and enhanced memory. Psychological Science, 20(8), 963–973. https://doi.org/10.1111/j.1467-9280.2009.02402.xCrossRefGoogle Scholar
LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7, 54–64. https://doi.org/10.1038/nrn1825CrossRefGoogle ScholarPubMed
Lefebvre, G., Lebreton, M., Meyniel, F., Bourgeois-Gironde, S., & Palminteri, S. (2017). Behavioural and neural characterization of optimistic reinforcement learning. Nature Human Behaviour, 1, Article 0067. https://doi.org/10.1038/s41562-017-0067CrossRefGoogle Scholar
Lerner, J. S., Li, Y., Valdesolo, P., & Kassam, K. S. (2015). Emotion and decision making. Annual Review of Psychology, 66, 799–823. https://doi.org/10.1146/annurev-psych-010213-115043CrossRefGoogle ScholarPubMed
Levine, L. J., & Pizarro, D. A. (2004). Emotion and memory research: A grumpy overview. Social Cognition, 22(5), 530–554. https://doi.org/10.1521/soco.22.5.530.50767CrossRefGoogle Scholar
Levy, I., & Schiller, D. (2021). Neural computations of threat. Trends in Cognitive Sciences, 25(2), 151–171. https://doi.org/10.1016/j.tics.2020.11.007CrossRefGoogle ScholarPubMed
Marvin, C. B., & Shohamy, D. (2016). Curiosity and reward: Valence predicts choice and information prediction errors enhance learning. Journal of Experimental Psychology: General, 145(3), 266–272. https://doi.org/10.1037/xge0000140CrossRefGoogle ScholarPubMed
Muis, K. R., Chevrier, M., & Singh, C. A. (2018). The role of epistemic emotions in personal epistemology and self-regulated learning. Educational Psychologist, 53(3), 165–184. https://doi.org/10.1080/00461520.2017.1421465CrossRefGoogle Scholar
Murayama, K. (2022). A reward-learning framework of knowledge acquisition: An integrated account of curiosity, interest, and intrinsic-extrinsic rewards. Psychological Review, 129(1), 175–198. https://doi.org/10.1037/rev0000349CrossRefGoogle ScholarPubMed
Öhman, A., & Mineka, S. (2001). Fears, phobias, and preparedness: Toward an evolved module of fear and fear learning. Psychological Review, 108(3), 483–522. https://doi.org/10.1037/0033-295X.108.3.483CrossRefGoogle ScholarPubMed
Palminteri, S., & Lebreton, M. (2022). The computational roots of positivity and confirmation biases in reinforcement learning. Trends in Cognitive Sciences, 26(7), 607–621. https://doi.org/10.1016/j.tics.2022.04.005CrossRefGoogle ScholarPubMed
Pekrun, R., & Linnenbrink-Garcia, L. (Eds.). (2014). International handbook of emotion in education. Routledge.CrossRefGoogle Scholar
Phelps, E. A. (2006). Emotion and cognition: Insights from studies of the human amygdala. Annual Review of Psychology, 57, 27–53. https://doi.org/10.1146/annurev.psych.56.091103.070234CrossRefGoogle ScholarPubMed
Pool, E., Brosch, T., Delplanque, S., & Sander, D. (2016). Attentional bias for positive emotional stimuli: A meta-analytic investigation. Psychological Bulletin, 142(1), 79–106. https://doi.org/10.1037/bul0000026CrossRefGoogle ScholarPubMed
Scherer, K. R., & Moors, A. (2019). The emotion process: Event appraisal and component differentiation. Annual Review of Psychology, 70, 719–745. https://doi.org/10.1146/annurev-psych-122216-011854CrossRefGoogle ScholarPubMed
Sorce, J. F., Emde, R. N., Campos, J. J., & Klinnert, M. D. (1985). Maternal emotional signaling: Its effect on the visual cliff behavior of 1-year-olds. Developmental Psychology, 21(1), 195–200. https://doi.org/10.1037/0012-1649.21.1.195CrossRefGoogle Scholar
Stussi, Y., & Pool, E. R. (2022). Multicomponential affective processes modulating food-seeking behaviors. Current Opinion in Behavioral Sciences, 48, Article 101226. https://doi.org/10.1016/j.cobeha.2022.101226CrossRefGoogle Scholar
Stussi, Y., Pourtois, G., Olsson, A., & Sander, D. (2021). Learning biases to angry and happy faces during Pavlovian aversive conditioning. Emotion, 21(4), 742–756. https://doi.org/10.1037/emo0000733CrossRefGoogle ScholarPubMed
Stussi, Y., Pourtois, G., & Sander, D. (2018). Enhanced Pavlovian aversive conditioning to positive emotional stimuli. Journal of Experimental Psychology: General, 147(6), 905–923. https://doi.org/10.1037/xge0000424CrossRefGoogle ScholarPubMed
Vogl, E., Pekrun, R., Murayama, K., & Loderer, K. (2020). Surprised-curious-confused: Epistemic emotions and knowledge exploration. Emotion, 20(4), 625–641. https://doi.org/10.1037/emo0000578CrossRefGoogle ScholarPubMed
Vollberg, M. C., & Sander, D. (2024). Hidden reward: Affect and its prediction errors as windows into subjective value. Current Directions in Psychological Science. Advance online publication. https://doi.org/10.1177/09637214231217678CrossRefGoogle ScholarPubMed
Wuensch, L., Pool, E. R., & Sander, D. (2021). Individual differences in learning positive affective value. Current Opinion in Behavioral Sciences, 39, 19–26. https://doi.org/10.1016/j.cobeha.2020.11.001CrossRefGoogle Scholar
Zentall, T. R., & Galef, B. G. (Eds.). (1988). Social learning: Psychological and biological perspectives. Psychology Press.Google Scholar
Target article
Meta-learned models of cognition
Related commentaries (22)
Bayes beyond the predictive distribution
Challenges of meta-learning and rational analysis in large worlds
Combining meta-learned models with process models of cognition
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes
Is human compositionality meta-learned?
Learning and memory are inextricable
Linking meta-learning to meta-structure
Meta-learned models as tools to test theories of cognitive development
Meta-learned models beyond and beneath the cognitive
Meta-learning and the evolution of cognition
Meta-learning as a bridge between neural networks and symbolic Bayesian models
Meta-learning goes hand-in-hand with metacognition
Meta-learning in active inference
Meta-learning modeling and the role of affective-homeostatic states in human cognition
Meta-learning: Bayesian or quantum?
Probabilistic programming versus meta-learning as models of cognition
Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy
Quo vadis, planning?
The added value of affective processes for models of human cognition and learning
The hard problem of meta-learning is what-to-learn
The meta-learning toolkit needs stronger constraints
The reinforcement metalearner as a biologically plausible meta-learning framework
Author response
Meta-learning: Data, architecture, and both