No CrossRef data available.
Published online by Cambridge University Press: 01 January 2024
The Bursa-Orhaneli and Keles-Harmanalan coal deposits were developed in swampy and fluvial-lacustrine environments in western Anatolia under the E–W-trending graben zone during the Neogene. The present study aimed to determine the mineralogical and geochemical properties of clays interlayering the coal seams to define the origin of clay minerals, in particular, smectite. These deposits, comprising argillaceous sediment, marl, coal seam, mudstone, organic-rich shale, and sandstone, were deposited in a lacustrine environment accompanied by volcanogenic materials. The characteristics of sediments and their parent rocks were examined using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, palynology, and chemical analyses. The association of abundant smectite with quartz, amphibole, accessory chlorite, and a decrease in feldspar in fluvial-lacustrine sediments compared to those in the smectite accompanied by feldspar and volcanic glass and the absence of quartz and amphibole in the pyroclastic units suggest that smectite had detrital and authigenic origins. Flaky smectite shows either detrital, irregularly outlined coating and filling pores of terrigenous sediments or in situ precipitation edging resorbed feldspar and devitrified volcanic glass. Chemical analyses of the smectite-rich fraction show montmorillonite compositions with an average structural formula of: (Ca0.42Na0.25K0.08)(Al2.76Fe0.47Mg0.59Ti0.07Mn0.002)(Si7.65Al0.35)O20(OH)4.
The positive correlation of Al2O3 vs. TiO2 and K2O vs. Rb may be related to the abundant detrital input. Feldspar and biotite were replaced by illite during diagenesis.
An increase in the Ni/Co and V/(V + Ni) ratios in the altered units also suggest oxic, suboxic to anoxic conditions, under the control of a dry, warm to subtropical climate in fresh water and lakes during the Late Eocene to Middle Miocene. The slight enrichment of light rare earth elements (LREE) compared to heavy rare earth elements (HREE) with positive Eu and positive/negative Ce anomalies reflect fractional crystallization of feldspar. The δ18O and δD values of smectite and illite fractions and the wide range of δ34S isotope values (–1.5 to 15‰) for pyrite and chalcopyrite associated with coal indicate a signature of both diagenetic and partial hydrothermal origin.
Associate Editor: Chun Hui Zhou.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.