Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T22:36:04.837Z Has data issue: false hasContentIssue false

Topological memory using phase-change materials

Published online by Cambridge University Press:  10 May 2018

Junji Tominaga*
Affiliation:
Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Japan; [email protected]
Get access

Abstract

Nonvolatile memories (NVMs) are key devices in computers to save a user’s information. Besides flash memory, several types of NVMs that use magnetoresistance, resistance change of metal oxides, and phase change of chalcogenide alloys have been studied. Among these, phase-change random-access memory (PC-RAM) is competitive from the viewpoint of switching speed, high durability, and scalability. In 2017, Intel and Micron Technology shipped commercial devices named Optane that use a phase-change material as storage class memories. Condensed-matter physicists have recently been attracted to phase-change materials because of their functionality as topological insulators. If the topological phase state is controllable and applied to PC-RAM, electron spin transfer and storage effects will be further available in addition to electrical resistance switching.

Type
Materials for Advanced Semiconductor Memories
Copyright
Copyright © Materials Research Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bull, G.W., Kurdi, B.N., Scott, J.C., Lam, C.H., Gopalakrishnan, K., Shenoy, R.S., IBM J. Res. Dev. 52, 449 (2008).Google Scholar
Ando, K., Fujita, S., Yuasa, S., Suzuki, Y., Nakatani, Y., Miyazaki, T., Yoda, H., J. Appl. Phys. 115, 172607 (2014).CrossRefGoogle Scholar
Ielmini, D., Lacaita, A.L., Mater. Today 14, 600 (2011).CrossRefGoogle Scholar
Waser, R., Microelectron. Eng. 86, 1925 (2009).CrossRefGoogle Scholar
Jameson, J.R., Gilbert, N., Koushan, F., Saenz, J., Wang, J., Hollimer, S., Kozicki, M., Appl. Phys. Lett. 100, 023505 (2012).CrossRefGoogle Scholar
Intel, “Revolutionizing Memory and Storage,” Intel video, 3:28 (2017), https://www.intel.com/content/www/us/en/architecture-and-technology/intel-optane-technology.html.Google Scholar
Wuttig, M., Nat. Mater. 4, 265 (2005).CrossRefGoogle Scholar
Yamada, N., Ohno, E., Akahira, N., Nishiuchi, K., Nagata, K., Takao, M., Jpn. J. Appl. Phys. 26, 61 (1987).CrossRefGoogle Scholar
Yamada, N., Ohno, E., Nishiuchi, K., Akahira, N., Takao, M., J. Appl. Phys. 69, 2849 (1991).CrossRefGoogle Scholar
Raoux, S., Wuttig, M., Eds., Phase Change Materials (Springer, New York, 2009).CrossRefGoogle Scholar
Russo, U., Ielmini, D., Redaelli, A., Lacaita, A.L., IEEE Trans. Electron Devices 55, 506 (2008).CrossRefGoogle Scholar
Lee, J.I., Park, H., Cho, S.L., Park, Y.L., Bae, B.J., Park, J.H., Park, J.S., An, H.G., Bae, J.S., Ahn, D.H., Kim, Y.K.. Horii, H., Song, S.A., Shin, J.C., Park, S.Q., Kim, H.S., Chung, U-In., Moon, J.T., Ryu, B.I., Symp. VLSI Technol. Dig. Tech. Pap. (2007), p. 102.Google Scholar
Kim, I.S., Cho, S.L., Im, D.H., Cho, E.H., Kim, D.H., Oh, G.H., Ahn, D.H., Park, S.O., Nam, S.W., Moon, J.T., Chung, C.H., Symp. VLSI Technol. Dig. Tech. Pap. (2010), p. 203.Google Scholar
Tominaga, J., Wang, X., Kolobov, A.V., Fons, P., Phys. Status Solidi B 249, 1932 (2012).CrossRefGoogle Scholar
Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nat. Mater. 3, 703 (2004).CrossRefGoogle Scholar
Tominaga, J., Fons, P., Kolobov, A., Shima, T., Chong, T.C., Zhao, R., Lee, H.K., Shi, L., Jpn. J. Appl. Phys. 47, 5763 (2008).CrossRefGoogle Scholar
Tominaga, J., Simpson, R., Fons, P., Kolobov, A.V., Proc. Eur. Symp. Phase Change Ovonic Sci. (EPCOS 2010) (Politecnico di Milano, Milano, Italy, 2010), p. 54.Google Scholar
Simpson, R.E., Fons, P., Kolobov, A.V., Fukaya, T., Krbal, M., Yagi, T., Tominaga, J., Nat. Nanotechnol. 6, 501 (2011).CrossRefGoogle Scholar
Sa, B., Zhou, J., Sun, Z., Tominaga, J., Ahuja, R., Phys. Rev. Lett. 109, 096802 (2012).CrossRefGoogle Scholar
Hasan, M.Z., Kane, C.L., Rev. Mod. Phys. 82, 3045 (2010).CrossRefGoogle Scholar
Qi, X.-L., Zhang, S.-C., Rev. Mod. Phys. 83, 1057 (2011).CrossRefGoogle Scholar
Ando, Y., J. Phys. Soc. Jpn. 82, 102001 (2013).CrossRefGoogle Scholar
Xiao, D., Chang, M.-C., Niu, Q., Rev. Mod. Phys. 82, 1959 (2010).CrossRefGoogle Scholar
Bernevig, B.A., Hughes, T.L., Zhang, S.-C., Science 314, 1757 (2006).CrossRefGoogle Scholar
Fu, L., Kane, C.L., Phys. Rev. B Condens. Matter 76, 045302 (2007).CrossRefGoogle Scholar
Zhang, H., Liu, C.-X., Qi, X.-L., Dai, X., Fang, Z., Zhang, S.-C., Nat. Phys. 5, 438 (2009).CrossRefGoogle Scholar
Xia, Y., Qian, D., Hsieh, D., Wray, L., Pal, A., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cave, R.J., Hasan, M.Z., Nat. Phys. 5, 398 (2009).CrossRefGoogle Scholar
Chen, Y.L., Analytis, J.G., Chu, J.-H., Liu, Z.K., Mo, S.-K., Qi, X.L., Zhang, H.J., Lu, D.H., Dai, X., Fang, Z., Zhang, S.C., Fisher, I.R., Hussain, Z., Shen, Z.-X., Science 325, 178 (2009).CrossRefGoogle Scholar
Hsieh, D., Xia, Y., Qian, D., Wray, L., Meier, F., Dil, J.H., Osterwalder, J., Patthey, L., Fedorov, A.V., Lin, H., Bansil, A., Grauer, D., Hor, Y.S., Cava, R.J., Hasan, M.Z., Phys. Rev. Lett. 103, 146401 (2009).CrossRefGoogle Scholar
Yang, K., Setyawan, W., Wang, S., Nardelli, M.B., Curtarolo, S., Nat. Mater. 11, 614 (2012).CrossRefGoogle Scholar
Lu, H.-Z., Shan, W.-Y., Yao, W., Niu, Q., Shen, S.-Q., Phys. Rev. B Condens. Matter 81, 115407 (2010).CrossRefGoogle Scholar
Zhang, Y., He, K., Chang, C.-Z., Song, C.-L., Wang, L.-L., Chen, X., Jia, J.-F., Fang, Z., Dai, X., Shan, W.-Y., Shen, S.-Q., Niu, Q., Qi, X.-L., Zhang, S.-C., Ma, X.-C., Xue, Q.-K., Nat. Phys. 6, 584 (2010).CrossRefGoogle Scholar
Xiu, F.-X., Zhao, T.-T., Chin. Phys. B 22, 096104 (2013).CrossRefGoogle Scholar
Kolobov, A.V., Kim, D.J., Giussani, A., Fons, P., Tominaga, J., Calarco, R., Gruverman, A., APL Mater. 2, 066101 (2014).CrossRefGoogle Scholar
Halasz, G.B., Balents, L., Phys. Rev. B Condens. Matter 85, 035103 (2012).CrossRefGoogle Scholar
Tominaga, J., Kolobov, A.V., Fons, P., Nakano, T., Murakami, S., Adv. Mater. Interfaces 1, 1300027 (2014).CrossRefGoogle Scholar
Saito, Y., Fons, P., Bolotov, L., Miyata, N., Kolobov, A.V., Tominaga, J., AIP Adv. 6, 045220 (2016).CrossRefGoogle Scholar
Tominaga, J., Kolobov, A.V., Fons, P.J., Wang, X., Saito, Y., Nakano, T., Hase, M., Murakami, S., Herfort, J., Takagaki, Y., Sci. Technol. Adv. Mater. 16, 014402 (2015).CrossRefGoogle Scholar
Sante, D.D., Barone, P., Bertacco, R., Picozzi, S., Adv. Mater. 25, 509 (2013).CrossRefGoogle Scholar
Kim, J., Kim, J., Jhi, S.-H., Phys. Rev. B Condens. Matter 82, 201312 (2010).CrossRefGoogle Scholar
Kim, J., Jhi, S.-H., Phys. Status Solidi B 249, 1874 (2012).CrossRefGoogle Scholar
Takagaki, Y., Saito, Y., Tominaga, J., Appl. Phys. Lett. 108, 112102 (2016).CrossRefGoogle Scholar
Tominaga, J., Saito, Y., Mitrofanov, K., Inoue, N., Fons, P., Kolobov, A.V., Nakamura, H., Miyata, N., Adv. Funct. Mater. 27, 1702243 (2017).CrossRefGoogle Scholar
Momand, J., Wang, R., Boschker, J.E., Verheijin, M.A., Calarco, R., Kooi, B.J., Nanoscale 7, 19136 (2015).CrossRefGoogle Scholar
Wang, R., Bragaglia, V.. Boschker, J.E., Calarco, R., Cryst. Growth Des. 16, 3596 (2016).CrossRefGoogle Scholar
Lotnyk, A., Hilmi, I., Ross, U., Rauschenbach, B., Nano Res. 11, 1676 (2017).CrossRefGoogle Scholar