Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-09T10:24:59.908Z Has data issue: false hasContentIssue false

Design of a flexible robot toward transbronchial lung biopsy

Published online by Cambridge University Press:  27 September 2022

Runtian Zhang
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
Dongsheng Xie
Affiliation:
Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
Chao Qian
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
Xingguang Duan
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China Institute of Engineering Medicine, Beijing Institute of Technology, Beijing 100081, China
Changsheng Li*
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, China Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing 100081, China
*
*Corresponding author. E-mail: [email protected]

Abstract

Transbronchial lung biopsy is an effective and less-invasive treatment for the early diagnosis of lung cancer. However, the limited dexterity of existing endoscopic instruments and the complexity of bronchial access prevent the application of such procedures mainly for biopsy and diagnosis. This paper proposes a flexible robot for transbronchial lung biopsy with a cable-driven mechanism-based flexible manipulator. The robotic system of transbronchial lung biopsy is presented in detail, including the snake-bone end effector, the flexible catheters and the actuation unit. The kinematic analysis of the snake-bone end effector is conducted for the master-slave control. The experimental results show that the end effector reaches the target nodule through a narrow and tortuous pathway in a bronchial model. In conclusion, the proposed robotic system contributes to the field of advanced endoscopic surgery with high flexibility and controllability.

Type
Research Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Setio, A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., Riel, S., Wille, M., Naqibullah, M., Sánchez, C. and Ginneken, B. V., “Pulmonary nodule detection in ct images: False positive reduction using multi-view convolutional networks,” IEEE Trans. Med. Imaging 35(5), 11601169 (2016).CrossRefGoogle ScholarPubMed
Ellis, P. M. and Vandermeer, R., “Delays in the diagnosis of lung cancer,” J. Thorac. Dis. 3(3), 183188 (2011).Google ScholarPubMed
Yankelevitz, D. F., Reeves, A. P., Kostis, W. J., Zhao, B. and Henschke, C. I., “Small pulmonary nodules: Volumetrically determined growth rates based on CT evaluation,” Radiology 217, 251256 (2000).CrossRefGoogle ScholarPubMed
Henschke, C. I., McCauley, D. I., Yankelevitz, D. F., Naidich, D. P., McGuinness, G., Miettinen, O. S., Libby, D. M., Pasmantier, M. W., Koizumi, J., Altorki, N. K. and Smith, J. P., “Early lung cancer action project: Overall design and findings from baseline screening,” Lancet 354(9173), 99105 (1999).CrossRefGoogle ScholarPubMed
Mousa, W. and Khan, M., “Lung Nodule Classification Utilizing Support Vector Machines,” In: Proceedings of the 2002 International Conference on Image Processing (2002).Google Scholar
Krimsky, W. S., Pritchett, M. A. and Lau, K. K. W., “Towards an optimization of bronchoscopic approaches to the diagnosis and treatment of the pulmonary nodules: A review,” J. Thorac. Dis. 10(S14), S1637 (2018).CrossRefGoogle Scholar
Singh, S. P., Gierada, D. S., Pinsky, P., Sanders, C., Fineberg, N., Sun, Y., Lynch, D. and Nath, H., “Reader variability in identifying pulmonary nodules on chest radiographs from the national lung screening trial,” J. Thorac. Imaging 27(4), 249254 (2012).10.1097/RTI.0b013e318256951eCrossRefGoogle ScholarPubMed
Basu, S., Hall, L. O., Goldgof, D. B., Gu, Y., Kumar, V., Choi, J., Gillies, R. J. and Gatenby, R. A., “Developing A Classifier Model for Lung Tumors in CT-Scan Images,” In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (2011) pp. 13061312.Google Scholar
Dou, Q., Chen, H., Yu, L., Qin, J. and Heng, P.-A., “Multilevel contextual 3-D CNNS for false positive reduction in pulmonary nodule detection,” IEEE Trans. Biomed. Eng. 64(7), 15581567 (2017).CrossRefGoogle ScholarPubMed
Xie, Y., Xia, Y., Zhang, J., Song, Y., Feng, D., Fulham, M. and Cai, W., “Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest ct,” IEEE Trans. Med. Imaging 38(4), 9911004 (2019).CrossRefGoogle ScholarPubMed
Tartar, A., Akan, A. and Kilic, N., “A Novel Approach to Malignant-Benign Classification of Pulmonary Nodules By Using Ensemble Learning Classifiers,” In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (2014) pp. 46514654.Google Scholar
Swaney, P. J., Mahoney, A. W., Remirez, A. A., Lamers, E., Hartley, B. I., Feins, R. H., Alterovitz, R. and Webster, R. J., “Tendons, Concentric Tubes, and A Bevel Tip: Three Steerable Robots in One Transoral Lung Access System,” In: 2015 IEEE International Conference on Robotics and Automation (ICRA) (2015) pp. 53785383.Google Scholar
Memoli, J., Nietert, P. J. and Silvestri, G. A., “Meta-analysis of guided bronchoscopy for the evaluation of the pulmonary nodule,” Chest 142(2), 385393 (2012).CrossRefGoogle Scholar
Masaki, F., King, F., Kato, T., Tsukada, H., Colson, Y. and Hata, N., “Technical validation of multi-section robotic bronchoscope with first person view control for transbronchial biopsies of peripheral lung,” IEEE Trans. Biomed. Eng. 68(12), 35343542 (2021).CrossRefGoogle ScholarPubMed
Li, C., Gu, X., Xiao, X., Lim, C. M. and Ren, H., “Flexible robot with variable stiffness in transoral surgery,” In: IEEE/ASME Trans. Mechatron., 25(1), 110 (2020). doi: 10.1109/TMECH.2019.2945525.CrossRefGoogle Scholar
Herth, F. J., Mayer, M., Thiboutot, J., Kapp, C. M. and Yarmus, L., “Safety and performance of transbronchial cryobiopsy for parenchymal lung lesions,” Chest 160(4), 15121519 (2021).10.1016/j.chest.2021.04.063CrossRefGoogle ScholarPubMed
Heya, A., Kamegawa, T., Matsuno, T., Hiraki, T. and Gofuku, A., “Development of Instantaneously Puncture System for Ct Fluoroscopy-Guided Interventional Radiology,” In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2016) pp. 23692374.Google Scholar
Nakadate, R., Iwasa, T., Onogi, S., Arata, J., Oguri, S., Okamoto, Y., Akahoshi, T., Eto, M. and Hashizume, M., “Surgical robot for intraluminal access: An ex vivo feasibility study,” Cyborg Bionic Syst. 2020, 19 (2020). doi: 10.34133/2020/8378025.CrossRefGoogle Scholar
Dupont, P. E., Nelson, B. J., Goldfarb, M., Hannaford, B., Menciassi, A., O’Malley, M. K., Simaan, N., Valdastri, P. and Yang, G.-Z., “A decade retrospective of medical robotics research from 2010 to 2020,” Sci. Robot. 6(60), eabi8017 (2021).CrossRefGoogle ScholarPubMed
Li, C., Gu, X., Xiao, X., Lim, C. M., Duan, X. and Ren, H., “A flexible transoral robot towards covid-19 swab sampling,” Front. Robot. AI 8, 51 (2021).CrossRefGoogle ScholarPubMed
Li, C., Yan, Y., Xiao, X., Gu, X., Gao, H., Duan, X., Zuo, X., Li, Y. and Ren, H., “A miniature manipulator with variable stiffness towards minimally invasive transluminal endoscopic surgery,” IEEE Robot. Autom. Lett. 6(3), 55415548 (2021).CrossRefGoogle Scholar
Li, C., Gu, X., Xiao, X., Lim, C. M. and Ren, H., “A robotic system with multichannel flexible parallel manipulators for single port access surgery,” IEEE Trans. Ind. Inform. 15(3), 16781687 (2019).CrossRefGoogle Scholar
Omisore, O. M., Han, S., Xiong, J., Li, H., Li, Z. and Wang, L., “A review on flexible robotic systems for minimally invasive surgery,” IEEE Trans. Syst. Man Cybern. Syst. 52(1), 631644 (2022).CrossRefGoogle Scholar
Ohuchida, K., “Robotic surgery in gastrointestinal surgery,” Cyborg Bionic Syst. 2020(1), 17 (2020). doi: 10.34133/2020/9724807.CrossRefGoogle Scholar
Zidane, I. F., Khattab, Y., Rezeka, S. and El-Habrouk, M., “Robotics in laparoscopic surgery - A review,” Robotica 21, 148 (2022).Google Scholar
Amack, S., Rox, M. F., Mitchell, J., Ertop, T. E. and Webster, R. J., “Design and Control of A Compact Modular Robot for Transbronchial Lung Biopsy,” In: Image-Guided Procedures, Robotic Interventions, and Modeling (2019).Google Scholar
Dupourqué, L., Masaki, F., Colson, Y. L., Kato, T. and Hata, N., “Transbronchial biopsy catheter enhanced by a multisection continuum robot with follow-the-leader motion,” Int. J. Comput. Assist. Radiol. Surg. 14(5), 20212029 (2019).CrossRefGoogle ScholarPubMed
Pedley, T. J., Schroter, R. C. and Sudlow, M. F., “The prediction of pressure drop and variation of resistance within the human bronchial airways,” Respir. Physiol. 9(3), 387405 (1970).CrossRefGoogle ScholarPubMed
Murgu, S. D., “Robotic assisted-bronchoscopy: Technical tips and lessons learned from the initial experience with sampling peripheral lung lesions,” BMC Pulm. Med. 19(1), 395 (2019).CrossRefGoogle ScholarPubMed
Jelínek, F., Arkenbout, E. A., Henselmans, P., Pessers, R. and Breedveld, P., “Classification of joints used in steerable instruments for minimally invasive surgery—A review of the state of the art,” J. Med. Devices 8(1), 030914 (2015).CrossRefGoogle Scholar
Zhang, J., Fang, Q., Xiang, P., Sun, D., Xue, Y., Jin, R., Qiu, K., Xiong, R., Wang, Y., Lu, H., “A survey on design, actuation, modeling, and control of continuum robot,” Cyborg Bionic Syst. 2022(4), 113 (2022). doi: 10.34133/2022/9754697.CrossRefGoogle Scholar
Li, C. and Rahn, C. D., “Design of continuous backbone, cable-driven robots,” J. Mech. Des. 124(2), 265271 (2002).CrossRefGoogle Scholar
Simaan, N., Taylor, R. and Flint, P., “A Dexterous System for Laryngeal Surgery,” In: IEEE International Conference on Robotics and Automation, Proceedings. ICRA ’04 , vol. 1, (2004) pp. 351357,Google Scholar
Yang, C., Xu, H., Li, X. and Yu, F., “Kinematic modeling and solution of rigid-flexible and variable-diameter underwater continuous manipulator with load,” Robotica 40(4), 10201035 (2022).CrossRefGoogle Scholar

Zhang et al. supplementary material

Zhang et al. supplementary material

Download Zhang et al. supplementary material(Video)
Video 29.3 MB