Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T18:01:41.586Z Has data issue: false hasContentIssue false

M dwarfs found in the first Byurakan spectral sky survey database. Gaia EDR3 and TESS data. Some preliminary results

Published online by Cambridge University Press:  20 April 2023

K. S. Gigoyan*
Affiliation:
NAS RA V. A. Ambartsumian Byurakan Astrophysical Observatory (BAO), Byurakan, 0213, Aragatzotn Province, Armenia
A. Sarkissian
Affiliation:
Universite de Versailles Saint-Quentin, CNRS/INSU, LATMOS-IPSL, Versailles, France
G. R. Kostandyan
Affiliation:
NAS RA V. A. Ambartsumian Byurakan Astrophysical Observatory (BAO), Byurakan, 0213, Aragatzotn Province, Armenia
K. K. Gigoyan
Affiliation:
NAS RA V. A. Ambartsumian Byurakan Astrophysical Observatory (BAO), Byurakan, 0213, Aragatzotn Province, Armenia
M. Meftah
Affiliation:
Universite de Versailles Saint-Quentin, CNRS/INSU, LATMOS-IPSL, Versailles, France
S. Bekki
Affiliation:
Universite de Versailles Saint-Quentin, CNRS/INSU, LATMOS-IPSL, Versailles, France
N. Azatyan
Affiliation:
NAS RA V. A. Ambartsumian Byurakan Astrophysical Observatory (BAO), Byurakan, 0213, Aragatzotn Province, Armenia
F. Zamkotsian
Affiliation:
Aix Marseille University, CNRS, CNES, LAM, Lboratoire d Astrophysique de Marseille, Marseille, France
*
Corresponding author: K. S. Gigoyan, Email: [email protected].

Abstract

In order to gain more information on the 236 M dwarfs identified in the First Byurakan Survey (FBS) low-resolution (lr) spectroscopic database, Gaia EDR3 high-accuracy astrometric and photometric data and Transiting Exoplanet Survey Satellite (TESS) data are used to characterise these M dwarfs and their possible multiplicity. Among the sample of 236 relatively bright $(7.3 < K_S < 14.4)$ M dwarfs, 176 are new discoveries. The Gaia EDR3 G broadband magnitudes are in the range $11.3 < G < 17.1$. New distance information based on the EDR3 parallaxes are used to estimate the G-band absolute magnitudes. Nine FBS M dwarfs out of 176 newly discovered lie within 25 pc of the Sun. The FBS 0909-082 is the most distant $(r=780$ pc) M dwarf of the analysed sample, with a G-band absolute magnitude $M(G) = 9.18$, $M = 0.59$ M$_{\odot}$, $L = 0.13597$ L$_{\odot}$, and $T_{eff}$ = 3844 K; it can be classified as M1 - M2 subtype dwarf. The nearest is FBS 0250+167, a M7 subtype dwarf located at 3.83 pc from the Sun with a very high proper motion (5.13 arcsec yr$^{-1}$). The TESS estimated masses lie in the range 0.095 ($\pm$0.02) M$_{\odot}\leq$ $M\leq$ 0.7 ($\pm$ 0.1) M$_{\odot}$ and $T_{eff}$ in the range 4000 K < $T_{eff}$ < 2790 K. We analyse colour-colour and colour-absolute magnitude diagram (CaMD) diagrams for the M dwarfs. Results suggest that 27 FBS M dwarfs are double or multiple systems. The observed spectral energy distribution (SED) for some of the M dwarfs can be used to classify potential infrared excess. Using TESS light curves, flares are detected for some FBS M dwarfs. Finally, for early and late sub-classes of the M dwarfs, the detection range for survey is estimated for the first time.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of the Astronomical Society of Australia

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abazajian, K. N., et al. 2009, ApJS, 182, 543Google Scholar
Alonso-Floriano, F. J., et al. 2015, A&A, 577, A128CrossRefGoogle Scholar
Astudillo-Defru, N., et al. 2017, A&A, 602, A88CrossRefGoogle Scholar
Babusiaux, C., et al. 2018, A&A, 616, A10Google Scholar
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., Demleitner, M., & Andrae, R. 2021, AJ, 161, 147CrossRefGoogle Scholar
Baraffe, I., Homeier, D., Allard, F., & Chabrier, G. 2015, A&A, 577, A42CrossRefGoogle Scholar
Bessell, M. S. 1991, AJ, 101, 662CrossRefGoogle Scholar
Bessell, M. S., & Brett, J. M. 1988, PASP, 100, 1134CrossRefGoogle Scholar
Bianchi, L., Shiao, B., & Thilker, D. 2017, ApJS, 230, 24CrossRefGoogle Scholar
Boller, T., et al. 2016, A&A, 588, A103CrossRefGoogle Scholar
Brown, A. G. A., 2021, A&A, 650, C3CrossRefGoogle Scholar
Bryant, E. M., & Bayliss, D. 2022, AJ, 163, 197CrossRefGoogle Scholar
Cifuentes, C., et al. 2020, A&A, 642, A115CrossRefGoogle Scholar
Cotten, T. H., & Song, I. 2016, ApJS, 225, 15CrossRefGoogle Scholar
Cruz, K. L., et al. 2018, AJ, 155, 34CrossRefGoogle Scholar
Cui, X.-Q., et al. 2012, RAA, 12, 1197CrossRefGoogle Scholar
Delfosse, X., et al. 1999, A&A, 344, 897Google Scholar
Delfosse, X., Forveille, T., Perrier, C., & Mayor, M. 1998, A&A, 331, 581Google Scholar
Delfosse, X., et al. 2000, A&A, 364, 217Google Scholar
Espinoza, N., et al. 2022, AJ, 163, 133Google Scholar
Gan, T., et al. 2022, MNRAS, 511, 83CrossRefGoogle Scholar
Giacalone, S., et al. 2022, AJ, 163, 99Google Scholar
Giclas, H. L., Burnham, R., & Thomas, N. G. 1971, Lowell proper motion survey Northern Hemisphere. The G numbered stars. 8991 stars fainter than magnitude 8 with motions > 0”.26/year+0”.26/year>Google Scholar
Gigoyan, K., Mauron, N., Azzopardi, M., Muratorio, G., & Abrahamyan, H. V. 2001, A&A, 371, 560CrossRefGoogle Scholar
Gigoyan, K. S., et al. 2003, Ap, 46, 475Google Scholar
Gigoyan, K. S., Mickaelian, A. M., & Kostandyan, G. R. 2019, MNRAS, 489, 2030CrossRefGoogle Scholar
Gilbert, E. A., et al. 2022, AJ, 163, 147CrossRefGoogle Scholar
Gliese, W., & Jahreiss, H. 1991, NASA STI/Recon Technical Report A, 224, 161Google Scholar
Guerrero, N. M., et al. 2021, ApJS, 254, 39CrossRefGoogle Scholar
Henry, G. W., Fekel, F. C., Sowell, J. R., & Gearhart, J. S. 2006, AJ, 132, 2489CrossRefGoogle Scholar
Henry, J. P., et al. 1997, AJ, 114, 1293CrossRefGoogle Scholar
Henry, T. J., et al. 2018, AJ, 155, 265CrossRefGoogle Scholar
Jao, W.-C., et al. 2005, AJ, 129, 1954CrossRefGoogle Scholar
Jayasinghe, T., et al. 2018, MNRAS, 477, 3145CrossRefGoogle Scholar
Johnson, H. R., et al. 1986, The M-type starsGoogle Scholar
Kirkpatrick, J. D., et al. 1993, ApJ, 402, 643CrossRefGoogle Scholar
Kunimoto, M., et al. 2022, ApJS, 259, 33CrossRefGoogle Scholar
Lamman, C., et al. 2020, AJ, 159, 139CrossRefGoogle Scholar
Lépine, S., & Shara, M. M. 2005, AJ, 129, 1483CrossRefGoogle Scholar
Luo, A. L., et al. 2019, VizieR Online Data Catalog, V/164Google Scholar
Luppe, P., Krivov, A. V., Booth, M., & Lestrade, J.-F. 2020, MNRAS, 499, 3932CrossRefGoogle Scholar
Mann, A. W., et al. 2018, AJ, 155, 4Google Scholar
Markarian, B. E., Lipovetsky, V. A., Stepanian, J. A., Erastova, L. K., & Shapovalova, A. I. 1989, SoSAO, 62, 5Google Scholar
Martinez, A. O., et al. 2017, ApJ, 837, 72CrossRefGoogle Scholar
Mason, B. D., Wycoff, G. L., Hartkopf, W. I., Douglass, G. G., & Worley, C. E. 2001, AJ, 122, 3466CrossRefGoogle Scholar
Mori, M., et al. 2022, AJ, 163, 298Google Scholar
Muirhead, P. S., et al. 2012, ApJ, 747, 144CrossRefGoogle Scholar
Paegert, M., et al. 2021, arXiv e-prints, arXiv:2108.04778Google Scholar
Pravdo, S. H., et al. 1999, AJ, 117, 1616CrossRefGoogle Scholar
Quirrenbach, A., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9147, Ground-based and Airborne Instrumentation for Astronomy V, ed. Ramsay, S. K., McLean, I. S., & Takami, H., 91471FGoogle Scholar
Quirrenbach, A., et al. 2018, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII, ed. Evans, C. J., Simard, L., & Takami, H., 107020WGoogle Scholar
Reid, I. N., et al. 2004, AJ, 128, 463CrossRefGoogle Scholar
Ricker, G. R., et al. 2014, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 9143, Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wave, ed. Oschmann, J., Jacobus, M., Clampin, M., Fazio, G. G., & MacEwen, H. A., 914320Google Scholar
Sgro, L. A., & Song, I. 2021, MNRAS, 508, 3084CrossRefGoogle Scholar
Shappee, B. J., et al. 2014, ApJ, 788, 48Google Scholar
Silvestri, N. M., Hawley, S. L., & Oswalt, T. D. 2005, AJ, 129, 2428CrossRefGoogle Scholar
Silvestri, N. M., et al. 2006, AJ, 131, 1674CrossRefGoogle Scholar
Skrutskie, M. F., et al. 2006, AJ, 131, 1163CrossRefGoogle Scholar
Smart, R. L., et al. 2019, MNRAS, 485, 4423CrossRefGoogle Scholar
Stassun, K. G., et al. 2018, AJ, 156, 102CrossRefGoogle Scholar
Stassun, K. G., et al. 2019, AJ, 158, 138Google Scholar
Tarter, J. C., et al. 2007, As, 7, 30Google Scholar
Teegarden, B. J., et al. 2003, ApJ, 589, L51CrossRefGoogle Scholar
Vach, S., et al. 2022, AJ, 164, 71Google Scholar
Voges, W., et al. 2000, IAUC, 7432, 3Google Scholar
Vrijmoet, E. H., et al. 2022, AJ, 163, 178CrossRefGoogle Scholar
Ward-Duong, K., et al. 2015, MNRAS, 449, 2618CrossRefGoogle Scholar
West, A. A., et al. 2011, AJ, 141, 97Google Scholar
Winters, J. G., et al. 2019, AJ, 157, 216CrossRefGoogle Scholar
Yee, S. W., et al. 2022, AJ, 164, 70Google Scholar
Yi, Z., et al. 2014, AJ, 147, 33CrossRefGoogle Scholar
Zechmeister, M., et al. 2019, A&A, 627, A49Google Scholar
Zhong, J., et al. 2019, ApJS, 244, 8CrossRefGoogle Scholar
Ziegler, C., et al. 2018, AJ, 156, 259CrossRefGoogle Scholar