Published online by Cambridge University Press: 07 February 2022
This paper describes a multiple-input multiple-output (MIMO) antenna for low millimeter (mm)-wave applications based on dielectric resonators. This is the first time that a filtering response is used in conjunction with an MIMO antenna operating at a low mm-wave frequency. The antenna is simulated using an asymmetrical U-shaped aperture and a microstrip line feed. The suggested filtenna has two distinguishing characteristics: (i) the diversity parameters of the proposed MIMO are increased by including pattern and spatial diversity, and (ii) the proposed feed mechanism of a dielectric resonator provides the filtering response. Between the two ports, a metallic plate tilts the radiation pattern by 45°. The anti-parallel locations of the ports increase the isolation value by >30 dB. To validate the performance of the suggested antenna, the proposed filtenna was built and confirmed. The proposed antenna operates between the frequencies 27.9 and 28.5 GHz. Within the operating frequency range, the observed gain is ~4.5 dBi. On the contrary, the gain suppression level beyond the operational frequency range is ~15 dB. The stable radiation properties and high diversity parameter values of the suggested filtenna make it an effective solution for 5G Internet of Things sensing applications.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.