Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-02T21:04:11.502Z Has data issue: false hasContentIssue false

Resting-state connectivity subtype of comorbid PTSD and alcohol use disorder moderates improvement from integrated prolonged exposure therapy in Veterans

Published online by Cambridge University Press:  30 April 2021

Daniel M. Stout*
Affiliation:
Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego, San Diego, CA, USA
Katia M. Harlé
Affiliation:
Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego, San Diego, CA, USA
Sonya B. Norman
Affiliation:
Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego, San Diego, CA, USA National Center for PTSD, White River Junction, Vermont, USA
Alan N. Simmons
Affiliation:
Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego, San Diego, CA, USA
Andrea D. Spadoni
Affiliation:
Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, CA, USA Research Service, VA San Diego Healthcare System, San Diego, CA, USA Department of Psychiatry, University of California San Diego, San Diego, CA, USA
*
Author for correspondence: Daniel M. Stout, E-mail: [email protected]

Abstract

Background

Posttraumatic stress disorder (PTSD) and alcohol use disorder (AUD) are highly comorbid and are associated with significant functional impairment and inconsistent treatment outcomes. Data-driven subtyping of this clinically heterogeneous patient population and the associated underlying neural mechanisms are highly needed to identify who will benefit from psychotherapy.

Methods

In 53 comorbid PTSD/AUD patients, resting-state functional magnetic resonance imaging was collected prior to undergoing individual psychotherapy. We used a data-driven approach to subgroup patients based on directed connectivity profiles. Connectivity subgroups were compared on clinical measures of PTSD severity and heavy alcohol use collected at pre- and post-treatment.

Results

We identified a subgroup of patients associated with improvement in PTSD symptoms from integrated-prolonged exposure therapy. This subgroup was characterized by lower insula to inferior parietal cortex (IPC) connectivity, higher pregenual anterior cingulate cortex (pgACC) to posterior midcingulate cortex connectivity and a unique pgACC to IPC path. We did not observe any connectivity subgroup that uniquely benefited from integrated-coping skills or subgroups associated with change in alcohol consumption.

Conclusions

Data-driven approaches to characterize PTSD/AUD subtypes have the potential to identify brain network profiles that are implicated in the benefit from psychological interventions – setting the stage for future research that targets these brain circuit communication patterns to boost treatment efficacy.

Type
Original Article
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press
Copyright
Copyright © United States Department of Veterans Affairs, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abi-Dargham, A., & Horga, G. (2016). The search for imaging biomarkers in psychiatric disorders. Nature Medicine, 22(11), 12481255. doi: 10.1038/nm.4190.CrossRefGoogle ScholarPubMed
Akiki, T. J., Averill, C. L., & Abdallah, C. G. (2017). A network-based neurobiological model of PTSD: Evidence from structural and functional neuroimaging studies. Current Psychiatry Reports, 19(11), 81. doi: 10.1007/s11920-017-0840-4.CrossRefGoogle ScholarPubMed
Balderston, N. L., Hale, E., Hsiung, A., Torrisi, S., Holroyd, T., Carver, F. W., … Grillon, C. (2017). Threat of shock increases excitability and connectivity of the intraparietal sulcus. ELife, 6, e23608. doi: 10.7554/eLife.23608.CrossRefGoogle ScholarPubMed
Belleau, E. L., Ehret, L. E., Hanson, J. L., Brasel, K. J., Larson, C. L., & DeRoon-Cassini, T. A. (2020). Amygdala functional connectivity in the acute aftermath of trauma prospectively predicts severity of posttraumatic stress symptoms. Neurobiology of Stress, 12, 100217. doi: 10.1016/j.ynstr.2020.100217.CrossRefGoogle ScholarPubMed
Beltz, A. M., & Gates, K. M. (2017). Network mapping with GIMME. Multivariate Behavioral Research, 52(6), 789804. doi: 10.1080/00273171.2017.1373014.CrossRefGoogle ScholarPubMed
Benjamini, Y. & Hochberg, Y. (1995). Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B (Methodological), 57, 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.xCrossRefGoogle Scholar
Blanco, C., Wall, M. M., Lindquist, M. A., Rodríguez-Fernández, J. M., Franco, S., Wang, S., & Olfson, M. (2016). Generalizability of neuroimaging studies in 5 common psychiatric disorders based on the national epidemiologic survey on alcohol and related conditions (NESARC). The Journal of Clinical Psychiatry, 77(12), e1618e1625. doi: 10.4088/JCP.15m10264.CrossRefGoogle ScholarPubMed
Blanco, C., Xu, Y., Brady, K., Perez-Fuentes, G., Okuda, M., & Wang, S. (2013). Comorbidity of posttraumatic stress disorder with alcohol dependence among US adults: Results from National Epidemiological Survey on Alcohol and Related Conditions. Drug and Alcohol Dependence, 132(3), 630638. doi: 10.1016/j.drugalcdep.2013.04.016.CrossRefGoogle ScholarPubMed
Bomyea, J., Stein, M. B., & Lang, A. J. (2015). Interference control training for PTSD: A randomized controlled trial of a novel computer-based intervention. Journal of Anxiety Disorders, 34, 3342. doi: 10.1016/j.janxdis.2015.05.010.CrossRefGoogle ScholarPubMed
Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: The Guilford Press.Google Scholar
Bryant, R. A., Erlinger, M., Felmingham, K., Malhi, G. S., O'Donnell, M. L., Williams, L. M., … Korgaonkar, M. S. (2020). Differential neural predictors of treatment response for fear and dysphoric features of posttraumatic stress disorder. Depression and Anxiety, 37, 1026–1036. doi: 10.1002/da.23061.CrossRefGoogle ScholarPubMed
Bryant, R. A., Felmingham, K., Whitford, T. J., Kemp, A., Hughes, G., Peduto, A., & Williams, L. M. (2008). Rostral anterior cingulate volume predicts treatment response to cognitive-behavioural therapy for posttraumatic stress disorder. Journal of Psychiatry & Neuroscience, 33(2), 142146. Retrieved from https://pubmed.ncbi.nlm.nih.gov/18330460.Google ScholarPubMed
Camchong, J., Stenger, V. A., & Fein, G. (2013). Resting-state synchrony in short-term versus long-term abstinent alcoholics. Alcoholism, Clinical and Experimental Research, 37(5), 794803. doi: 10.1111/acer.12037.CrossRefGoogle ScholarPubMed
Chahal, R., Weissman, D. G., Hallquist, M. N., Robins, R. W., Hastings, P. D., & Guyer, A. E. (2020). Neural connectivity biotypes: Associations with internalizing problems throughout adolescence. Psychological Medicine, 111. Advance online publication. doi: 10.1017/S003329172000149X.Google ScholarPubMed
Cisler, J. M., Sigel, B. A., Kramer, T. L., Smitherman, S., Vanderzee, K., Pemberton, J., & Kilts, C. D. (2015). Amygdala response predicts trajectory of symptom reduction during trauma-focused cognitive-behavioral therapy among adolescent girls with PTSD. Journal of Psychiatric Research, 71, 3340. doi: 10.1016/j.jpsychires.2015.09.011.CrossRefGoogle ScholarPubMed
Clausen, A. N., Francisco, A. J., Thelen, J., Bruce, J., Martin, L. E., McDowd, J., … Aupperle, R. L. (2017). PTSD and cognitive symptoms relate to inhibition-related prefrontal activation and functional connectivity. Depression and Anxiety, 34(5), 427436. doi: 10.1002/da.22613.CrossRefGoogle ScholarPubMed
Craig, A.D. (2009). How do you feel – now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 5970. https://doi.org/10.1038/nrn2555Google Scholar
Critchley, H. D., Wiens, S., Rotshtein, P., Ohman, A.,& Dolan, R. J. (2004). Neural systems supporting interoceptive awareness. Nature Neuroscience, 7(2), 189195. https://doi.org/10.1038/nn1176Google Scholar
Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., … Liston, C. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23(1), 2838. doi: 10.1038/nm.4246.CrossRefGoogle ScholarPubMed
Elman, I., Upadhyay, J., Langleben, D. D., Albanese, M., Becerra, L., & Borsook, D. (2018). Reward and aversion processing in patients with post-traumatic stress disorder: Functional neuroimaging with visual and thermal stimuli. Translational Psychiatry, 8(1), 240. doi: 10.1038/s41398-018-0292-6.CrossRefGoogle ScholarPubMed
Etkin, A., Buchel, C., & Gross, J. J. (2015). The neural bases of emotion regulation. Nature Reviews. Neuroscience, 16(11), 693700. doi: 10.1038/nrn4044.CrossRefGoogle ScholarPubMed
Etkin, A., Maron-Katz, A., Wu, W., Fonzo, G. A., Huemer, J., Vértes, P. E., … O'Hara, R. (2019). Using fMRI connectivity to define a treatment-resistant form of post-traumatic stress disorder. Science Translational Medicine, 11(486), eaal3236. doi: 10.1126/scitranslmed.aal3236.CrossRefGoogle ScholarPubMed
Feczko, E., Miranda-Dominguez, O., Marr, M., Graham, A. M., Nigg, J. T., & Fair, D. A. (2019). The heterogeneity problem: Approaches to identify psychiatric subtypes. Trends in Cognitive Sciences, 23(7), 584601. doi: 10.1016/j.tics.2019.03.009.CrossRefGoogle ScholarPubMed
Foa, E., Hembree, E., Rothbaum, B. O., & Rauch, S. (2019). Prolonged exposure therapy for PTSD: Emotional processing of traumatic experiences therapist guide (2nd ed.). New York, NY: Oxford University Press. 10.1093/med: psych/9780195308501.001.0001.CrossRefGoogle Scholar
Gates, K. M., Henry, T., Steinley, D., & Fair, D. A. (2016). A Monte Carlo evaluation of weighted community detection algorithms. Frontiers in Neuroinformatics, 10, 45. doi: 10.3389/fninf.2016.00045.CrossRefGoogle ScholarPubMed
Gates, K. M., Lane, S. T., Varangis, E., Giovanello, K., & Guskiewicz, K. (2017). Unsupervised classification during time-series model building. Multivariate Behavioral Research, 52(2), 129148. doi: 10.1080/00273171.2016.1256187.CrossRefGoogle ScholarPubMed
Gates, K. M., Molenaar, P. C. M., Iyer, S. P., Nigg, J. T., & Fair, D. A. (2014). Organizing heterogeneous samples using community detection of GIMME-derived resting state functional networks. PLoS ONE, 9(3), e91322. doi: 10.1371/journal.pone.0091322.CrossRefGoogle ScholarPubMed
Gates, K. M., & Molenaar, P. C. M. (2012). Group search algorithm recovers effective connectivity maps for individuals in homogeneous and heterogeneous samples. NeuroImage, 63(1), 310319. doi: 10.1016/j.neuroimage.2012.06.026.CrossRefGoogle ScholarPubMed
Geuze, E., Westenberg, H. G. M., Jochims, A., de Kloet, C. S., Bohus, M., Vermetten, E., & Schmahl, C. (2007). Altered pain processing in Veterans with posttraumatic stress disorder. Archives of General Psychiatry, 64(1), 7685. doi: 10.1001/archpsyc.64.1.76.CrossRefGoogle ScholarPubMed
Gilpin, N. W., & Weiner, J. L. (2017). Neurobiology of comorbid post-traumatic stress disorder and alcohol-use disorder. Genes, Brain, and Behavior, 16(1), 1543. doi: 10.1111/gbb.12349.CrossRefGoogle ScholarPubMed
Goodkind, M., Eickhoff, S. B., Oathes, D. J., Jiang, Y., Chang, A., Jones-Hagata, L. B., … Etkin, A. (2015). Identification of a common neurobiological substrate for mental illness. JAMA Psychiatry, 72(4), 305315. doi: 10.1001/jamapsychiatry.2014.2206.CrossRefGoogle ScholarPubMed
Gu, X., Liu, X., Van Dam, N. T., Hof, P. R.& Fan, J. (2013). Cognition-emotion integration in the anterior insular cortex. Cerebral Cortex, 23, 20–27. https://doi.org/10.1093/cercor/bhr367Google Scholar
Huys, Q. J. M., Maia, T. V., & Frank, M. J. (2016). Computational psychiatry as a bridge from neuroscience to clinical applications. Nature Neuroscience, 19(3), 404413. doi: 10.1038/nn.4238.CrossRefGoogle ScholarPubMed
Jin, C., Jia, H., Lanka, P., Rangaprakash, D., Li, L., Liu, T., … Deshpande, G. (2017). Dynamic brain connectivity is a better predictor of PTSD than static connectivity. Human Brain Mapping, 38(9), 44794496. doi: 10.1002/hbm.23676.CrossRefGoogle ScholarPubMed
Kennis, M., Rademaker, A. R., van Rooij, S. J. H., Kahn, R. S., & Geuze, E. (2015). Resting state functional connectivity of the anterior cingulate cortex in veterans with and without post-traumatic stress disorder. Human Brain Mapping, 36(1), 99109. doi: 10.1002/hbm.22615.CrossRefGoogle ScholarPubMed
Klaming, R., Harlé, K. M., Infante, M. A., Bomyea, J., Kim, C., & Spadoni, A. D. (2019). Shared gray matter reductions across alcohol use disorder and posttraumatic stress disorder in the anterior cingulate cortex: A dual meta-analysis. Neurobiology of Stress, 10, 100132. doi: 10.1016/j.ynstr.2018.09.009.CrossRefGoogle ScholarPubMed
Koch, S. B. J., van Zuiden, M., Nawijn, L., Frijling, J. L., Veltman, D. J., & Olff, M. (2016). Aberrant resting-state brain activity in posttraumatic stress disorder: A meta-analysis and systematic review. Depression and Anxiety, 33(7), 592605. doi: 10.1002/da.22478.CrossRefGoogle ScholarPubMed
Kohno, M., Dennis, L. E., McCready, H., & Hoffman, W. F. (2017). Executive control and striatal resting-state network interact with risk factors to influence treatment outcomes in alcohol-use disorder. Frontiers in Psychiatry, 8, 182. doi: 10.3389/fpsyt.2017.00182.CrossRefGoogle ScholarPubMed
Krystal, J. H., Davis, L. L., Neylan, T. C., Raskind, M. A., Schnurr, P. P., Stein, M. B., … Huang, G. D. (2017). It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: A consensus statement of the PTSD psychopharmacology working group. Biological Psychiatry, 82(7), e51e59. doi: 10.1016/j.biopsych.2017.03.007.CrossRefGoogle ScholarPubMed
Kuckertz, J. M., Amir, N., Boffa, J. W., Warren, C. K., Rindt, S. E. M., Norman, S., … McLay, R. (2014). The effectiveness of an attention bias modification program as an adjunctive treatment for post-traumatic stress disorder. Behaviour Research and Therapy, 63, 2535. doi: 10.1016/j.brat.2014.09.002.CrossRefGoogle ScholarPubMed
Lazarus, G., Sened, H., & Rafaeli, E. (2020). Subjectifying the personality state: Theoretical underpinnings and an empirical example. European Journal of Personality, 34(6), 1017–1036. doi: 10.1002/per.2278.CrossRefGoogle Scholar
Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., … Liu, T. (2014). Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Human Brain Mapping, 35(4), 17611778. doi: 10.1002/hbm.22290.CrossRefGoogle ScholarPubMed
Linnman, C., Zeffiro, T. A., Pitman, R. K., & Milad, M. R. (2011). An fMRI study of unconditioned responses in post-traumatic stress disorder. Biology of Mood & Anxiety Disorders, 1(1), 8. doi: 10.1186/2045-5380-1-8.CrossRefGoogle ScholarPubMed
Malejko, K., Abler, B., Plener, P. L., & Straub, J. (2017). Neural correlates of psychotherapeutic treatment of post-traumatic stress disorder: A systematic literature review. Frontiers in Psychiatry, 8, 85. Retrieved from https://www.frontiersin.org/article/10.3389/fpsyt.2017.00085.CrossRefGoogle ScholarPubMed
Maron-Katz, A., Zhang, Y., Narayan, M., Wu, W., Toll, R. T., Naparstek, S., … Etkin, A. (2019). Individual patterns of abnormality in resting-state functional connectivity reveal two data-driven PTSD subgroups. American Journal of Psychiatry, 177(3), 244253. doi: 10.1176/appi.ajp.2019.19010060.CrossRefGoogle ScholarPubMed
McCormick, E. M., & Telzer, E. H. (2018). Contributions of default mode network stability and deactivation to adolescent task engagement. Scientific Reports, 8(1), 18049. doi: 10.1038/s41598-018-36269-4.CrossRefGoogle ScholarPubMed
Menon,V., & Uddin, L.Q.. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function, 214, 655–667. https://doi.org/10.1007/s00429-010-0262-0.Google Scholar
Milham, M. P., Craddock, R. C., & Klein, A. (2017). Clinically useful brain imaging for neuropsychiatry: How can we get there? Depression and Anxiety, 34(7), 578587. doi: 10.1002/da.22627.CrossRefGoogle Scholar
Norman, S. B., Haller, M., Hamblen, J. L., Southwick, S. M., & Pietrzak, R. H. (2018). The burden of co-occurring alcohol use disorder and PTSD in U.S. Military veterans: Comorbidities, functioning, and suicidality. Psychology of Addictive Behaviors, 32(2), 224229. doi: 10.1037/adb0000348.CrossRefGoogle ScholarPubMed
Norman, S. B., Trim, R., Haller, M., Davis, B. C., Myers, U. S., Colvonen, P. J., … Mayes, T. (2019). Efficacy of integrated exposure therapy vs integrated coping skills therapy for comorbid posttraumatic stress disorder and alcohol use disorder: A randomized clinical trial. JAMA Psychiatry, 76(8), 791799. doi: 10.1001/jamapsychiatry.2019.0638.CrossRefGoogle ScholarPubMed
Orman, G. K., Labatut, V., & Cherifi, H. (2012). Comparative evaluation of community detection algorithms: A topological approach. Journal of Statistical Mechanics: Theory and Experiment, 2012(08), P08001. doi: 10.1088/1742-5468/2012/08/p08001.CrossRefGoogle Scholar
Osuch, E. A., Benson, B. E., Luckenbaugh, D. A., Geraci, M., Post, R. M., & McCann, U. (2009). Repetitive TMS combined with exposure therapy for PTSD: A preliminary study. Journal of Anxiety Disorders, 23(1), 5459. doi: 10.1016/j.janxdis.2008.03.015.CrossRefGoogle ScholarPubMed
Palomero-Gallagher, N., Hoffstaedter, F., Mohlberg, H., Eickhoff, S. B., Amunts, K., & Zilles, K. (2019). Human pregenual anterior cingulate cortex: Structural, functional, and connectional heterogeneity. Cerebral Cortex, 29(6), 25522574. doi: 10.1093/cercor/bhy124.CrossRefGoogle ScholarPubMed
Poldrack, R. A., Huckins, G., & Varoquaux, G. (2020). Establishment of best practices for evidence for prediction: A review. JAMA Psychiatry, 77(5), 534540. doi: 10.1001/jamapsychiatry.2019.3671.CrossRefGoogle ScholarPubMed
Price, R. B., Beltz, A. M., Woody, M. L., Cummings, L., Gilchrist, D., & Siegle, G. J. (2020). Neural connectivity subtypes predict discrete attentional-bias profiles among heterogeneous anxiety patients. Clinical Psychological Science, 8(3), 491505. doi: 10.1177/2167702620906149.CrossRefGoogle ScholarPubMed
Price, R. B., Gates, K., Kraynak, T. E., Thase, M. E., & Siegle, G. J. (2017a). Data-driven subgroups in depression derived from directed functional connectivity paths at rest. Neuropsychopharmacology, 42(13), 26232632. doi: 10.1038/npp.2017.97.CrossRefGoogle ScholarPubMed
Price, R. B., Lane, S., Gates, K., Kraynak, T. E., Horner, M. S., Thase, M. E., & Siegle, G. J. (2017b). Parsing heterogeneity in the brain connectivity of depressed and healthy adults during positive mood. Biological Psychiatry, 81(4), 347357. doi: 10.1016/j.biopsych.2016.06.023.CrossRefGoogle ScholarPubMed
Raichle, M. E. (2015). The brain's default mode network. Annual Review of Neuroscience, 38(1), 433447. doi: 10.1146/annurev-neuro-071013-014030.CrossRefGoogle ScholarPubMed
Reggente, N., Moody, T. D., Morfini, F., Sheen, C., Rissman, J., O'Neill, J., & Feusner, J. D. (2018). Multivariate resting-state functional connectivity predicts response to cognitive behavioral therapy in obsessive–compulsive disorder. Proceedings of the National Academy of Sciences, 115(9), 2222 LP2227. doi: 10.1073/pnas.1716686115.CrossRefGoogle ScholarPubMed
Reid, A. T., Headley, D. B., Mill, R. D., Sanchez-Romero, R., Uddin, L. Q., Marinazzo, D., … Cole, M. W. (2019). Advancing functional connectivity research from association to causation. Nature Neuroscience, 22(11), 17511760. doi: 10.1038/s41593-019-0510-4.CrossRefGoogle ScholarPubMed
Roberts, N. P., Roberts, P. A., Jones, N., & Bisson, J. I. (2015). Psychological interventions for post-traumatic stress disorder and comorbid substance use disorder: A systematic review and meta-analysis. Clinical Psychology Review, 38, 2538. doi: 10.1016/j.cpr.2015.02.007.CrossRefGoogle ScholarPubMed
Robinaugh, D. J., Hoekstra, R. H. A., Toner, E. R., & Borsboom, D. (2020). The network approach to psychopathology: A review of the literature 2008–2018 and an agenda for future research. Psychological Medicine, 50(3), 353366. doi: 10.1017/S0033291719003404.CrossRefGoogle Scholar
Rolls, E. T. (2019). The cingulate cortex and limbic systems for emotion, action, and memory. Brain Structure and Function, 224(9), 30013018. doi: 10.1007/s00429-019-01945-2.CrossRefGoogle ScholarPubMed
Ruglass, L. M., Lopez-Castro, T., Papini, S., Killeen, T., Back, S. E., & Hien, D. A. (2017). Concurrent treatment with prolonged exposure for co-occurring full or subthreshold posttraumatic stress disorder and substance use disorders: A randomized clinical trial. Psychotherapy and Psychosomatics, 86(3), 150161. doi: 10.1159/000462977.CrossRefGoogle ScholarPubMed
Sambataro, F., Doerig, N., Hänggi, J., Wolf, R. C., Brakowski, J., Holtforth, M. G., … Spinelli, S. (2018). Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder. European Neuropsychopharmacology, 28(1), 138148. doi: 10.1016/j.euroneuro.2017.11.008.CrossRefGoogle ScholarPubMed
Shackman, A. J., Salomons, T. V., Slagter, H. A., Fox, A. S., Winter, J. J., & Davidson, R. J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews Neuroscience, 12(3), 154167. doi: 10.1038/nrn2994.CrossRefGoogle ScholarPubMed
Sheynin, J., Duval, E. R., King, A. P., Angstadt, M., Phan, K. L., Simon, N. M., … Liberzon, I. (2020). Associations between resting-state functional connectivity and treatment response in a randomized clinical trial for posttraumatic stress disorder. Depression and Anxiety, 37, 1037–1046. doi: 10.1002/da.23075.CrossRefGoogle Scholar
Sheynin, J., & Liberzon, I. (2017). Circuit dysregulation and circuit-based treatments in posttraumatic stress disorder. Neuroscience Letters, 649, 133138. doi: 10.1016/j.neulet.2016.11.014.CrossRefGoogle ScholarPubMed
Shi, L., Westerhuis, J. A., Rosén, J., Landberg, R., & Brunius, C. (2019). Variable selection and validation in multivariate modelling. Bioinformatics (Oxford, England), 35(6), 972980. doi: 10.1093/bioinformatics/bty710.Google ScholarPubMed
Simmons, A. N., Norman, S. B., Spadoni, A. D., & Strigo, I. A. (2013). Neurosubstrates of remission following prolonged exposure therapy in veterans with posttraumatic stress disorder. Psychotherapy and Psychosomatics, 82(6), 382389. doi: 10.1159/000348867.CrossRefGoogle ScholarPubMed
Smallwood, J., Brown, K., Baird, B., & Schooler, J. W. (2012). Cooperation between the default mode network and the frontal-parietal network in the production of an internal train of thought. Brain Research, 1428, 6070. doi: 10.1016/j.brainres.2011.03.072.CrossRefGoogle ScholarPubMed
Sobell, L. C., & Sobell, M. B. (1992). Timeline Follow-Back: A Technique for Assessing Self-Reported Alcohol Consumption. In Litten, R. Z., & Allen, J. P. (Eds.), Measuring Alcohol Consumption (pp. 4172). Totowa, NJ: Humana Press. 10.1007/978-1-4612-0357-5_3.CrossRefGoogle Scholar
Steenkamp, M. M. (2016). True evidence-based care for posttraumatic stress disorder in military personnel and veterans. JAMA Psychiatry, 73(5), 431432. doi: 10.1001/jamapsychiatry.2015.2879.CrossRefGoogle ScholarPubMed
Stout, D. M., Acheson, D. T., Moore, T. M., Gur, R. C., Baker, D. G., Geyer, M. A., & Risbrough, V. B. (2018). Individual variation in working memory is associated with fear extinction performance. Behaviour Research and Therapy, 102, 5259. doi: 10.1016/j.brat.2018.01.002.CrossRefGoogle ScholarPubMed
Stout, D. M., Shackman, A. J., Pedersen, W. S., Miskovich, T. A., & Larson, C. L. (2017). Neural circuitry governing anxious individuals’ mis-allocation of working memory to threat. Scientific Reports, 7(1), 8742. doi: 10.1038/s41598-017-08443-7.CrossRefGoogle ScholarPubMed
Tang, W., Jbabdi, S., Zhu, Z., Cottaar, M., Grisot, G., Lehman, J. F., … Haber, S. N. (2019). A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control. ELife, 8, e43761. doi: 10.7554/eLife.43761.CrossRefGoogle ScholarPubMed
van Rooij, S. J. H., Kennis, M., Vink, M., & Geuze, E. (2016). Predicting treatment outcome in PTSD: A longitudinal functional MRI study on trauma-unrelated emotional processing. Neuropsychopharmacology, 41(4), 11561165. doi: 10.1038/npp.2015.257.CrossRefGoogle Scholar
Vogt, B. A., Nimchinsky, E. A., Vogt, L. J., & Hof, P. R. (1995). Human cingulate cortex: Surface features, flat maps, and cytoarchitecture. The Journal of Comparative Neurology, 359(3), 490506. doi: 10.1002/cne.903590310.CrossRefGoogle ScholarPubMed
Wang, J., Zhang, J., Rong, M., Wei, X., Zheng, D., Fox, P. T., … Jiang, T. (2016). Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles. Human Brain Mapping, 37(12), 43164332. doi: 10.1002/hbm.23311.CrossRefGoogle ScholarPubMed
Weathers, F. W., Bovin, M. J., Lee, D. J., Sloan, D. M., Schnurr, P. P., Kaloupek, D. G., … Marx, B. P. (2018). The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychological Assessment, 30(3), 383–395. doi: 10.1037/pas0000486.CrossRefGoogle ScholarPubMed
Woo, C.-W., Chang, L. J., Lindquist, M. A., & Wager, T. D. (2017). Building better biomarkers: Brain models in translational neuroimaging. Nature Neuroscience, 20(3), 365377. doi: 10.1038/nn.4478.CrossRefGoogle ScholarPubMed
Yamada, T., Hashimoto, R.-I., Yahata, N., Ichikawa, N., Yoshihara, Y., Okamoto, Y., … Kawato, M. (2017). Resting-state functional connectivity-based biomarkers and functional MRI-based neurofeedback for psychiatric disorders: A challenge for developing theranostic biomarkers. The International Journal of Neuropsychopharmacology, 20(10), 769781. doi: 10.1093/ijnp/pyx059.CrossRefGoogle ScholarPubMed
Zakiniaeiz, Y., Scheinost, D., Seo, D., Sinha, R., & Constable, R. T. (2016). Cingulate cortex functional connectivity predicts future relapse in alcohol dependent individuals. NeuroImage: Clinical, 13, 181187. doi: 10.1016/j.nicl.2016.10.019.CrossRefGoogle ScholarPubMed
Zhang, S., & Li, C.-S. R. (2014). Functional clustering of the human inferior parietal lobule by whole-brain connectivity mapping of resting-state functional magnetic resonance imaging signals. Brain Connectivity, 4(1), 5369. doi: 10.1089/brain.2013.0191.Google ScholarPubMed
Zhang, Y., Xie, B., Chen, H., Li, M., Guo, X., & Chen, H. (2016). Disrupted resting-state insular subregions functional connectivity in post-traumatic stress disorder. Medicine, 95(27), e4083. doi: 10.1097/MD.0000000000004083.CrossRefGoogle ScholarPubMed
Zhutovsky, P., Thomas, R. M., Olff, M., van Rooij, S. J. H., Kennis, M., van Wingen, G. A., & Geuze, E. (2019). Individual prediction of psychotherapy outcome in posttraumatic stress disorder using neuroimaging data. Translational Psychiatry, 9(1), 326. doi: 10.1038/s41398-019-0663-7.CrossRefGoogle ScholarPubMed
Supplementary material: File

Stout et al. supplementary material

Stout et al. supplementary material

Download Stout et al. supplementary material(File)
File 5.6 MB