1 Introduction
Let
$\mathcal {H}$
be the class of all analytic functions in the unit disk
$\mathbb {D}:=\{z\in \mathbb {C}:\, |z|<1\}$
. Let
$\mathcal {B}$
be the subclass of
$\mathcal {H}$
consisting of all functions f in
$\mathcal {H}$
with
$|f(z)|<1$
for all
$z\in \mathbb {D}$
,
$\mathcal {B}_0$
be the subclass of
$\mathcal {B}$
with
$f(0)=0$
and
$\mathcal {A}$
be the subclass of
$\mathcal {H}$
consisting of all functions f normalised by
$f(0)=f'(0)-1=0$
with the Taylor series expansion
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn1.png?pub-status=live)
Further, let
$\mathcal {S}$
be the subclass of
$\mathcal {A}$
that are univalent (that is, one-to-one) in
$\mathbb {D}$
. A function
$f\in \mathcal {A}$
is called starlike (respectively, convex) if
$f(\mathbb {D})$
is a starlike domain (respectively, a convex domain) with respect to the origin. The set of all starlike functions and convex functions in
$\mathcal {S}$
are denoted by
$\mathcal {S}^*$
and
$\mathcal {C}$
, respectively. It is well known that a function f in
$\mathcal {A}$
is starlike (respectively, convex) if and only if
$\mathrm {Re\,} zf'(z)/f(z)>0$
(respectively,
$\mathrm {Re\,} (1+zf"(z)/f'(z))>0$
) for
$z\in \mathbb {D}$
. For further information about these classes, we refer to [Reference Duren5, Reference Goodman7].
A function
$f\in \mathcal {A}$
is said to be close-to-convex if the complement of the image-domain
$f(\mathbb {D})$
in
$\mathbb {C}$
is the union of rays that are disjoint (except that the origin of one ray may lie on another one of the rays) and the class of all close-to-convex functions is denoted by
$\mathcal {K}$
. This class was introduced by Kaplan [Reference Kaplan10]. A function
$f\in \mathcal {A}$
is close-to-convex if and only if there exists a starlike function
$g\in \mathcal {S}^*$
and a real number
$\alpha \in (-\pi /2,\pi /2)$
such that (see [Reference Duren5, Reference Kaplan10])
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu1.png?pub-status=live)
In 1968, Singh [Reference Singh16] introduced and studied the class
$\mathcal {S}_u^*$
consisting of functions f in
$\mathcal {A}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu2.png?pub-status=live)
It is easy to see that every function in
$\mathcal {S}_u^*$
also belongs to
$\mathcal {S}^*$
. Singh [Reference Singh16] obtained the distortion theorem, coefficient estimate and radius of convexity for the class
$\mathcal {S}_u^*$
. Recently, Allu
$et~ al.$
[Reference Allu, Sokól and Thomas1] introduced a close-to-convex analogue of the class
$\mathcal {S}_u^*$
denoted by
$\mathcal {K}_u$
. A function f in
$\mathcal {A}$
belongs to
$\mathcal {K}_u$
if there exists a starlike function
$g\in \mathcal {S}^*$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu3.png?pub-status=live)
Clearly, every function in
$\mathcal {K}_u$
is close-to-convex.
It is well known that if
$f\in \mathcal {S}$
is of the form (1.1), then
$|a_n|\le n$
for all
$n\geq 2$
, and equality holds for the rotations of the Koebe function
$k(z)=z/(1- z)^2$
. Singh [Reference Singh16] proved that if
$f\in \mathcal {S}_u^*$
, then
$|a_n|\le 1/(n-1)$
for all
$~n\geq 2$
, and this inequality is sharp. In 2020, Allu
$et~al.$
[Reference Allu, Sokól and Thomas1] studied coefficient bounds for the functions
$f(z)$
of the form (1.1) in the class
$\mathcal {K}_{u}$
and obtained the sharp bounds
$|a_2|\le 3/2$
and
$|a_3|\leq 5/3$
and proposed a conjecture that
$|a_n|\le (2n-1)/n$
for
$n\ge 4$
.
The Fekete–Szegö problem is to find the maximum value of the coefficient functional
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu4.png?pub-status=live)
when f of the form (1.1) varies over a class of functions
$\mathcal {F}$
. In 1933, Fekete–Szegö [Reference Fekete and Szegö6] used the Löwner differential method to prove that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu5.png?pub-status=live)
In 1987, Koepf [Reference Koepf12] obtained the sharp bound of
$\Phi _\mu (f)$
for any
$\mu \in \mathbb {R}$
for the class
$\mathcal {K}$
:
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu6.png?pub-status=live)
The Fekete–Szegö problem has been studied for different subclasses of
$\mathcal {S}$
(see [Reference Kanas and Lecko9, Reference Koepf13–Reference London15, Reference Singh and Singh17]). Allu
$et~ al.$
[Reference Allu, Sokól and Thomas1] considered the class
$\mathcal {K}_{u}$
and obtained an estimate of the Fekete–Szegö functional
$|a_3-\mu a_2^2|$
with
$\mu \in \mathbb {R}$
. However, they were only able to show sharpness when
$\mu \leq 0,~2/3\leq \mu \leq 1~\text {and}~\mu \geq 10/9$
.
Let
$\mathcal {LU}$
denote the subclass of
$\mathcal {H}$
consisting of all locally univalent functions in
$\mathbb {D}$
, that is,
$\mathcal {LU}:=\{f\in \mathcal {H}:f'(z)\ne 0\text { for all }z\in \mathbb {D}\}$
. For a locally univalent function
$f\in \mathcal {LU}$
, the pre-Schwarzian derivative is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu7.png?pub-status=live)
and the pre-Schwarzian norm (the hyperbolic sup-norm) is defined by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu8.png?pub-status=live)
This norm has significant meaning in the theory of Teichmüller spaces. For a univalent function f, it is well known that
$\|P_f\|\leq 6$
and the estimate is sharp. However, if
$\|P_f\|\leq 1$
, then f is univalent in
$\mathbb {D}$
(see [Reference Becker2, Reference Becker and Pommerenke3]). In 1976, Yamashita [Reference Yamashita18] proved that
$\|P_f \|$
is finite if and only if f is uniformly locally univalent in
$\mathbb {D}$
. Moreover, if
$\|P_f\|<2$
, then f is bounded in
$\mathbb {D}$
(see [Reference Kim and Sugawa11]). We will obtain results related to the pre-Schwarzian norm for functions
$f\in \mathcal {K}_u$
.
We first prove the conjecture
$|a_n|\le (2n-1)/n$
for
$n\ge 2$
for functions in
$\mathcal {K}_u$
as proposed by Allu
$et~ al.$
[Reference Allu, Sokól and Thomas1]. We next obtain the sharp estimate of the Fekete–Szegö functional
$\Phi _\mu (f)$
for the class
$\mathcal {K}_u$
for any
$\mu \in \mathbb {R}$
. Finally, we obtain estimates of the pre-Schwarzian norm for functions in
$\mathcal {K}_u$
.
2 Main results
Before stating our main results, we will discuss some preliminaries which will help us to prove our results. The first lemma is part of a result proved by Choi
$et~al.$
[Reference Choi, Kim and Sugawa4].
Lemma 2.1. For
$A, B\in \mathbb {C}$
and
$K, L, M\in \mathbb {R}$
, let
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu9.png?pub-status=live)
Further consider the following four conditions involving
$A, B, K, L, M$
:
-
(A1)
$|A|\geq \max \bigg \{|K|\sqrt {1-\dfrac {M^2}{KL}},|M|-|K|\bigg \}$ ;
-
(A2)
$|K|+|M|\leq |A| <|K|\sqrt {1-\dfrac {M^2}{KL}}$ ;
-
(B1)
$|B|\geq \max \bigg \{|L|\sqrt {1-\dfrac {M^2}{KL}},|M|-|L|\bigg \}$ ;
-
(B2)
$|L|+|M|\leq |B| <|L|\sqrt {1-\dfrac {M^2}{KL}}$ .
If
$KL\geq 0$
and
$D=(|K|-|A|)(|L|-|B|)-M^2$
, then
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu10.png?pub-status=live)
If
$KL<0$
, then
$\Omega (A, B, K, L, M)=|A|+|B|+\max \{0,R\},$
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu11.png?pub-status=live)
For two functions f and g in
$\mathcal {H}$
, we say that
$f(z)$
is majorised by
$g(z)$
if
$|f(z)|\leq |g(z)|$
for all
$z\in \mathbb {D}$
or equivalently, if there exists
$\omega \in \mathcal {B}$
such that
${f(z)=\omega (z)g(z)}$
. Let
$f(z)=\sum _{n=0}^\infty a_nz^n$
and
$F(z)=\sum _{n=0}^\infty A_nz^n$
be two power series convergent in some disk
$E_R=\{z:|z|<R,~R>0\}$
. We say that
$f(z)$
is dominated by
$F(z)$
and we write
$f(z)\ll F(z)$
if for any integer
$n\geq 0$
,
$|a_n|\leq |A_n|.$
Lemma 2.2 [Reference Hallenbeck and Macgregor8, Theorem 6.7].
If
$f(z)=\sum _{n=1}^\infty a_nz^n$
,
$z\in \mathbb {D}$
, is majorised by g and
$g\in \mathcal {S}^*$
, then
$|a_n|\le n$
for all
$n\ge 1$
, that is,
$f(z)\ll k(z)$
, where
$k(z)=z/(1-z)^2$
is the Koebe function.
Our first result confirms the conjecture of Allu
$et~al.$
in [Reference Allu, Sokól and Thomas1].
Theorem 2.3. Let
$f\in \mathcal {K}_{u}$
be of the form (1.1). Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu12.png?pub-status=live)
Moreover, the estimate is sharp.
Proof. Let
$f\in \mathcal {K}_{u}$
be of the form (1.1). Then there exists a starlike function
$g\in \mathcal {S}^*$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu13.png?pub-status=live)
Further, there exists a function
$\omega (z)\in \mathcal {B}_{0}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu14.png?pub-status=live)
that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn2.png?pub-status=live)
for some
$\omega _1(z)\in \mathcal {B}$
. Since,
$g(z)\omega _1(z)$
is majorised by
$g(z)$
and
$g\in \mathcal {S}^*$
, by Lemma 2.2, the function
$g(z)\omega _1(z)$
is dominated by
$k(z)$
, that is,
$g(z)\omega _1(z)\ll k(z)$
. Thus, from (2.1),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu15.png?pub-status=live)
and consequently,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu16.png?pub-status=live)
The estimate is sharp for the function
$f_1\in \mathcal {K}_{u}$
given by
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu17.png?pub-status=live)
For functions in
$\mathcal {K}_{u}$
, Allu
$et~ al.$
[Reference Allu, Sokól and Thomas1] obtained an estimate of the Fekete–Szegö functional
$|a_3-\mu a_2^2|$
with
$\mu \in \mathbb {R}$
. The result is sharp only when
$\mu \leq 0,~2/3\leq \mu \leq ~1~\text {and}~\mu \geq 10/9$
. In the next theorem, we will give the sharp bounds of
$|a_3-\mu a_2^2|$
for all values of
$\mu \in \mathbb {R}$
. Our proof is completely different from that in [Reference Allu, Sokól and Thomas1]. Our main tool to get the sharp bound is Lemma 2.1.
Theorem 2.4. Let
$f\in \mathcal {K}_{u}$
be given by (1.1). Then for every
$\mu \in \mathbb {R}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu18.png?pub-status=live)
Moreover, all the inequalities are sharp.
Proof. Let
$f\in \mathcal {K}_{u}$
be of the form (1.1). Then there exists a starlike function
$g(z)=z+\sum _{n=2}^{\infty }b_nz^n$
in
$\mathcal {S}^* $
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu19.png?pub-status=live)
Thus, there exists
$\omega (z)=\sum _{n=1}^{\infty }c_nz^n$
in
$\mathcal {B}_0$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn3.png?pub-status=live)
From (2.2), comparing the coefficients of
$z^2$
and
$z^3$
on both sides,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn4.png?pub-status=live)
Since
$g\in \mathcal {S}^*$
, it follows that there exists another
$\rho \in \mathcal {B}_0$
of the form
$\rho (z)=\sum _{n=1}^{\infty }d_nz^n$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn5.png?pub-status=live)
On comparing the coefficients of
$z^2$
and
$z^3$
on both sides,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn6.png?pub-status=live)
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu20.png?pub-status=live)
Therefore, for any
$\mu \in \mathbb {R}$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu21.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu22.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu23.png?pub-status=live)
Now, we have to find the maximum value of
$|a_3-\mu a_2^2|$
when
$|c_1|\leq 1,~ |d_1|\leq 1$
. To do this, we will use Lemma 2.1 and consider the following five cases.
Case 1: Let
$\mu \leq 0$
. A simple calculation shows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu24.png?pub-status=live)
Therefore, from Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu25.png?pub-status=live)
The inequality is sharp and the equality holds for the function
$f\in \mathcal {K}_{u}$
given by (2.2) and (2.4) with
$\omega (z)=z$
and
$\rho (z)=z$
, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu26.png?pub-status=live)
Case 2: Let
$0\leq \mu \leq 2/3$
. A simple calculation shows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu27.png?pub-status=live)
Thus, from Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn7.png?pub-status=live)
where R can be obtained from Lemma 2.1. For
$0\leq \mu \leq \tfrac 23$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu28.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu29.png?pub-status=live)
which is true for all
$\mu \in [0,~2/3]$
. Thus, the condition (A1) of Lemma 2.1 is satisfied.
Again, for
$0\leq \mu \leq 2/3$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu30.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu31.png?pub-status=live)
which is not true for any
$\mu \in [0,~2/3]$
. Thus, the condition (B1) of Lemma 2.1 is not satisfied. Further, for
$0\leq \mu \leq 2/3$
,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu32.png?pub-status=live)
and so, the condition (B2) of Lemma 2.1 is not satisfied.
Therefore, by Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu33.png?pub-status=live)
and consequently, from (2.6),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu34.png?pub-status=live)
The inequality is sharp and the equality holds for the function
$f\in \mathcal {K}_{u}$
given by (2.2) and (2.4) with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu35.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu36.png?pub-status=live)
that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu37.png?pub-status=live)
Case 3: Let
$2/3\leq \mu \leq 1$
. It is easy to show that
$KL= -\tfrac 14\mu (1-\mu )<0$
. So, from Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqn8.png?pub-status=live)
where R can be obtained from Lemma 2.1. Proceeding as in Case 2, we can verify that the condition (A1) holds but (B1) and (B2) of Lemma 2.1 do not hold. Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu38.png?pub-status=live)
and consequently, from (2.7),
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu39.png?pub-status=live)
The inequality is sharp and the equality holds for the function
$f\in \mathcal {K}_{u}$
given by (2.2) and (2.4) with
$\omega (z)=z^2$
and
$\rho (z)=z^2,$
that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu40.png?pub-status=live)
Case 4: Let
$1\leq \mu \leq 10/9$
. A simple calculation shows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu41.png?pub-status=live)
Thus, from Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu42.png?pub-status=live)
The inequality is sharp and the equality holds for the function
$f\in \mathcal {K}_{u}$
given by (2.2) and (2.4) with
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu43.png?pub-status=live)
where
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu44.png?pub-status=live)
that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu45.png?pub-status=live)
and
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu46.png?pub-status=live)
Case 5: Let
$\mu \geq 10/9$
. A simple calculation shows that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu47.png?pub-status=live)
Thus, from Lemma 2.1,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu48.png?pub-status=live)
The inequality is sharp and the equality holds for the function
$f\in \mathcal {K}_{u}$
given by (2.2) and (2.4) with
$\omega (z)=z$
and
$\rho (z)=z$
, that is,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu49.png?pub-status=live)
Finally, we establish a result related to the pre-Schwarzian norm for functions in
$\mathcal {K}_{u}$
. We first note that a function f in
$\mathcal {A}$
belongs to
$\mathcal {K}_{u}$
if there exists a function
$g\in \mathcal {S}^*$
such that
$|zf'(z)/g(z)-1|<1.$
In other words, if there exists a convex function
$h\in \mathcal {C}$
with
$g(z)=zh'(z)$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu50.png?pub-status=live)
Theorem 2.5. Let
$f\in \mathcal {K}_{u}$
and
$h\in \mathcal {C}$
be the associated convex function. Then,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu51.png?pub-status=live)
and the estimate is sharp. Further,
$\|P_f\|\le 6$
.
Proof. Let
$f\in \mathcal {K}_{u}$
and
$h\in \mathcal {C}$
be the associated convex function such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu52.png?pub-status=live)
Then there exists a function
$\omega (z)\in \mathcal {B}_{0}$
such that
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu53.png?pub-status=live)
Taking the logarithmic derivative on both sides,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu54.png?pub-status=live)
and so,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu55.png?pub-status=live)
Thus,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu56.png?pub-status=live)
Since
$\omega (z)\in \mathcal {B}_0$
, by the Schwarz–Pick lemma,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu57.png?pub-status=live)
Therefore,
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu58.png?pub-status=live)
The above inequality is sharp for the functions
![](https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240310235339576-0436:S0004972723000655:S0004972723000655_eqnu59.png?pub-status=live)
It is well known that
$\|P_h\|\le 4$
for
$f\in \mathcal {C}$
(see [Reference Yamashita19]), and so
$\|P_f\|\le 6$
.