In the paper [Reference Evans1] I claimed to show that there are no non-trivial stably free modules over integral group rings of the groups
$\,(C_{p}\rtimes C_{q})\times C_{\infty }^{m}$
. Unfortunately there are a number of erroneous statements in [Reference Evans1] which vitiate the attempted proof. To explain where these occur, recall that in [Reference Evans1] two Milnor fibre squares
$\,(\clubsuit )\,$
and
$\,(\heartsuit )\,$
were introduced as follows:

Here
$\unicode[STIX]{x1D6E4}=C_{\infty }^{m}$
, and
${\mathcal{T}}_{q}={\mathcal{T}}_{q}(A,\unicode[STIX]{x1D70B})$
is the ring of quasi-triangular
$q\times q$
matrices where
$A=\mathbf{Z}[\unicode[STIX]{x1D701}_{p}]^{C_{q}}$
is the subring of the cyclotomic integers
$\mathbf{Z}[\unicode[STIX]{x1D701}_{p}]$
fixed under the Galois action of
$C_{q}$
and
$\unicode[STIX]{x1D70B}\in \text{Spec}(A)$
is the unique prime over
$p$
.
The most obvious errors [Reference Evans1, Corollary 3.4] include a misdescription of the unit group
$U(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])$
, and the possibility of non-trivial rank-one stably free modules over
${\mathcal{T}}_{2}[\unicode[STIX]{x1D6E4}]$
. A slightly less obvious but more significant error concerns the possibility of lifting units from
$\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}]$
to
${\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}]$
. In consequence we must amend the original statement of [Reference Evans1] as follows.
Theorem A. Let
$S$
be a stably free module of rank
$n$
over
$\mathbf{Z}[(C_{p}\rtimes C_{q})\times C_{\infty }^{m}]$
where
$m\geqslant 2$
. Then:
∙ if
$q$ is an odd prime,
$S$ is free provided
$n\neq 2$ ; and
∙ if
$q=2$ ,
$S$ is free provided
$n\geqslant 3$ .
Nevertheless, when
$m=1$
the original statement continues to hold:
Theorem B. Any stably free module over
$\mathbf{Z}[(C_{p}\rtimes C_{q})\times C_{\infty }]$
is free.
Rather than try to patch up the proof in [Reference Evans1] piecemeal we give a more straightforward approach which isolates the real difficulty and avoids it where possible. We first establish four propositions.
Proposition 1.
$U(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
is finite; in fact

Proof. As
$q$
is a divisor of
$p-1$
, we have

Consequently

Observe that
$U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
contains a copy of
$\unicode[STIX]{x1D6E4}^{(q)}=\underbrace{\unicode[STIX]{x1D6E4}\times \cdots \times \unicode[STIX]{x1D6E4}}_{q}$
, namely the diagonal matrices

where
$\unicode[STIX]{x1D6FE}_{i}\in \unicode[STIX]{x1D6E4}$
. Combining this with the obvious inclusion
$U({\mathcal{T}}_{q})\subset U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
gives an injection
$U({\mathcal{T}}_{q})\times \unicode[STIX]{x1D6E4}^{(q)}{\hookrightarrow}U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
. Hence we now have a surjection

The ring isomorphism (*) now gives an isomorphism of unit groups

Now
$\unicode[STIX]{x1D6E4}=C_{\infty }^{m}$
is a t.u.p. group so
$\mathbf{F}_{p}[\unicode[STIX]{x1D6E4}]$
has only trivial units (cf. [Reference Johnson2, Appendix C]). Hence

so that, by (*), there are bijections

From (**) we obtain a surjection
$U(\mathbf{F}_{p}[C_{q}])/U({\mathcal{T}}_{q}){\twoheadrightarrow}U(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/U$
$({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
. The stated result now follows as
$U(\mathbf{F}_{p}[C_{q}])/U({\mathcal{T}}_{q})$
is finite.◻
Proposition 2. Let
$p$
be an odd prime and
$q$
be a divisor of
$p-1$
. Then, for all
$n\geqslant 3$
,

Proof. Given rings
$A,B$
such that
$\text{GL}_{n}(A)=U(A)E_{n}(A)$
and
$\text{GL}_{n}(B)=U(B)E_{n}(B)$
, we have
$\text{GL}_{n}(A\times B)=U(A\times B)E_{n}(A\times B)$
. The result thus follows from (*) by induction on
$q$
, the case
$q=1$
being Suslin’s theorem [Reference Suslin3], namely that

for any field
$\mathbf{F}$
and any integer
$k\geqslant 3$
.◻
Proposition 3.
$\text{GL}_{n}(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/\text{GL}_{n}({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
is finite for
$n\geqslant 3$
; in fact

Proof. Evidently
$U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])E_{n}({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])\subset \text{GL}_{n}({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
and so there is a natural surjection
$\text{GL}_{n}(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])E_{n}({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}]){\twoheadrightarrow}\text{GL}_{n}(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/\text{GL}_{n}({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
. Also, the ring homomorphism
$\natural :{\mathcal{T}}_{q}(A,\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}]\rightarrow \mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}]$
is surjective and so induces surjections
$\natural _{\ast }:E_{k}({\mathcal{T}}_{q}(A,\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])\rightarrow E_{k}(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])$
for all
$k\geqslant 2$
. By Proposition 2 we may write

We obtain a surjection
$U(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/U({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}]){\twoheadrightarrow}\text{GL}_{n}(\mathbf{F}_{p}[C_{q}\times \unicode[STIX]{x1D6E4}])/\text{GL}_{n}$
$({\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}])$
and so the stated result now follows from Proposition 1.◻
Proposition 4. Let
$p$
be an odd prime and
$q$
be a divisor of
$p-1$
. Then, for all
$n\geqslant 1$
,

Proof. We follow the same line of argument as Proposition 2 with the exception that, in establishing the induction base, we do not use Suslin’s theorem. Instead we note that, as
$\mathbf{F}_{p}[C_{\infty }]$
is a Euclidean domain, we may use the Smith normal form to show that
$\text{GL}_{k}(\mathbf{F}_{p}[C_{\infty }])=U(\mathbf{F}_{p}[C_{\infty }])\cdot$
$E_{k}(\mathbf{F}_{p}[C_{\infty }])$
.◻
As in [Reference Evans1], we denote the set of isomorphism classes of locally free
$\mathbf{Z}[C_{p}\rtimes C_{q}]$
-modules of rank
$k$
by
${\mathcal{L}}{\mathcal{F}}_{k}(\clubsuit )$
. By Milnor’s classification, this corresponds to the two-sided quotient

Likewise, the locally free
$\mathbf{Z}[(C_{p}\rtimes C_{q})\times \unicode[STIX]{x1D6E4}]$
-modules of rank
$k$
correspond to the quotient

In particular, if neither
$\mathbf{Z}[C_{q}]$
nor
${\mathcal{T}}_{q}$
admits non-trivial stably free modules of rank
$k$
, then any stably free module of rank
$k$
over
$\mathbf{Z}[C_{p}\rtimes C_{q}]$
is locally free. Consequently, the set
${\mathcal{S}}{\mathcal{F}}_{k}(\mathbf{Z}[C_{p}\rtimes C_{q}])$
of stably free modules of rank
$k$
over
$\mathbf{Z}[C_{p}\rtimes C_{q}]$
is a subset of
${\mathcal{L}}{\mathcal{F}}_{k}(\clubsuit )$
. Similarly,
${\mathcal{S}}{\mathcal{F}}_{k}(\mathbf{Z}[(C_{p}\rtimes C_{q})\times \unicode[STIX]{x1D6E4}])$
is a subset of
${\mathcal{L}}{\mathcal{F}}_{k}(\heartsuit )$
if neither
$\mathbf{Z}[C_{q}\times \unicode[STIX]{x1D6E4}]$
nor
${\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}]$
admits non-trivial stably free modules of rank
$k$
.
There are obvious mappings of fibre squares
$i:(\clubsuit ){\hookrightarrow}(\heartsuit )$
and
$r:(\heartsuit )\rightarrow (\clubsuit )$
such that
$r\circ i=\text{Id}$
. Consequently, there is a commutative ladder of mappings
where
$s_{k,1}$
and
$\unicode[STIX]{x1D70E}_{k,1}$
are the obvious stabilization mappings. We note that the mappings
$i_{k}$
are injective in view of the fact that
$r\circ i=\text{Id}$
.
The argument is now divided into two cases:
$q$
is odd, and
$q=2$
. First, suppose
$q$
is an odd prime dividing
$p-1$
. As noted in [Reference Evans1], in
$(\clubsuit )$
, the rings
$\mathbf{Z}[C_{q}]$
and
${\mathcal{T}}_{q}$
both have property SFC. Consequently,
${\mathcal{S}}{\mathcal{F}}_{k}(\mathbf{Z}[C_{p}\rtimes C_{q}])$
is a subset of
${\mathcal{L}}{\mathcal{F}}_{k}(\clubsuit )$
for all
$k\geqslant 1$
. Similarly, in the fibre square
$(\heartsuit )$
, the rings
$\mathbf{Z}[C_{q}\times \unicode[STIX]{x1D6E4}]$
and
${\mathcal{T}}_{q}[\unicode[STIX]{x1D6E4}]$
also have SFC and once again
${\mathcal{S}}{\mathcal{F}}_{k}(\mathbf{Z}[(C_{p}\rtimes C_{q})\times \unicode[STIX]{x1D6E4}])$
is a subset of
${\mathcal{L}}{\mathcal{F}}_{k}(\heartsuit )$
for all
$k\geqslant 1$
. The essence of the argument now consists of the following five statements.
(I) For all
$n$ ,
${\mathcal{L}}{\mathcal{F}}_{n}(\clubsuit )$ is finite and
$s_{n,1}:{\mathcal{L}}{\mathcal{F}}_{n}(\clubsuit )\rightarrow {\mathcal{L}}{\mathcal{F}}_{n+1}(\clubsuit )$ is bijective.
(II)
$i_{1}:{\mathcal{L}}{\mathcal{F}}_{1}(\clubsuit )\rightarrow {\mathcal{L}}{\mathcal{F}}_{1}(\heartsuit )$ is bijective.
(III)
$i_{n}:{\mathcal{L}}{\mathcal{F}}_{n}(\clubsuit )\rightarrow {\mathcal{L}}{\mathcal{F}}_{n}(\heartsuit )$ is bijective for all
$n\geqslant 3$ .
(IV)
$\unicode[STIX]{x1D70E}_{n,1}:{\mathcal{L}}{\mathcal{F}}_{n}(\heartsuit )\rightarrow {\mathcal{L}}{\mathcal{F}}_{n+1}(\heartsuit )$ is injective provided
$n\neq 2$ .
(V) If
$m=1$ (that is,
$\unicode[STIX]{x1D6E4}\;=\;C_{\infty }$ ) then
$i_{2}:{\mathcal{L}}{\mathcal{F}}_{2}(\clubsuit )\rightarrow {\mathcal{L}}{\mathcal{F}}_{2}(\heartsuit )$ is bijective.
To prove (I) we note that, as
$C_{p}\rtimes C_{q}$
is finite, the finiteness of
${\mathcal{L}}{\mathcal{F}}_{n}(\clubsuit )$
follows from the Jordan–Zassenhaus theorem, together with Milnor’s classification of projectives. Moreover, as
$\mathbf{Z}[C_{p}\rtimes C_{q}]$
satisfies the Eichler condition, the Swan–Jacobinski theorem shows that each
$s_{k,1}:{\mathcal{L}}{\mathcal{F}}_{k}(\clubsuit )\rightarrow {\mathcal{L}}{\mathcal{F}}_{k+1}(\clubsuit )$
is bijective. It follows from Proposition 1 that
$|{\mathcal{L}}{\mathcal{F}}_{1}(\heartsuit )|\leqslant |{\mathcal{L}}{\mathcal{F}}_{1}(\clubsuit )|$
. Thus (II) is true as
$i_{1}$
is injective and
${\mathcal{L}}{\mathcal{F}}_{1}(\clubsuit )$
is finite. Likewise it follows from Proposition 3 that
$|{\mathcal{L}}{\mathcal{F}}_{n}(\heartsuit )|\leqslant |{\mathcal{L}}{\mathcal{F}}_{n}(\clubsuit )|$
for
$n\geqslant 3$
. Thus (III) is true as
$i_{n}$
is injective and
${\mathcal{L}}{\mathcal{F}}_{n}(\clubsuit )$
is finite; (IV) now follows from (I), (II) and (III) by diagram chasing using the fact that
$i_{2}$
is injective. Finally, (V) follows by the same argument as (III) on substituting Proposition 4 for Proposition 2.
To proceed with the proof of Theorem A, put
$\unicode[STIX]{x1D70E}_{n,k}=\unicode[STIX]{x1D70E}_{n+k-1,1}\circ \ldots \circ \unicode[STIX]{x1D70E}_{n,1}$
whenever
$k\geqslant 1$
. It follows from (IV) that
$\unicode[STIX]{x1D70E}_{n,k}$
is injective provided
$n\geqslant 3$
. A straightforward diagram chase using (I), (II) and (III) also shows that each
$\unicode[STIX]{x1D70E}_{1,k}$
is injective. Now suppose that
$S$
is a stably free module of rank
$n\neq 2$
over
$\unicode[STIX]{x1D6EC}=\mathbf{Z}[(C_{p}\rtimes C_{q})\times \unicode[STIX]{x1D6E4}])$
and denote its class in
${\mathcal{L}}{\mathcal{F}}_{n}(\heartsuit )$
by
$[S]$
. Then
$S\oplus \unicode[STIX]{x1D6EC}^{k}\cong \unicode[STIX]{x1D6EC}^{n+k}$
for some
$k\geqslant 1$
so that
$\unicode[STIX]{x1D70E}_{n,k}[S]=\unicode[STIX]{x1D70E}_{n,k}[\unicode[STIX]{x1D6EC}^{n}]$
. As
$\unicode[STIX]{x1D70E}_{n,k}$
is injective,
$S\cong \unicode[STIX]{x1D6EC}^{n}$
. Consequently, when
$n\neq 2$
there are no non-trivial stably free modules of rank
$n$
over
$\mathbf{Z}[(C_{p}\rtimes C_{q})\times C_{\infty }^{m}]$
, and this proves the first part of Theorem A.
In the case
$q=2$
(i.e. dihedral groups) we cannot claim
${\mathcal{T}}_{2}[\unicode[STIX]{x1D6E4}]$
has property SFC. To see why, consider the square

As
$(A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}]$
is commutative, we have
$\text{GL}_{2}((A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])=U((A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])\cdot \text{SL}_{2}((A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])$
. The unit group
$U((A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])$
lifts back to
${\mathcal{T}}_{2}((A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])$
. However, it is not clear whether we can lift the elements of
$\text{SL}_{2}((A/\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}])$
. Thus, it is conceivable that
${\mathcal{T}}_{2}(A,\,\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}]$
has non-trivial stably free modules of rank 1. Nevertheless, using Suslin’s theorem as before, it is clear that
${\mathcal{T}}_{2}(A,\,\unicode[STIX]{x1D70B})[\unicode[STIX]{x1D6E4}]$
admits no non-trivial stably free module of rank
${\geqslant}2$
. Consequently, we observe that
${\mathcal{S}}{\mathcal{F}}_{k}(\mathbf{Z}[(C_{p}\rtimes C_{q})\times \unicode[STIX]{x1D6E4}])$
is a subset of
${\mathcal{L}}{\mathcal{F}}_{k}(\heartsuit )$
for all
$k\geqslant 2$
. We now proceed as above.
Finally, the proof of Theorem B follows exactly the same lines except that now, in the case where
$m=1$
and
$\unicode[STIX]{x1D6E4}=C_{\infty }$
, we see from (V) that
$\unicode[STIX]{x1D70E}_{2,1}$
is also injective. Consequently, each
$\unicode[STIX]{x1D70E}_{2,k}$
is injective. Thus, there are no non-trivial stably free modules of any rank over
$\mathbf{Z}[(C_{p}\rtimes C_{q})\times C_{\infty }]$
.