Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T06:05:37.383Z Has data issue: false hasContentIssue false

Holes and cracks in rigid foam films

Published online by Cambridge University Press:  11 June 2015

P. C. Petit
Affiliation:
Institut Lumière Matière, Université de Lyon, UMR 5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
M. Le Merrer
Affiliation:
Institut Lumière Matière, Université de Lyon, UMR 5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
A.-L. Biance*
Affiliation:
Institut Lumière Matière, Université de Lyon, UMR 5306 Université Lyon 1-CNRS, 69622 Villeurbanne, France
*
Email address for correspondence: [email protected]

Abstract

The classical problem of foam film rupture dynamics has been investigated when the film interfaces exhibit very high rigidity due to the presence of specific surfactants. Two new features are reported. First, a strong deviation from the well-known Taylor–Culick law is observed. Second, crack-like patterns can be visualized in the film; these patterns are shown to appear at a well-defined film shrinkage. The key role of surface-active material on these features is quantitatively investigated, pointing to the importance of surface elasticity to describe these fast dynamical processes and thus providing an alternative tool to characterize surface elasticity in conditions extremely far from equilibrium. The origin of the cracks and their consequences on film rupturing dynamics are also discussed.

Type
Rapids
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. 2010 Daughter bubble cascades produced by folding of ruptured thin films. Nature 465 (7299), 759762.Google Scholar
Cabane, B. & Hénon, S. 2003 Liquides – Solutions, Dispersions, Gels. Belin.Google Scholar
Cerda, E. & Mahadevan, L. 2003 Geometry and physics of wrinkling. Phys. Rev. Lett. 90 (7), 074302.Google Scholar
Cohen-Addad, S., Hohler, R. & Pitois, O. 2013 Flow in foams and flowing foams. Annu. Rev. Fluid Mech. 45, 241267.Google Scholar
Costa, S.2012 Rhéologie multi-échelle des mousse liquides. PhD thesis, Université Paris-Est Marne La Vallée.Google Scholar
Couder, Y., Chomaz, J. M. & Rabaud, M. 1989 On the hydrodynamics of soap films. Physica D 37 (1–3), 384405.Google Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31 (6), 11281129.CrossRefGoogle Scholar
Debrégeas, G., de Gennes, P.-G. & Brochard-Wyart, F. 1998 The life and death of ‘bare’ viscous bubbles. Science 279, 17041707.Google Scholar
Dubois, P. 2000 Exposer marey. L’image, le mouvement et la pensée. Études Photogr. 8, 146152.Google Scholar
Durand, M. & Stone, H. A. 2006 Relaxation time of the topological T1 process in a two-dimensional foam. Phys. Rev. Lett. 97, 226101.CrossRefGoogle Scholar
Florence, A. T. & Frens, G. 1972 Aureole profile in bursting soap films – surface-tension and surface relaxation in rapidly compressed monolayers. J. Phys. Chem. 76 (21), 30243029.Google Scholar
Florence, A. T. & Mysels, K. J. 1974 Bursting of soap films. VI. Effect of surfactant purity. J. Phys. Chem. 78 (3), 234235.Google Scholar
Frankel, S. & Mysels, K. J. 1969 Bursting of soap films. 2. Theoretical considerations. J. Phys. Chem. 73 (9), 30283038.Google Scholar
Golemanov, K., Denkov, N. D., Tcholakova, S., Vethamuthu, M. & Lips, A. 2008 Surfactant mixtures for control of bubble surface mobility in foam studies. Langmuir 24 (18), 99569961.CrossRefGoogle ScholarPubMed
Landau, L. D. & Lifshitz, E. M. 1975 Elasticity Theory. Pergamon.Google Scholar
Lastakowski, H., Boyer, F., Biance, A. L., Pirat, C. & Ybert, C. 2014 Bridging local to global dynamics of drop impact onto solid substrates. J. Fluid Mech. 747, 103118.Google Scholar
Lee, K. Y. C. 2008 Collapse mechanisms of Langmuir monolayers. Annu. Rev. Phys. Chem. 59, 771791.CrossRefGoogle ScholarPubMed
Lhuissier, H. & Villermaux, E. 2009a Destabilization of flapping sheets: the surprising analogue of soap films. C. R. Méc. 337 (6–7), 469480.Google Scholar
Lhuissier, H. & Villermaux, E. 2009b Soap films burst like flapping flags. Phys. Rev. Lett. 103 (5), 054501.CrossRefGoogle ScholarPubMed
Liang, N. Y., Chan, C. K. & Choi, H. J. 1996 Dynamics of the formation of an aureole in the bursting of soap films. Phys. Rev. E 54 (4), R3117R3120.Google Scholar
Lucassen, J. & Van Den Tempel, M. 1972 Dynamic measurements of dilational properties of a liquid interface. Chem. Engng Sci. 27 (6), 12831291.Google Scholar
McEntee, W. R. & Mysels, K. J. 1969 Bursting of soap films. I. An experimental study. J. Phys. Chem. 73 (9), 30183028.Google Scholar
Mitrinova, Z., Tcholakova, S., Golemanov, K., Denkov, N., Vethamuthu, M. & Ananthapadmanabhan, K. P. 2013a Surface and foam properties of SLES plus CAPB plus fatty acid mixtures: effect of pH for C12–C16 acids. Colloids Surf. A 438, 186198.CrossRefGoogle Scholar
Mitrinova, Z., Tcholakova, S., Popova, Z., Denkov, N., Dasgupta, B. R. & Ananthapadmanabhan, K. P. 2013b Efficient control of the rheological and surface properties of surfactant solutions containing C8–C18 fatty acids as cosurfactants. Langmuir 29 (26), 82558265.CrossRefGoogle ScholarPubMed
Mysels, K. J., Frankel, S. & Shinoda, K.1959 Soap Films: Studies of their Thinning Pergamon Press.Google Scholar
Petit, P., Seiwert, J., Cantat, I. & Biance, A.-L. 2015 On the generation of a foam film during a topological rearrangement. J. Fluid Mech. 763, 286301.Google Scholar
Rio, E. & Biance, A.-L. 2014 Thermodynamic and mechanical timescales involved in foam film rupture and liquid foam coalescence. Chem. Phys. Chem. 15 (17), 36923707.Google Scholar
Seiwert, J., Monloubou, M., Dollet, B. & Cantat, I. 2013 Extension of a suspended soap film: a homogeneous dilatation followed by new film extraction. Phys. Rev. Lett. 111 (9), 094501.CrossRefGoogle ScholarPubMed
Taylor, G. 1959 The dynamics of thin sheets of fluid. 3. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253 (1274), 313321.Google Scholar