Hostname: page-component-669899f699-vbsjw Total loading time: 0 Render date: 2025-04-24T15:13:09.772Z Has data issue: false hasContentIssue false

Eco-physiological response of grain amaranth to regulated deficit and conventional deficit irrigation applied with surface and subsurface drip irrigation systems

Published online by Cambridge University Press:  20 November 2024

Engin Gönen*
Affiliation:
Depertmant of Soil and Water Resources, Oil Seed Research Institution, Osmaniye, Türkiye
Yeşim Bozkurt Çolak
Affiliation:
Department of Biosystems Engineering, Faculty of Agriculture, Malatya Turgut Ozal University, Malatya, Türkiye
Mete Ozfidaner
Affiliation:
Depertmant of Soil and Water Resources, Alata Horticultural Research Institute, Tarsus-Mersin, Türkiye
Attila Yazar
Affiliation:
Department of Irrigation and Agricultural Structures Science, Faculty of Agriculture, Cukurova University, Adana, Türkiye
Çagatay Tanriverdi
Affiliation:
Department of Biosystems Engineering, Faculty of Agriculture, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Türkiye
*
Corresponding author: Engin Gönen; Email: [email protected]

Abstract

Understanding the water use of drought-tolerant crops of the drought-prone Mediterranean regions is important for sustainable agriculture. The aim of this study was to evaluate the yield and yield responses of amaranth (Amaranthus hybridus L.) to different irrigation strategies conducted in 2019 and 2020 under Mediterranean climatic conditions using surface drip (SD) and subsurface drip (SSD) systems. Strategies investigated were: regulated deficit irrigation (RDI), conventional deficit irrigation (DI25, DI50, DI75), full irrigation (FI) and rainfed treatment. The highest grain yield was observed in FI treatments; RDI treatments produced 5% lower grain yield than the FI treatments, although the RDI treatments resulted in water savings of 23 and 21% for SD and SSD systems, respectively. DI treatments resulted in lower leaf water potential (LWP) and higher crop water-stress index (CWSI) compared to FI in both systems values. The results showed that optimum irrigation conditions to obtain the highest amaranth grain yields were associated with an LWP of −1.0 MPa and an average CWSI of about 0.25. The FI treatments under SSD systems had the highest grain production, followed by FI under SD and RDI under both the drip systems. Under SD and SSD systems, RDI saved 23 and 21% water, respectively, and produced a yield statistically comparable to that of FI. The SSD methods generated higher net income than SD. From these results it can be concluded that both RDI and DI75 could be a good alternative to FI under the conditions of water scarcity in the Mediterranean region.

Type
Crops and Soils Research Paper
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abdelkhalik, A, Pascual, B, Nájera, I, Domene, MA, Baixauli, C and Pascual-Seva, N (2020) Effects of deficit irrigation on the yield and irrigation water use efficiency of drip-irrigated sweet pepper (Capsicum annuum L.) under Mediterranean conditions. Irrigation Science 38, 89104.CrossRefGoogle Scholar
Blanco, V, Martínez-Hernández, GB, Artés-Hernández, F, Blaya-Ros, PJ, Torres-Sánchez, R and Domingo, R (2019) Water relations and quality changes throughout fruit development and shelf life of sweet cherry grown under regulated deficit irrigation. Agriculture Water Management 217, 243254.CrossRefGoogle Scholar
Bozkurt Çolak, Y, Yazar, A, Alghory, A and Tekin, S (2021). Evaluation of crop water stress index and leaf water potential for differentially irrigated quinoa with surface and subsurface drip systems. Irrigation Science 39, 81100.CrossRefGoogle Scholar
Cechin, I and Valquilha, EM (2019) Nitrogen effect on gas exchange characteristics, dry matter production and nitrate accumulation of Amaranthus cruentus L. Brazilian Journal of Botany 42, 373381.CrossRefGoogle Scholar
Dağdelen, N, Başal, H, Yılmaz, E, Gürbüz, T and Akcay, S (2009) Different drip irrigation regimes affect cotton yield, water use efficiency and fiber quality in western Turkey. Agricultural Water Management 96, 111120.CrossRefGoogle Scholar
Ecker, O, Weinberger, K and Qaim, M (2010) Patterns and determinants of dietary micro nutrient deficiencies in rural areas of East Africa. African Journal of Agriculture and Research Economy 4, 175194.Google Scholar
Emire, SA and Arega, M (2012) Value added product development and quality characterization of amaranth (Amaranthus caudatus L) grown in East. African Journal of Food Science and Technology 3, 129141.Google Scholar
Gonzalez-Dugo, V, Ruz, C, Testi, L, Orgaz, F and Fereres, E (2018) The impact of deficit irrigation on transpiration and yield of mandarin and late oranges. Irrigation Sciences 36, 227239.CrossRefGoogle Scholar
Idso, SB, Jackson, RD, Pinter, PJ Jr., Reginato, RJ and Hatfield, JL (1981) Normalizing the stress-degree-day parameter for environmental variability. Agriculture Meteorology 24, 4555.CrossRefGoogle Scholar
Jacobsen, SE, Mujicar, A and Ortiz, R (2003) The global potential for quinoa and other Andean crops. Food Reviews International 19, 139148.CrossRefGoogle Scholar
Jones, HG (2007) Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. Journal of Experimental Botany 58, 119130.CrossRefGoogle ScholarPubMed
Kang, S, Hu, X, Goodwin, I, Jirie, P and Zhang, J (2002) Soil water distribution, water use and yield response to partial root-zone drying under a shallow groundwater table condition in a pear orchard. Science Horticulture 92, 277291.CrossRefGoogle Scholar
Keraliya, SJ, Desai, LJ, Patel, SJ and Kanara, DA (2017) Effect of integrated nitrogen management on yield, quality and economic of grain amaranth (Amaranthus hypochondriacus L.). International Journal of Pure and Applied Bioscience (IJPAB) 5, 531534.CrossRefGoogle Scholar
Lavini, A, Pulvento, C, d'Andria, R, Riccardi, M and Jacobsen, SE (2016) Effects of saline irrigation on yield and qualitative characterization of seed of an amaranth accession grown under Mediterranean conditions. Journal of Agriculture Science 154, 858869.CrossRefGoogle Scholar
Liu, F and Stützel, H (2002) Leaf water relations of vegetable amaranth (Amaranthus spp.) in response to soil drying. European Society for Agronomy 16 137150.CrossRefGoogle Scholar
MGM (2019) General Directorate of Meteorology of Turkey. Climate data. Ankara, Turkey.Google Scholar
Mlakar, SG, Bavec, M, Jakop, M and Bavec, F (2012) The effect of drought occurring at different growth stages on productivity of grain amaranth Amaranthus cruentus G6. Journal of Life Science 6, 283286.Google Scholar
Molden, D, Oweis, T, Steduto, P, Bindraban, P, Hanjra, MA and Kijne, J (2010) Improving agricultural water productivity: between optimism and caution. Agriculture Water Management 97, 528535.CrossRefGoogle Scholar
Ommami, EN and Hammes, PS (2006) Interactive effects of salinity and water stress on growth, leaf water relations, and gas exchange in amaranth (Amaranthus spp.). New Zealand Journal of Crop and Horticulture Science 34, 3344.CrossRefGoogle Scholar
Parmar, JK and Patel, JJ (2009) Effect of nitrogen management on growth and yield of grain amaranthus (Amaranthus hypochondriacus L.). An Asian Journal of Soil Science 4, 106109.Google Scholar
Patel, KI, Patel, BM, Patel, SJ, Patel, PT, Patel, SM and Patel, PM (2012) Effect of levels of nitrogen and iron on yield of grain amaranth (Amaranthus hypochondriacus L.) under different planting techniques. Journal of Agriculture Science Digest 32 193198.Google Scholar
Peter, SL, Ayyanagowdar, MS, Babu, BM, Pampanna, Y, Polisgowdar, BS and Ramesh, G (2019). Evaluation of drip irrigation levels on amaranthus (Amaranthus hybridus L) yield and water use efficiency under shade-net. International Journal Current Microbiology Applied Science 8 318326.CrossRefGoogle Scholar
Pulvento, C, Sellami, MH and Lavini, A (2022) Yield and quality of Amaranthus hypochondriacus grain amaranth under drought and salinity at various phenological stages in southern Italy. Journal Science Food Agriculture 102 50225033.CrossRefGoogle ScholarPubMed
Rastogi, A and Shukla, S (2013) Amaranth: a new millennium crop of nutraceutical values. Critical Reviews in Food Science and Nutrition 53, 109125.CrossRefGoogle ScholarPubMed
Scholander, PF, Hammel, HT, Bradstreet, ED and Hemmingsen, EA (1965) Sap pressure in vascular plants. Science (New York, N.Y.) 148, 339346.CrossRefGoogle ScholarPubMed
Sezen, SM, Şengül, H, Baytorun, N, Daşgan, Y, Akyildiz, A, Tekin, S, Onder, D, Agcam, E, Akhoundnejad, Y and Gügercin, Ö (2015) Comparison of drip- and furrow-irrigated red pepper yield, yield components, quality and net profit generation. Irrigation Drainage 64, 546556.CrossRefGoogle Scholar
Srujan, CS, Pater, HH, Madagoudra, YB, Lokesh, R and Terin, P (2021) The effect of irrigation and nitrogen levels on growth, yield and economics of grain amaranth (Amaranthus hypochondriacus L.). The Pharma Innovation Journal 10 11461149.Google Scholar
Steel, RGD and Torrie, JH (1980) Principles and Procedures of Statistics, 2nd Edn. New York: McGraw-Hill.Google Scholar
Wang, R, Yan, P, Sun, Q, Su, B and Zhang, J (2019) Effects of regulated deficit irrigation on the growth and berry composition of cabernet sauvignon in ningxia. International Journal Agriculture Biology Engineering 12, 102109.CrossRefGoogle Scholar
Yazar, A, Bozkurt Çolak, Y and Tekin, S (2013) Sustainable Water Use Securing Food Production in Dry Areas of the Mediterranean Region (SWUP-MED). Work Package 3: Sustainable agronomic interventions against multiple abiotic stresses. SWUP-MED Final Report. Available at www.swup-med.dk.Google Scholar
Yazar, A and İnce Kaya, Ç (2014) A new crop for salt affected and dry agricultural areas of Turkey: quinoa (Chenopodium quinoa Wild.). Turkish Journal of Agriculture National Science Special Issue 2, 14401446.Google Scholar
Yazar, A, Howell, TA, Dusek, DA and Copeland, KS (1999). Evaluation of crop water stress index for LEPA irrigated corn. Irrigation Science 18, 171180.CrossRefGoogle Scholar
Zegbe, JA, Behboudian, MH, Lang, A and Clothier, BE (2002) Deficit irrigation and partial rootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’ processing tomato (Lycopersicon esculentum, Mill.). Science Horticulture, 98, 505510.CrossRefGoogle Scholar