Hostname: page-component-669899f699-chc8l Total loading time: 0 Render date: 2025-04-26T00:17:32.970Z Has data issue: false hasContentIssue false

Special homogeneous surfaces

Published online by Cambridge University Press:  22 October 2024

DAVID LINDEMANN
Affiliation:
Department of Mathematics, Aarhus University, Ny Munkegade 118, Bldg 1530, DK-8000 Aarhus C, Denmark. e-mails: david.lindemann@math.au.dk; david.lindemann@uni-hamburg.de
ANDREW SWANN
Affiliation:
Department of Mathematics and DIGIT, Aarhus University, Ny Munkegade 118, Bldg 1530, DK-8000 Aarhus C, Denmark. e-mail: swann@math.au.dk

Abstract

We classify hyperbolic polynomials in two real variables that admit a transitive action on some component of their hyperbolic level sets. Such surfaces are called special homogeneous surfaces, and they are equipped with a natural Riemannian metric obtained by restricting the negative Hessian of their defining polynomial. Independent of the degree of the polynomials, there exist a finite number of special homogeneous surfaces. They are either flat, or have constant negative curvature.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Cambridge Philosophical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alekseevsky, D. V., Cortés, V. and Mohaupt, T.. Conification of Kähler and Hyper-Kähler Manifolds. Comm. Math. Phys. 324(2) (2013), 637655.CrossRefGoogle Scholar
Alekseevsky, D. V., Cortés, V., Dyckmanns, M. and Mohaupt, T.. Quaternionic Kähler metrics associated with special Kähler manifolds. J. Geom. Phys. 92 (2015), 271287.CrossRefGoogle Scholar
P. Bränén J. Huh. Lorentzian polynomials. Ann. of Math. 192 (2020), 821–891.CrossRefGoogle Scholar
Cortés, V., Dyckmanns, M. and Lindemann, D.. Classification of complete projective special real surfaces. Proc. London Math. Soc. 109(2) (2014), 423–445.CrossRefGoogle Scholar
Cortés, V., Dyckmanns, M., Jüngling, M. and Lindemann, D.. A class of cubic hypersurfaces and quaternionic Kähler manifolds of co-homogeneity one. Asian J. Math. 25(1) (2021), 130.CrossRefGoogle Scholar
Cortés, V., Han, X. and Mohaupt, T.. Completeness in supergravity constructions. Commun. Math. Phys. 311(1) (2012), 191213.CrossRefGoogle Scholar
Cortés, V., Nardmann, M. and Suhr, S.. Completeness of hyperbolic centroaffine hypersurfaces. Comm. Anal. Geom. 24(1) (2016), 59–92.CrossRefGoogle Scholar
de Wit, B. and Van Proeyen, A.. Special geometry, cubic polynomials and homogeneous quaternionic spaces. Comm. Math. Phys. 149(2) (1992), 307–333.CrossRefGoogle Scholar
Gårding, L.. An inequality for hyperbolic polynomials. J. Math. Mech. 8(6) (1959), 957965.Google Scholar
Hörmander, L.. Notions of convexity (Birkhäuser Boston, MA, 1994).Google Scholar
Lindemann, D.. Structure of the class of projective special real manifolds and their generalisations. PhD. thesis. University of Hamburg (2018).Google Scholar
Lindemann, D.. Properties of the moduli set of complete connected projective special real manifolds. Math. Z. 303(2) (2023), art. no. 37, 63 pp.CrossRefGoogle Scholar
Lindemann, D.. Limit geometry of complete projective special real manifolds. ArXiv:2009.12956 (2020).Google Scholar
Lindemann, D.. Special geometry of quartic curves. ArXiv:2206.12524 (2022).Google Scholar
Lindemann, D.. Special homogeneous curves. Math. Scand. 130(2) (2024), 228–236.CrossRefGoogle Scholar
Li, A.-M., Simon, U., G. Zhao Z. J. Hu. Global affine differential geometry of hypersurfaces (2nd edn., W. de Gruyter, Berlin, 2015).CrossRefGoogle Scholar
Macia, O. and Swann, . Twist geometry of the c-map. Comm. Math. Phys. 336 (2015), 1329–1357.CrossRefGoogle Scholar
Totaro, B.. The curvature of a Hessian metric. Int. J. Math. 15 (2004), 369391.CrossRefGoogle Scholar
Wilson, P. M. H.. Sectional curvatures of Kähler moduli. Math. Ann. 330 (2004), 631664.CrossRefGoogle Scholar