Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T22:49:24.576Z Has data issue: false hasContentIssue false

Norms on complex matrices induced by random vectors

Published online by Cambridge University Press:  23 December 2022

Ángel Chávez*
Affiliation:
Department of Mathematics and Statistics, Pomona College, 610 North College Avenue, Claremont, CA 91711, USA e-mail: [email protected] [email protected]
Stephan Ramon Garcia
Affiliation:
Department of Mathematics and Statistics, Pomona College, 610 North College Avenue, Claremont, CA 91711, USA e-mail: [email protected] [email protected]
Jackson Hurley
Affiliation:
Department of Mathematics and Statistics, Pomona College, 610 North College Avenue, Claremont, CA 91711, USA e-mail: [email protected] [email protected]

Abstract

We introduce a family of norms on the $n \times n$ complex matrices. These norms arise from a probabilistic framework, and their construction and validation involve probability theory, partition combinatorics, and trace polynomials in noncommuting variables. As a consequence, we obtain a generalization of Hunter’s positivity theorem for the complete homogeneous symmetric polynomials.

Type
Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of The Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

S.R.G. was partially supported by the NSF (Grant No. DMS-2054002).

References

Aguilar, K., Chávez, Á., Garcia, S. R., and Volčič, J., Norms on complex matrices induced by complete homogeneous symmetric polynomials . Bull. Lond. Math. Soc. 54(2022), 20782100. https://doi.org/10.1112/blms.12679 CrossRefGoogle Scholar
Barvinok, A. I., Low rank approximations of symmetric polynomials and asymptotic counting of contingency tables. Preprint, 2005. arXiv:0503170 Google Scholar
Baston, V. J., Two inequalities for the complete symmetric functions . Math. Proc. Cambridge Philos. Soc. 84(1978), no. 1, 13.CrossRefGoogle Scholar
Bell, E. T., Exponential polynomials . Ann. of Math. (2) 35(1934), no. 2, 258277.CrossRefGoogle Scholar
Billingsley, P., Probability and measure, Wiley Series in Probability and Statistics, John Wiley & Sons, Inc., Hoboken, NJ, 2012, Anniversary edition [of MR1324786], with a foreword by Steve Lalley and a brief biography of Billingsley by Steve Koppes.Google Scholar
Böttcher, A., Garcia, S. R., Omar, M., and O’Neill, C., Weighted means of B-splines, positivity of divided differences, and complete homogeneous symmetric polynomials . Linear Algebra Appl. 608(2021), 6883.CrossRefGoogle Scholar
Eskenazis, A., Nayar, P., and Tkocz, T., Gaussian mixtures: Entropy and geometric inequalities . Ann. Probab. 46(2018), no. 5, 29082945.CrossRefGoogle Scholar
Eskenazis, A., Nayar, P., and Tkocz, T., Sharp comparison of moments and the log-concave moment problem . Adv. Math. 334(2018), 389416.CrossRefGoogle Scholar
Garcia, S. R., Omar, M., O’Neill, C., and Yih, S., Factorization length distribution for affine semigroups II: asymptotic behavior for numerical semigroups with arbitrarily many generators . J. Combin. Theory Ser. A 178(2021), Article no. 105358, 34 pp.CrossRefGoogle Scholar
Gould, H. W., Explicit formulas for Bernoulli numbers . Amer. Math. Monthly 79(1972), 4451.CrossRefGoogle Scholar
Haagerup, U., The best constants in the Khintchine inequality . Stud. Math. 70(1981), no. 3, 231283 (1982).CrossRefGoogle Scholar
Havrilla, A. and Tkocz, T., Sharp Khinchin-type inequalities for symmetric discrete uniform random variables . Israel J. Math. 246(2021), no. 1, 281297.CrossRefGoogle Scholar
Horn, R. A. and Johnson, C. R., Matrix analysis, 2nd ed., Cambridge University Press, Cambridge, 2013.Google Scholar
Hunter, D. B., The positive-definiteness of the complete symmetric functions of even order . Math. Proc. Cambridge Philos. Soc. 82(1977), no. 2, 255258.CrossRefGoogle Scholar
Latała, R. and Oleszkiewicz, K., A note on sums of independent uniformly distributed random variables . Colloq. Math. 68(1995), no. 2, 197206.CrossRefGoogle Scholar
Lewis, A. S., Convex analysis on the Hermitian matrices . SIAM J. Optim. 6(1996), no. 1, 164177.CrossRefGoogle Scholar
Lewis, A. S., Group invariance and convex matrix analysis . SIAM J. Matrix Anal. Appl. 17(1996), no. 4, 927949.CrossRefGoogle Scholar
Roberts, A. W. and Varberg, D. E., Convex functions, Pure and Applied Mathematics, 57, Academic Press [Harcourt Brace Jovanovich], New York–London, 1973.Google Scholar
Rovenţa, I. and Temereancă, L. E., A note on the positivity of the even degree complete homogeneous symmetric polynomials . Mediterr. J. Math. 16(2019), no. 1, Article no. 1, 16 pp.CrossRefGoogle Scholar
Stanley, R. P., Enumerative combinatorics. Vol. 1, Cambridge Studies in Advanced Mathematics, 49, Cambridge University Press, Cambridge, 1997, with a foreword by Gian-Carlo Rota, Corrected reprint of the 1986 original.CrossRefGoogle Scholar
Stanley, R. P., Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62, Cambridge University Press, Cambridge, 1999, with a foreword by Gian-Carlo Rota and Appendix 1 by Sergey Fomin.CrossRefGoogle Scholar
Tao, T., Schur convexity and positive definiteness of the even degree complete homogeneous symmetric polynomials, https://terrytao.wordpress.com/2017/08/06/ Google Scholar