Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:13:23.606Z Has data issue: false hasContentIssue false

Cartan Subalgebras of $\mathfrak{g}{{\mathfrak{l}}_{\infty }}$

Published online by Cambridge University Press:  20 November 2018

Karl-Hermann Neeb
Affiliation:
Fachbereich Mathematik AG5 Schlossgartenstr. 7 D-64289 Darmstadt Germany, email: [email protected]
Ivan Penkov
Affiliation:
Department of Mathematics University of California at Riverside Riverside, CA 92521 USA, email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $V$ be a vector space over a field $\mathbb{K}$ of characteristic zero and ${{V}_{*}}$ be a space of linear functionals on $V$ which separate the points of $V$. We consider $V\,\otimes \,{{V}_{*}}$ as a Lie algebra of finite rank operators on $V$, and set $\mathfrak{g}\mathfrak{l}(V,\,{{V}_{*}})\,:=\,V\,\otimes \,{{V}_{*}}$. We define a Cartan subalgebra of $\mathfrak{g}\mathfrak{l}(V,{{V}_{*}})$ as the centralizer of a maximal subalgebra every element of which is semisimple, and then give the following description of all Cartan subalgebras of $\mathfrak{g}\mathfrak{l}(V,{{V}_{*}})$ under the assumption that $\mathbb{K}$ is algebraically closed. A subalgebra of $\mathfrak{g}\mathfrak{l}(V,{{V}_{*}})$ is a Cartan subalgebra if and only if it equals ${{\oplus }_{j}}({{V}_{j}}\,\otimes {{({{V}_{j}})}_{*}})\,\oplus \,({{V}^{0}}\,\otimes \,V_{*}^{0})$ for some one-dimensional subspaces ${{V}_{j}}\subseteq V$ and ${{\text{(}{{V}_{j}}\text{)}}_{*}}\subseteq {{V}_{*}}$ with ${{({{V}_{i}})}_{*}}({{V}_{j}})\,=\,{{\delta }_{ij}}\mathbb{K}$ and such that the spaces $V_{*}^{0}=\bigcap{_{j}}{{({{V}_{j}})}^{\bot }}\subseteq {{V}_{*}}$ and ${{V}^{0}}=\bigcap{_{j}}{{\left( {{({{V}_{j}})}_{*}} \right)}^{\bot }}\subseteq V$ satisfy $V_{*}^{0}({{V}^{0}})\,=\,\{0\}$. We then discuss explicit constructions of subspaces ${{V}_{j}}$ and ${{({{V}_{j}})}_{*}}$ as above. Our second main result claims that a Cartan subalgebra of $\mathfrak{g}\mathfrak{l}(V,{{V}_{*}})$ can be described alternatively as a locally nilpotent self-normalizing subalgebra whose adjoint representation is locally finite, or as a subalgebra $\mathfrak{h}$ which coincides with the maximal locally nilpotent $\mathfrak{h}$-submodule of $\mathfrak{g}\mathfrak{l}(V,{{V}_{*}})$, and such that the adjoint representation of $\mathfrak{h}$ is locally finite.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2003

References

[AABGP97] Allison, B., Azam, S., Berman, S., Gao, Y. and Pianzola, A., Extended affine Lie algebras and their root systems. Mem. Amer.Math. Soc. (603) 126, 1997.Google Scholar
[BP95] Billig, Y. and Pianzola, A., On Cartan subalgebras. J. Algebra 171 (1995), 397412.Google Scholar
[Bou90] Bourbaki, N., Groupes et algèbres de Lie. Chapitres VII.VIII, Masson, Paris, 1990.Google Scholar
[DP99] Dimitrov, I. and Penkov, I.,Weight modules of direct limit Lie algebras. Internat.Math. Res. Notices 5 (1999), 223249.Google Scholar
[NS01] Neeb, K.-H. and Stumme, N., On the classification of locally finite split simple Lie algebras. J. Reine Angew.Math. 533 (2001), 2553.Google Scholar
[PS03] Penkov, I. and Strade, H., Locally finite Lie algebras with root decomposition. Arch. Math. (2003), to appear.Google Scholar
[PK83] Peterson, D. and Kac, V., Infinite flag varieties and conjugacy theorems. Proc. Nat. Acad. Sci. USA 80 (1983), 17781782.Google Scholar
[St99] Stumme, N., The structure of locally finite split Lie algebras. J. Algebra 220 (1999), 664693.Google Scholar
[St01] Stumme, N., Automorphisms and conjugacy of compact real forms of the classical infinite-dimensional matrix Lie algebras. Forum Math. 13 (2001), 817851.Google Scholar