Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T08:36:13.937Z Has data issue: false hasContentIssue false

Upconversion of low-energy photons in semiconductor nanostructures for solar energy harvesting

Published online by Cambridge University Press:  11 January 2019

Eric Y. Chen
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
Christopher Milleville
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
Joshua M.O. Zide
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
Matthew F. Doty*
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
Jing Zhang
Affiliation:
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA; and Department of Chemistry, University of Delaware, Newark, Delaware 19716, USA
*
a)Address all correspondence to Matthew F. Doty at [email protected]
Get access

Abstract

We explore the status of state-of-the-art upconverter materials in the context of improving solar cell performance. We focus on semiconductor upconversion nanostructures that can harvest two separate bands of the solar spectrum and offer a promising path to rational engineering of improved performance and thus improved overall solar energy harvesting.

Photon upconversion is a process in which two low-energy photons are sequentially absorbed and one high-energy photon is emitted. Photon upconversion in both inorganic and organic material platforms has been used to improve solar cell efficiency. Lanthanide-doped salts (inorganic) and triplet–triplet annihilation molecules (organic) have achieved 33% and 60% internal upconversion quantum efficiency, respectively, leading to current density increases of 17 mA/cm2 and 0.86 mA/cm2. However, their performance is limited by their narrow absorption bandwidth (AB) and limited tunability, especially at low photon fluxes. Recently, colloidal semiconductor nanostructures have emerged as a promising material platform for upconversion. The optical absorption in these low-dimensional heterostructures involves both quantum-confined and continuum band states, enabling a much larger AB. Moreover, the techniques of semiconductor heterostructure engineering can be used to optimize performance and to tailor absorption and emission wavelengths. We review the performance and potential impact on solar energy harvesting of upconversion materials, focusing on semiconductor upconverters. We discuss computational models that suggest that semiconductor upconverter nanostructures could have outstanding performance for photovoltaic. We then discuss the current state of the art in semiconductor upconversion morphologies and compositions and provide an outlook on the ways in which nanostructures can be tailored to improve performance for applications.

Type
Review Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Hirst, L.C. and Ekins-Daukes, N.J.: Fundamental losses in solar cells. Prog. Photovoltaics Res. Appl. 19, 286293 (2011).CrossRefGoogle Scholar
Bard, A.J. and Fox, M.A.: Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 28, 141145 (1995).CrossRefGoogle Scholar
Dimroth, F. and Kurtz, S.: High-efficiency multijunction solar cells. MRS Bull. 32, 230235 (2007).CrossRefGoogle Scholar
Luque, A. and Martí, A.: Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Phys. Rev. Lett. 78, 50145017 (1997).CrossRefGoogle Scholar
Green, M.A., Hishikawa, Y., Dunlop, E.D., Levi, D.H., Hohl-Ebinger, J., and Ho-Baillie, A.W.Y.: Solar cell efficiency tables (version 51). Prog. Photovoltaics Res. Appl. 26, 312 (2018).CrossRefGoogle Scholar
Trupke, T., Green, M.A., and Würfel, P.: Improving solar cell efficiencies by up-conversion of sub-band-gap light. J. Appl. Phys. 92, 41174122 (2002).CrossRefGoogle Scholar
Sellers, D.G., Zhang, J., chen, E.Y., Zhong, Y., Doty, M.F., and Zide, J.M.O.: Novel nanostructures for efficient photon upconversion and high-efficiency photovoltaics. Sol. Energy Mater. Sol. Cells 155, 446453 (2016).CrossRefGoogle Scholar
Auzel, F.: Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139173 (2004).CrossRefGoogle Scholar
Zhao, J., Wu, W., Sun, J., and Guo, S.: Triplet photosensitizers: From molecular design to applications. Chem. Soc. Rev. 42, 53235351 (2013).CrossRefGoogle ScholarPubMed
Auzel, F.: Compteur quantique par transfert denergie entre deux ions de terres rares dans un tungstate mixte ET dans un verre. C. R. Hebd. Seances Acad. Sci. 262, 1016 (1966).Google Scholar
De Wild, J., Rath, J.K., Meijerink, A., Van Sark, W.G.J.H.M., and Schropp, R.E.I.: Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+(18%), Er3+(2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 23952398 (2010).CrossRefGoogle Scholar
Van Der Ende, B.M., Aarts, L., and Meijerink, A.: Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 1108111095 (2009).CrossRefGoogle ScholarPubMed
Vetrone, F., Naccache, R., Mahalingam, V., Morgan, C.G., and Capobianco, J.A.: The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 19, 29242929 (2009).CrossRefGoogle Scholar
Suyver, J.F., Grimm, J., van Veen, M.K., Biner, D., Krämer, K.W., and Güdel, H.U.: Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+, and/or Yb3+. J. Lumin. 117, 112 (2006).CrossRefGoogle Scholar
Wisser, M.D., Fischer, S., Siefe, C., Alivisatos, A.P., Salleo, A., and Dionne, J.A.: Improving quantum yield of upconverting nanoparticles in aqueous media via emission sensitization. Nano Lett. 18, 26892695 (2018).CrossRefGoogle ScholarPubMed
Han, S., Deng, R., Xie, X., and Liu, X.: Enhancing luminescence in lanthanide-doped upconversion nanoparticles. Angew. Chem., Int. Ed. 53, 1170211715 (2014).CrossRefGoogle ScholarPubMed
Wilhelm, S.: Perspectives for upconverting nanoparticles. ACS Nano 11, 1064410653 (2017).CrossRefGoogle ScholarPubMed
MacDougall, S.K.W., Ivaturi, A., Marques-Hueso, J., Krämer, K.W., and Richards, B.S.: Ultra-high photoluminescent quantum yield of β-NaYF4: 10% Er3+ via broadband excitation of upconversion for photovoltaic devices. Opt. Express 20, A879A887 (2012).CrossRefGoogle ScholarPubMed
Huang, Z., Li, X., Mahboub, M., Hanson, K.M., Nichols, V.M., Le, H., Tang, M.L., and Bardeen, C.J.: Hybrid molecule-nanocrystal photon upconversion across the visible and near-infrared. Nano Lett. 15, 55525557 (2015).CrossRefGoogle ScholarPubMed
Mongin, C., Garakyaraghi, S., Razgoniaeva, N., Zamkov, M., and Castellano, F.N.: Direct observation of triplet energy transfer from semiconductor nanocrystals. Science 351, 369372 (2016).CrossRefGoogle ScholarPubMed
Liu, L., Huang, D., Draper, S.M., Yi, X., Wu, W., and Zhao, J.: Visible light-harvesting trans bis(alkylphosphine) platinum(II)-alkynyl complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. Dalton Trans. 42, 1069410706 (2013).CrossRefGoogle ScholarPubMed
Wang, B., Sun, B., Wang, X., Ye, C., Ding, P., Liang, Z., Chen, Z., Tao, X., and Wu, L.: Efficient triplet sensitizers of palladium(II) tetraphenylporphyrins for upconversion-powered photoelectrochemistry. J. Phys. Chem. C 118, 14171425 (2014).CrossRefGoogle Scholar
Frazer, L., Gallaher, J.K., and Schmidt, T.W.: Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2, 13461354 (2017).CrossRefGoogle Scholar
Cheng, Y.Y., Fückel, B., MacQueen, R.W., Khoury, T., Clady, R.G.C.R., Schulze, T.F., Ekins-Daukes, N.J., Crossley, M.J., Stannowski, B., Lips, K., and Schmidt, T.W.: Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5, 69536959 (2012).CrossRefGoogle Scholar
Goldschmidt, J.C. and Fischer, S.: Upconversion for photovoltaics—A review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 3, 510535 (2015).CrossRefGoogle Scholar
Fischer, S., Favilla, E., Tonelli, M., and Goldschmidt, J.C.: Record efficient upconverter solar cell devices with optimized bifacial silicon solar cells and monocrystalline BaY2F8:30% Er3+ upconverter. Sol. Energy Mater. Sol. Cells 136, 127134 (2015).CrossRefGoogle Scholar
Schulze, T.F. and Schmidt, T.W.: Photochemical upconversion: Present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103125 (2015).CrossRefGoogle Scholar
Colvin, V.L., Schlamp, M.C., and Alivisatos, A.P.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354357 (1994).CrossRefGoogle Scholar
Kirstaedter, N., Ledentsov, N.N., Grundmann, M., Bimberg, D., Ustinov, V.M., Ruvimov, S.S., Maximov, M.V., Kop’ev, P.S., Alferov, Z., Richter, U., Werner, P., Gosele, U., and Heydenreich, J.: Low threshold, large to injection laser emission from (InGa)As quantum dots. Electron. Lett. 30, 1416 (1994).CrossRefGoogle Scholar
Chan, W.W.C. and Nie, S.: Quantum dot bioconjugates for ultrasensitive non isotopic detection. Science 281, 20162018 (1998).CrossRefGoogle Scholar
Nozik, A.J.: Quantum dot solar cells. Phys. E 14, 115 (2002).CrossRefGoogle Scholar
Leatherdale, C.A., Woo, W.K., Mikulec, F.V., and Bawendi, M.G.: On the absorption cross section of CdSe nanocrystal quantum dots. J. Phys. Chem. B 106, 76197622 (2002).CrossRefGoogle Scholar
Martí, A., Antolín, E., Stanley, C.R., Farmer, C.D., López, N., Díaz, P., Cánovas, E., Linares, P.G., and Luque, A.: Production of photocurrent due to intermediate-to-conduction-band transitions: A demonstration of a key operating principle of the intermediate-band solar cell. Phys. Rev. Lett. 97, 247701-1247701-4 (2006).CrossRefGoogle ScholarPubMed
Mcdonald, S.A., Konstantatos, G., Zhang, S., Cyr, P.W., Klem, E.J., Levina, L., and Sargent, E.H.: Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat. Mater. 4, 138142 (2005).CrossRefGoogle ScholarPubMed
Sanehira, E.M., Marshall, A.R., Christians, J.A., Harvey, S.P., Ciesielski, P.N., Wheeler, L.M., Schulz, P., Lin, L.Y., Beard, M.C., and Luther, J.M.: Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells. Sci. Adv. 3, eaao4204 (2017).CrossRefGoogle ScholarPubMed
Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Mićić, O.I., Nozik, A.J., Shabaev, A., and Efros, A.L.: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865871 (2005).CrossRefGoogle ScholarPubMed
Klimov, V.I., Mikhailovsky, A.A., Xu, S., Malko, A.A., Hollingsworth, J.A., Leatherdale, C.A., Eisler, H.J., and Bawendi, M.G.: Optical gain and stimulated emission in nanocrystal quantum dots. Science 290, 314317 (2000).CrossRefGoogle ScholarPubMed
Poles, E., Selmarten, D.C., Mićić, O.I., and Nozik, A.J.: Anti-Stokes photoluminescence in colloidal semiconductor quantum dots. Appl. Phys. Lett. 75, 971973 (1999).CrossRefGoogle Scholar
Wang, X., Yu, W., Zhang, J., Aldana, J., Peng, X., and Xiao, M.: Photoluminescence upconversion in colloidal CdTe quantum dots. Phys. Rev. B 68, 125318-1125318-6 (2003).CrossRefGoogle Scholar
Ferńe, M.J., Jensen, P., and Rubinsztein-Dunlop, H.: Unconventional photoluminescence upconversion from PbS quantum dots. Appl. Phys. Lett. 91, 043112-1043112-3 (2007).CrossRefGoogle Scholar
Atre, A.C. and Dionne, J.A.: Realistic upconverter-enhanced solar cells with non-ideal absorption and recombination efficiencies. J. Appl. Phys. 110, 034505 (2011).CrossRefGoogle Scholar
Chen, E.Y., Zhang, J., Sellers, D.G., Zhong, Y., Zide, J.M.O., and Doty, M.F.: A kinetic rate model of novel upconversion nanostructures for high-efficiency photovoltaics. IEEE J. Photovoltaics 6, 11831190 (2016).CrossRefGoogle Scholar
Shockley, W. and Queisser, H.J.: Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510519 (1961).CrossRefGoogle Scholar
Tex, D.M. and Kamiya, I.: Upconversion of infrared photons to visible luminescence using InAs-based quantum structures. Phys. Rev. B 83, 081309-1081309-4 (2011).CrossRefGoogle Scholar
Tex, D.M., Kamiya, I., and Kanemitsu, Y.: Efficient upconverted photocurrent through an Auger process in disklike InAs quantum structures for intermediate-band solar cells. Phys. Rev. B 87, 17 (2013).CrossRefGoogle Scholar
Johnson, E.J., Kafalas, J., Davies, R.W., and Dyes, W.A.: Deep center EL2 and anti-stokes luminescence in semi-insulating GaAs. Appl. Phys. Lett. 40, 993995 (1982).CrossRefGoogle Scholar
Quagliano, L.G. and Nather, H.: Up conversion of luminescence via deep centers in high purity GaAs and GaAlAs epitaxial layers. Appl. Phys. Lett. 45, 555557 (1984).CrossRefGoogle Scholar
Alivisatos, A.P.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933937 (2004).CrossRefGoogle Scholar
Norris, D. and Bawendi, M.: Measurement and assignment of the size-dependent optical spectrum in CdSe quantum dots. Phys. Rev. B 53, 1633816346 (1996).CrossRefGoogle ScholarPubMed
Konstantatos, G., Howard, I., Fischer, A., Hoogland, S., Clifford, J., Klem, E., Levina, L., and Sargent, E.H.: Ultrasensitive solution-cast quantum dot photodetectors. Nature 442, 180183 (2006).CrossRefGoogle ScholarPubMed
Moreels, I., Lambert, K., De Muynck, D., Vanhaecke, F., Poelman, D., Martins, J.C., Allan, G., and Hens, Z.: Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chem. Mater. 19, 61016106 (2007).CrossRefGoogle Scholar
Makarov, N.S., Lin, Q., Pietryga, J.M., Robel, I., and Klimov, V.I.: Auger up-conversion of low-intensity infrared light in engineered quantum dots. ACS Nano 10, 1082910841 (2016).CrossRefGoogle ScholarPubMed
Teitelboim, A. and Oron, D.: Broadband near-infrared to visible upconversion in quantum dot-quantum well heterostructures. ACS Nano 10, 446452 (2016).CrossRefGoogle ScholarPubMed
Deutsch, Z., Neeman, L., and Oron, D.: Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol. 8, 649653 (2013).CrossRefGoogle ScholarPubMed
Chen, E.Y., Li, Z., Milleville, C.C., Lennon, K.R., and Doty, M.F.: CdSe(Te)/CdS/CdSe rods versus CdTe/CdS/CdSe spheres : Morphology-dependent carrier dynamics for photon upconversion. IEEE J. Photovoltaics 8, 746751 (2018).Google Scholar
Milleville, C.C., Chen, E.Y., Lennon, K.R., Cleveland, J.M., Kumar, A., Bork, J.A., Tessier, A., LeBeau, J.M., Chase, D.B., Zide, J.M.O., and Doty, M.F.: Engineering Efficient Photon Upconversion in Semiconductor Heterostructures. Just Accepted Manuscript (2018). https://doi.org/10.1021/acsnano.8b07062.CrossRefGoogle ScholarPubMed
Hines, M.A. and Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. J. Phys. Chem. 100, 468471 (1996).CrossRefGoogle Scholar
Luque, A. and Martí, A.: The intermediate band solar cell: Progress toward the realization of an attractive concept. Adv. Mater. 22, 160174 (2010).CrossRefGoogle ScholarPubMed
Martí, A., López, N., Antolín, E., Cánovas, E., Stanley, C., Farmer, C., Cuadra, L., and Luque, A.: Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell. Thin Solid Films 511–512, 638644 (2006).CrossRefGoogle Scholar
Yoshida, M., Ekins-Daukes, N.J., Farrell, D.J., and Phillips, C.C.: Photon ratchet intermediate band solar cells. Appl. Phys. Lett. 100, 263902-1263902-4 (2012).CrossRefGoogle Scholar
Asahi, S., Teranishi, H., Kusaki, K., Kaizu, T., and Kita, T.: Two-step photon up-conversion solar cells. Nat. Commun. 8, 14962 (2017).CrossRefGoogle ScholarPubMed
Asahi, S., Kusaki, K., Harada, Y., and Kita, T.: Increasing conversion efficiency of two-step photon up-conversion solar cell with a voltage booster hetero-interface. Sci. Rep. 8, 18 (2018).CrossRefGoogle ScholarPubMed
Petropoulos, J.P., Zhong, Y., and Zide, J.M.O.: Optical and electrical characterization of InGaBiAs for use as a mid-infrared optoelectronic material. Appl. Phys. Lett. 99, 031110-1031110-3 (2011).CrossRefGoogle Scholar
Osborne, S.W., Blood, P., Smowton, P.M., Xin, Y.C., Stintz, A., Huffaker, D., and Lester, L.F.: Optical absorption cross section of quantum dots. J. Phys.: Condens. Matter 16, S3749S3756 (2004).Google Scholar
Schulze, T.F., Czolk, J., Cheng, Y.Y., Fückel, B., MacQueen, R., Khoury, T., Crossley, M.J., Stannowski, B., Lips, K., Lemmer, U., Colsmann, A., and Schmidt, T.W.: Efficiency enhancement of organic and thin-film silicon solar cells with photochemical upconversion. J. Phys. Chem. C 116, 2279422801 (2012).CrossRefGoogle Scholar
Richards, B.S. and Shalav, A.: Enhancing the near-infrared spectral response of silicon optoelectronic devices via up-conversion. IEEE Trans. Electron Devices 54, 26792684 (2007).CrossRefGoogle Scholar
Shao, W., Chen, G., Ohulchanskyy, T.Y., Kuzmin, A., Damasco, J., Qiu, H., Yang, C., Ågren, H., and Prasad, P.N.: Lanthanide-doped fluoride core/multishell nanoparticles for broadband upconversion of infrared light. Adv. Opt. Mater. 3, 575582 (2015).CrossRefGoogle Scholar
Lee, T.D. and Ebong, A.U.: A review of thin film solar cell technologies and challenges. Renewable Sustainable Energy Rev. 70, 12861297 (2017).CrossRefGoogle Scholar
Chu, S., Cui, Y., and Liu, N.: The path towards sustainable energy. Nat. Mater. 16, 1622 (2016).CrossRefGoogle ScholarPubMed
Lewis, N.S.: Research opportunities to advance solar energy utilization. Science 351, 353 (2016).CrossRefGoogle ScholarPubMed
van Sark, W.G., de Wild, J., Rath, J.K., Meijerink, A., and Schropp, R.E.: Upconversion in solar cells. Nanoscale Res. Lett. 8, 81 (2013).CrossRefGoogle ScholarPubMed
Cheng, Y.Y., Nattestad, A., Schulze, T.F., MacQueen, R.W., Fückel, B., Lips, K., Wallace, G.G., Khoury, T., Crossley, M.J., and Schmidt, T.W.: Increased upconversion performance for thin film solar cells: A trimolecular composition. Chem. Sci. 7, 559568 (2015).CrossRefGoogle ScholarPubMed
Simon, Y.C. and Weder, C.: Low-power photon upconversion through triplet–triplet annihilation in polymers. J. Mater. Chem. 22, 2081720830 (2012).CrossRefGoogle Scholar
Monguzzi, A., Braga, D., Gandini, M., Holmberg, V.C., Kim, D.K., Sahu, A., Norris, D.J., and Meinardi, F.: Broadband up-conversion at subsolar irradiance: Triplet–triplet annihilation boosted by fluorescent semiconductor nanocrystals. Nano Lett. 14, 66446650 (2014).CrossRefGoogle ScholarPubMed
Schnitzer, I., Yablonovitch, E., Caneau, C., and Gmitter, T.J.: Ultrahigh spontaneous emission quantum efficiency, 99.7% internally and 72% externally, from AlGaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett. 62, 131133 (1993).CrossRefGoogle Scholar
Ogawa, T., Yanai, N., Monguzzi, A., and Kimizuka, N.: Highly efficient photon upconversion in self-assembled light-harvesting molecular systems. Sci. Rep. 5, 19 (2015).CrossRefGoogle ScholarPubMed
Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., and Bawendi, M.G.: (CdSe)ZnS core–shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 94639475 (1997).CrossRefGoogle Scholar
Wang, J., Long, Y.T., Zhang, Y.L., Zhong, X.H., and Zhu, L.Y.: Preparation of highly luminescent CdTe/CdS core/shell quantum dots. ChemPhysChem 10, 680685 (2009).CrossRefGoogle ScholarPubMed
Lim, S.J., Chon, B., Joo, T., and Shin, S.K.: Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water. J. Phys. Chem. C 112, 17441747 (2008).CrossRefGoogle Scholar
Talapin, D.V., Mekis, I., Götzinger, S., Kornowski, A., Benson, O., and Weller, H.: CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell–shell nanocrystals. J. Phys. Chem. B 108, 1882618831 (2004).CrossRefGoogle Scholar
Deka, S., Quarta, A., Lupo, M.G., Falqui, A., Boninelli, S., Giannini, C., Morello, G., De Giorgi, M., Lanzani, G., Spinella, C., Cingolani, R., Pellegrino, T., and Manna, L.: CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes. J. Am. Chem. Soc. 131, 29482958 (2009).CrossRefGoogle ScholarPubMed
Drijvers, E., De Roo, J., Geiregat, P., Fehér, K., Hens, Z., and Aubert, T.: Revisited wurtzite CdSe synthesis: A gateway for the versatile flash synthesis of multishell quantum dots and rods. Chem. Mater. 28, 73117323 (2016).CrossRefGoogle Scholar
Hadar, I., Philbin, J.P., Panfil, Y.E., Neyshtadt, S., Lieberman, I., Eshet, H., Lazar, S., Rabani, E., and Banin, U.: Semiconductor seeded nanorods with graded composition exhibiting high quantum-yield, high polarization, and minimal blinking. Nano Lett. 17, 25242531 (2017).CrossRefGoogle ScholarPubMed
Zhao, H., Fan, Z., Liang, H., Selopal, G.S., Gonfa, B.A., Jin, L., Soudi, A., Cui, D., Enrichi, F., Natile, M.M., Concina, I., Ma, D., Govorov, A.O., Rosei, F., and Vomiero, A.: Controlling photoinduced electron transfer from PbS@CdS core@shell quantum dots to metal oxide nanostructured thin films. Nanoscale 6, 70047011 (2014).CrossRefGoogle ScholarPubMed
Pan, A.C., del Cañizo, C., and Luque, A.: Characterization of up-converter layers on bifacial silicon solar cells. Mater. Sci. Eng., B 159–160, 212215 (2009).CrossRefGoogle Scholar
Börjesson, K., Rudquist, P., Gray, V., and Moth-Poulsen, K.: Photon upconversion with directed emission. Nat. Commun. 7, 18 (2016).CrossRefGoogle ScholarPubMed
Lu, D., Mao, C., Cho, S.K., Ahn, S., and Park, W.: Experimental demonstration of plasmon enhanced energy transfer rate in NaYF4:Yb3+, Er3+ upconversion nanoparticles. Sci. Rep. 6, 111 (2016).Google Scholar
Zou, W., Visser, C., Maduro, J.A., Pshenichnikov, M.S., and Hummelen, J.C.: Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics 6, 560564 (2012).CrossRefGoogle Scholar