No CrossRef data available.
Article contents
Monotonicity of implied volatility for perpetual put options
Published online by Cambridge University Press: 19 June 2023
Abstract
We define and study properties of implied volatility for American perpetual put options. In particular, we show that if the market prices are derived from a local volatility model with a monotone volatility function, then the corresponding implied volatility is also monotone as a function of the strike price.
MSC classification
Primary:
91G20: Derivative securities
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust
References
Alòs, E. and García-Lorite, D. (2021). Malliavin Calculus in Finance: Theory and Practice. Chapman & Hall/CRC Press, Boca Raton, FL.CrossRefGoogle Scholar
Alvarez, L. (2003). On the properties of r-excessive mappings for a class of diffusions. Ann. Appl. Prob. 13, 1517–1533.CrossRefGoogle Scholar
Berestycki, H., Busca, J. and Florent, I. (2002). Asymptotics and calibration of local volatility models. Quant. Finance 2, 61–69.CrossRefGoogle Scholar
Berestycki, H., Busca, J. and Florent, I. (2004). Computing the implied volatility in stochastic volatility models. Commun. Pure Appl. Math. 57, 1352–1373.CrossRefGoogle Scholar
Borodin, A. and Salminen, P. (2002). Handbook of Brownian Motion – Facts and Formulae, 2nd edn. Birkhäuser, Basel.CrossRefGoogle Scholar
Cont, R. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC Press, Boca Raton, FL.Google Scholar
Ekström, E. Properties of game options. (2006). Math. Meth. Operat. Res. 63, 221–238.CrossRefGoogle Scholar
Ekström, E. and Hobson, D. (2011). Recovering a time-homogeneous stock price process from perpetual option prices. Ann. Appl. Prob. 21, 1102–1135.CrossRefGoogle Scholar
Ekström, E. and Lu, B. (2015). Short-time implied volatility in exponential Lévy models. Internat. J. Theor. Appl. Finance 18, 1550025.CrossRefGoogle Scholar