Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-05-02T16:01:47.171Z Has data issue: false hasContentIssue false

THE GROUP CONFIGURATION THEOREM FOR GENERICALLY STABLE TYPES

Published online by Cambridge University Press:  11 November 2024

PAUL WANG*
Affiliation:
DÉPARTEMENT DE MATHÉMATIQUES ET APPLICATIONS ECOLE NORMALE SUPÉRIEURE DE PARIS - PSL 45 RUE D’ULM 75005 PARIS, FRANCE

Abstract

We generalize Hrushovski’s group configuration theorem to the case where the type of the configuration is generically stable, without assuming tameness of the ambient theory. The properties of generically stable types, which we recall in the second section, enable us to adapt the proof known in the stable context.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Association for Symbolic Logic

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

Adler, H., Casanovas, E., and Pillay, A., Generic stability and stability . The Journal of Symbolic Logic, vol. 79 (2014), pp. 179185.CrossRefGoogle Scholar
Bouscaren, E., The group configuration–after E. Hrushovski, https://api.semanticscholar.org/CorpusID:118803539, 1989.Google Scholar
Casanovas, E., Forking, Simple Theories and Hyperimaginaries, Lecture Notes in Logic (Association for Symbolic Logic, editors), Cambridge University Press, Cambridge, 2011, pp. 2530. https://doi.org/10.1017/CBO9781139003728.005.CrossRefGoogle Scholar
Conant, G., Gannon, K., and Hanson, J., Keisler measures in the wild . Model Theory, Vol. 2 (2023), no. 1, pp. 167.CrossRefGoogle Scholar
Conant, G. and Kruckman, A., Three surprising instances of dividing, The Journal of Symbolic Logic, (2024) pp. 120. doi:10.1017/jsl.2024.20.CrossRefGoogle Scholar
Dobrowolski, J. and Krupinski, K., On ω-categorical, generically stable groups . The Journal of Symbolic Logic, vol. 77 (2012), no. 3, pp. 10471056.CrossRefGoogle Scholar
García, D., Onshuus, A., and Usvyatsov, A., Generic stability, forking and thorn-forking . Transactions of the AMS, vol. 365 (2013), pp. 122.CrossRefGoogle Scholar
Hossain, A., Extension bases in Henselian valued fields, preprint, 2023. https://doi.org/10.48550/arXiv.2210.01567.CrossRefGoogle Scholar
Hrushovski, E., Contributions to stable model theory, Ph.D. thesis, University of California at Berkeley, 1986.Google Scholar
Hrushovski, E. and Rideau-Kikuchi, S., Valued fields, metastable groups . Selecta Mathematica, vol. 25 (2019), no. 3, Article no. 47, 58 pp.CrossRefGoogle Scholar
Mennui, R., Product of invariant types modulo domination–equivalence . Archive for Mathematical Logic, vol. 59 (2020), pp. 129.CrossRefGoogle Scholar
Montenegro, S., Onshuus, A., and Simon, P., Stabilizers, NTP2 groups with f-generics and PRC fields . Journal of the Institute of Mathematics of Jussieu, vol. 19 (2018), pp. 821853.CrossRefGoogle Scholar
Pillay, A., An Introduction to Stability Theory, vol. 8, Oxford Logic Guides, Oxford University Press, Oxford, 1983, pp. xii+146.Google Scholar
Pillay, A., Geometric Stability Theory, Oxford Science Publications, Oxford, 1996.CrossRefGoogle Scholar
Pillay, A. and Tanović, P., Generic stability, regularity and quasi-minimality , Models, Logics and Higher-Dimensional Categories, Centre de Recherches Mathématiques Montréal, Vol. 53 American Mathematical Society Providence, Rhode Island USA, 2011, pp. 189211.CrossRefGoogle Scholar
Simon, P., A Guide to NIP Theories, Association for Symbolic Logic, Lecture Notes in Logic, 44, Cambridge University Press, Cambridge, 2015.CrossRefGoogle Scholar
Tent, K. and Ziegler, M., A Course in Model Theory, Association for Symbolic Logic, Lecture Notes in Logic, 40, Cambridge University Press, Cambridge, 2012.CrossRefGoogle Scholar