Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T19:14:04.921Z Has data issue: false hasContentIssue false

Onset of the Younger Dryas Recorded with 14C at Annual Resolution in French Subfossil Trees

Part of: IntCal 20

Published online by Cambridge University Press:  25 November 2019

Manuela Capano*
Affiliation:
CEREGE, Aix Marseille University, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois, Aix-en-Provence, France
Cécile Miramont
Affiliation:
Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
Lisa Shindo
Affiliation:
Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
Frédéric Guibal
Affiliation:
Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
Christian Marschal
Affiliation:
Aix Marseille University, Avignon University, CNRS, IRD, IMBE, Marseille, France
Bernd Kromer
Affiliation:
Institute of Environmental Physics, University of Heidelberg, Germany
Thibaut Tuna
Affiliation:
CEREGE, Aix Marseille University, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois, Aix-en-Provence, France
Edouard Bard*
Affiliation:
CEREGE, Aix Marseille University, CNRS, IRD, INRA, Collège de France, Technopôle de l’Arbois, Aix-en-Provence, France
*
*Corresponding authors. Emails: [email protected], [email protected].
*Corresponding authors. Emails: [email protected], [email protected].

Abstract

Subfossil trees with their annual rings constitute the most accurate and precise archive to calibrate the radiocarbon (14C) method. The Holocene part of the IntCal curve is based on tree-ring chronologies, absolutely dated by dendrochronological matching. For the Northern Hemisphere, the absolute curve starts at 12,325 cal BP. For the early part of the Younger Dryas (YD) climatic event (≈ 12,850–11,650 cal BP), there are only a few floating dendrochronological sequences, mainly from Switzerland and France. We present new 14C results from subfossil trees (Pinus sylvestris L.) collected from the Barbiers site (southeast French Alps). The dendrochronological series covers 416 years, corresponding to the onset of the YD period. In order to date our sequence, we matched it with the 14C record based on kauri trees from New Zealand. The Barbiers data were first averaged at the same decadal resolution as the kauri record. Statistical comparison of the different averaging options and matching techniques enables dating the Barbiers sequence to 13,008–12,594 ±10 cal BP, which thus includes the boundary between the Allerød and YD events. The new Barbiers record allows to calculate the 14C inter-hemispheric gradient (14C-IHG) during the period overlapping the kauri sequence. For the optimal dating option, the mean 14C-IHG is 37 yr with a standard deviation (SD) of 21 yr based on 43 decadal estimations (−6‰ with SD of 2‰). The 14C-IHG record exhibits minimal values, down to zero, between 12,960–12,840 cal BP. Excluding these minima leads to an average 14C-IHG of 45 yr with a SD of 14 yr based on 33 decadal values, in agreement with observations for the last two millennia. The Barbiers record suggests a 14C-IHG increase between the end of the Allerød period (IHG of 37 yr with SD of 14 yr) and the early part of the YD (IHG of 48 yr with SD of 14 yr), which is compatible with previously reported drop of deep-water convection in the North-Atlantic and the associated increase in wind-driven upwelling in the Southern Ocean.

Type
Conference Paper
Copyright
© 2019 by the Arizona Board of Regents on behalf of the University of Arizona

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolphi, F, Muscheler, R, Friedrich, M, Güttler, D, Wacker, L, Talamo, S, Kromer, B. 2017. Radiocarbon calibration uncertainties during the last deglaciation: Insights from new floating tree-ring chronologies. Quaternary Science Reviews 170:98108.CrossRefGoogle Scholar
Adolphi, F, Bronk Ramsey, C, Erhardt, T, Lawrence Edwards, R, Cheng, H, Turney, CSM, Cooper, A, Svensson, A, Rasmussen, SO, Fischer, H, Muscheler, R. 2018. Connecting the Greenland ice-core and U/Th timescales via cosmogenic radionuclides: Testing the synchronicity of Dansgaard-Oeschger events. Climate of the Past Discussions 14:17551781.CrossRefGoogle Scholar
Bard, E. 1988. Correction of accelerator mass spectrometry 14C ages measured in planktonic foraminifera: Paleoceanographic implications. Paleoceanography 3:635645.CrossRefGoogle Scholar
Bard, E, Raisbeck, G, Yiou, F, Jouzel, J. 1997. Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth and Planetary Science Letters 150:453462.CrossRefGoogle Scholar
Bard, E, Tuna, T, Fagault, Y, Bonvalot, L, Wacker, L, Fahrni, S, Synal, H-A. 2015. AixMICADAS, the accelerator mass spectrometer dedicated to 14C recently installed in Aix-en-Provence, France. Nuclear Instruments and Methods in Physics Research B 361:8086.CrossRefGoogle Scholar
Braziunas, TF, Fung, IY, Stuiver, M. 1995. The preindustrial atmospheric 14CO2 latitudinal gradient as related to exchanges among atmospheric oceanic and terrestrial reservoirs. Global Biogeochemical Cycles 9:565584.CrossRefGoogle Scholar
Bronk Ramsey, C, van der Plicht, J, Weninger, B. 2001. “Wiggle matching” radiocarbon dates. Radiocarbon 43(2):381389.CrossRefGoogle Scholar
Bronk Ramsey, C. 2009. Dealing with outliers and offsets in radiocarbon dating. Radiocarbon 51(3):10231045.CrossRefGoogle Scholar
Bronk Ramsey, C, Staff, RA, Bryant, CL, Brock, F, Kitagawa, H, van der Plicht, J, Schlolaut, G, Marshall, MH, Brauer, A, Lamb, HF, Payne, RL, Tarasov, PE, Haraguchi, T, Gotanda, K, Yonenobu, H, Yokoyama, Y, Tada, R, Nakagawa, T. 2012. A complete terrestrial radiocarbon record for 11.2 to 52.8 kyr B.P. Science 338:370374.CrossRefGoogle ScholarPubMed
Buizert, C, Cuffey, KM, Severinghaus, JP, Baggenstos, D, Fudge, TJ, Steig, EJ, Markle, BR, Winstrup, M, Rhodes, RH, Brook, EJ, Sowers, TA, Clow, GD, Cheng, H, Edwards, RL, Sigl, M, McConnell, JR, Taylor, KC. 2015. The WAIS Divide deep ice core WD2014 chronology. Part 1: Methane synchronization (68–31 ka BP) and the gas age-ice age difference. Climate of the Past 11:153173.CrossRefGoogle Scholar
Capano, M, Miramont, C, Guibal, F, Kromer, B, Tuna, T, Fagault, Y, Bard, E. 2018. Wood 14C dating with AixMICADAS: methods and application to tree-ring sequences from the Younger Dryas event in the southern French Alps. Radiocarbon 60(1):5174.CrossRefGoogle Scholar
Cook, ER, Kairiukstis, LA. 1990. Methods of dendrochronology. Applications in the environmental sciences. International Institute for Applied Systems Analysis. Dordrecht: Kluwer Academic Publishers. 394 p.Google Scholar
Frei, C, Schär, C. 1998. A precipitation climatology of the Alps from high-resolution rain-gauge observations. International Journal of Climatololgy 18:873900.3.0.CO;2-9>CrossRefGoogle Scholar
Friedrich, M, Remmele, S, Kromer, B, Hofmann, J, Spurk, M, Kauser, KF, Orcel, C, Kuppers, M. 2004. The 12,460-year Hohenheim oak and pine tree-ring chronology from Central Europe; a unique annual record for radiocarbon calibration and paleoenvironment reconstructions. Radiocarbon 46(3):11111122.CrossRefGoogle Scholar
Fritts, HC. 1976. Tree rings and climate. New York: Academic Press. 567 p.Google Scholar
Gidon, M, Montjuvent, G, Flandrin, J, Moullade, M, Durozoy, G, Damiani, L. 1991. Carte géologique au 50/000, Laragne, BRGM edition.Google Scholar
Hogg, AG, McCormac, FG, Higham, TFG, Reimer, PJ, Baillie, MGL, Palmer, JG. 2002. High-precision radiocarbon measurements of contemporaneous tree-ring dated wood from the British Isles and New Zealand: AD 1850-950. Radiocarbon 44(3):633640.CrossRefGoogle Scholar
Hogg, A, Palmer, J, Boswijk, G, Chris, Turney C. 2011. High-precision radiocarbon measurements of tree-ring dated wood from New Zealand: 195 BC–AD 995. Radiocarbon 53(3):529542.CrossRefGoogle Scholar
Hogg, A, Turney, C, Palmer, J, Southon, J, Kromer, B, Bronk Ramsey, C, Boswijk, G, Fenwick, P, Noronha, A, Staff, R, Friedrich, M, Reynard, L, Guettler, D, Wacker, L, Jones, R. 2013. The New Zealand kauri (Agathis australis) research project: A radiocarbon dating intercomparison of Younger Dryas wood and implications for IntCal13. Radiocarbon 55(4):20352048.CrossRefGoogle Scholar
Hogg, A, Southon, J, Turney, C, Palmer, J, Bronk Ramsey, C, Fenwick, P, Boswijk, G, Friedrich, M, Helle, G, Hughen, K, Jones, R, Kromer, B, Noronha, A, Reynard, L, Staff, R, Wacker, L. 2016a. Punctuated shutdown of Atlantic meridional overturning circulation during Greenland Stadial 1. Nature-Scientific Report 6:25902.Google Scholar
Hogg, A, Southon, J, Turney, C, Palmer, J, Bronk Ramsey, C, Fenwick, P, Boswijk, G, Buüntgen, U, Friedrich, M, Helle, G, Hughen, K, Jones, R, Kromer, B, Noronha, A, Reinig, F, Reynard, L, Staff, R, Wacker, L. 2016b. Decadally resolved lateglacial radiocarbon evidence from New Zealand kauri. Radiocarbon 58(4):709733.CrossRefGoogle Scholar
Hua, Q, Barbetti, M, Fink, D, Kaiser, KF, Friedrich, M, Kromer, B, Levchenko, VA, Zoppi, U, Smith, AM, Bertuch, F. 2009. Atmospheric 14C variations derived from tree rings during the early Younger Dryas. Quaternary Science Reviews 28(25–26):29822990.CrossRefGoogle Scholar
Hughen, K, Southon, J, Lehman, S, Overpeck, T. 2000. Synchronous radiocarbon and climate shifts during the last deglaciation. Science 290:19511954.CrossRefGoogle ScholarPubMed
Jorda, M, Rosique, T, Évin, J. 2000. Données nouvelles sur l’âge du dernier maximum glaciaire dans les Alpes méridionales françaises. Comptes Rendus de l’Académie des Sciences. Série 2, Sciences de la Terre et des Planètes 331(3):187193.Google Scholar
Kaiser, KF, Friedrich, M, Miramont, C, Kromer, B, Sgier, M, Schaub, M, Boeren, I, Remmele, S, Talamo, S, Guibal, F, Sivan, O. 2012. Challenging process to make the Lateglacial tree-ring chronologies from Europe absolute. Quaternary Science Reviews 36:7890.CrossRefGoogle Scholar
Kieffer-Weisse, A, Bois, P. 2001. Estimation de paramètres statistiques des précipitations extrèmes dans les Alpes françaises, La Houille Blanche (1):6270.CrossRefGoogle Scholar
Kromer, B, Friedrich, M, Talamo, S. 2015. Progress report on dendrochronology and 14C of the Hohenheim Preboreal/YD and Late Glacial pine chronologies. Oral presentation at Zürich IntCal-Dendro Meeting (Zürich, 4–5 August 2015).Google Scholar
Lerman, JC, Mook, WG, Vogel, JC. 1970. C14 in tree rings from different localities. In: Olsson, IU, editor. Radiocarbon Variations and Absolute Chronology. New York: John Wiley: 275300.Google Scholar
Levin, I, Kromer, B, Wagenbach, D, Munnich, KO. 1987. Carbon isotope measurements of atmospheric CO2 at a coastal station in Antarctica. Tellus 39B(1–2):8995.CrossRefGoogle Scholar
Libby, WF. 1954. Chicago radiocarbon dates V. Science 120(3123):733742.CrossRefGoogle ScholarPubMed
Marcott, SA, Bauska, TK, Buizert, C, Steig, EJ, Rosen, JL, Cuffey, KM, Fudge, TJ, Severinghaus, JP, Ahn, J, Kalk, ML, McConnell, JR, Sowers, T, Taylor, KC, White, JWC, Brook, EJ. 2014. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514:616619.CrossRefGoogle ScholarPubMed
McCormac, FG, Hogg, AG, Higham, TG, Baillie, ML, Palmer, JG, Xiong, L, Pilcher, JR, Brown, D, Hoper, ST. 1998. Variations of radiocarbon in tree rings: Southern Hemisphere offset preliminary results. Radiocarbon 40(3):17.CrossRefGoogle Scholar
McCormac, FG, Hogg, AG, Blackwell, PG, Buck, CE, Higham, TFG, Reimer, PJ. 2004. SHCAL04 Southern Hemisphere calibration, 0–11.0 cal. kyr BP. Radiocarbon 46(3):10871092.CrossRefGoogle Scholar
Miramont, C, Sivan, O, Rosique, T, Edouard, JL, Jorda, M. 2000. Subfossil tree deposits in the middle Durance (Southern Alps, France); environmental changes from Allerød to Atlantic. Radiocarbon 42(3):423435.CrossRefGoogle Scholar
Miramont, C, Rosique, T, Sivan, O, Edouard, JL, Magnin, F, Talon, B. 2004. Le cycle de sédimentation « postglaciaire principal » des bassins marneux sub-alpins : état des lieux. Méditerranée 1(2):7184.CrossRefGoogle Scholar
Miramont, C, Guibal, F, Kaiser, KF, Kromer, B, Sgier, M, Sivan, O, Friedrich, M, Talamo, S. 2010. L’apport des séries dendrochronologiques françaises au prolongement de la chronologie européenne absolue et à la calibration du radiocarbone. In Cahiers de Géographie 11, Collection EDYTEM: 189198.Google Scholar
Miramont, C, Sivan, O, Guibal, F, Kromer, B, Talamo, S, Kaiser, KF. 2011. L’étalonnage du temps du radiocarbon par les cernes d’arbre. L’apport des series dendrochronologiques du gisement de bois subfossiles du torrent des Barbiers (Alpes Françaises du sud). Quaternaire 22(3):261271.Google Scholar
Muscheler, R, Kromer, B, Björck, S, Svensson, A, Friedrich, M, Kaiser, KF, Southon, J. 2008. Tree rings and ice cores reveal 14C calibration uncertainties during the Younger Dryas. Nature Geoscience 1: 263267.CrossRefGoogle Scholar
Rasmussen, SO, Andersen, KK, Svensson, AM, Steffensen, JP, Vinther, BM, Clausen, HB, Siggaard-Andersen, ML, Johnsen, SJ, Larsen, LB, Dahl-Jensen, D, Bigler, M, Röthlisberger, R, Fischer, H, Goto-Azuma, K, Hansson, ME, Ruth, U. 2006. A new Greenland ice core chronology for the last glacial termination. Journal of Geophysical Research 111:D06102.CrossRefGoogle Scholar
Reimer, PJ, Bard, E, Bayliss, A, Beck, JW, Blackwell, PG, Bronk Ramsey, C, Buck, CE, Cheng, H, Edwards, RL, Friedrich, M, Grootes, PM, Guilderson, TP, Haflidason, H, Hajdas, I, Hatté, C, Heaton, TJ, Hoffmann, DL, Hogg, AG, Hughen, KA, Kaiser, KF, Kromer, B, Manning, SW, Niu, M, Reimer, RW, Richards, DA, Scott, EM, Southon, JR, Staff, RA, Turney, CSM, van der Plicht, J. 2013. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55(4):18691887.CrossRefGoogle Scholar
Reinig, F, Nievergelt, D, Esper, J, Friedrich, M, Helle, G, Hellmann, L, Kromer, B, Morganti, S, Pauly, M, Sookdeo, A, Tegel, W, Treydte, K, Verstege, A, Wacker, L, Büntgen, U. 2018. New tree-ring evidence for the Late Glacial period from the northern pre-Alps in eastern Switzerland. Quaternary Science Reviews 186:215224.CrossRefGoogle Scholar
Rinn, F. 1996. TSAP e, time series analyses presentation. Version 3.0. Reference manual. Heidelberg. 262 p.Google Scholar
Rinn, F. 2003. TSAP-Win, time series analysis and presentation for dendrochronology and related applications. Version 0.53. Reference manual. Heidelberg: Rinn Tech.Google Scholar
Rodgers, KB, Mikaloff-Fletcher, SE, Bianchi, D, Beaulieu, C, Galbraith, ED, Gnanadesikan, A, Hogg, AG, Iudicone, D, Lintner, BR, Naegler, T, Reimer, PJ, Sarmiento, JL, Slater, RD. 2011. Interhemispheric gradient of atmospheric radiocarbon reveals natural variability of Southern Ocean winds. Climate of the Past 7:11231138.CrossRefGoogle Scholar
Schaub, M, Kaiser, KF, Frank, DC, Buentgen, U, Kromer, B, Talamo, S. 2008. Environmental change during the Allerød and Younger Dryas reconstructed from tree-ring data. Boreas 37:7486.CrossRefGoogle Scholar
Sivan, O, Miramont, C, Edouard, JL. 2006. Rythmes de la sédimentation et interprétations paléoclimatiques lors du Postglaciaire dans les Alpes du Sud. 14C et dendro-géomorphologie, deux chronomètres complémentaires. In: Allée, P, Lespez, L, directors. L’Érosion entre Société, Climat et Paléoenvironnement. Table ronde en l’honneur du Professeur René Neboit-Guilhot. Clermont-Ferrand, 25–27 March 2004: 423428.Google Scholar
Sookdeo, A, Wacker, L, Adolphi, F, Beer, J, Büntgen, U, Friedrich, M, Helle, G, Hogg, A, Kromer, B, Muscheler, R, Nievergelt, D, Palmer, J, Pauly, M, Reinig, F, Turney, C, Synal, H-A. 2020. Quality dating: A well-defined protocol for quality high-precision 14C-dates tested on Late Glacial wood. Radiocarbon 62(4):891899.Google Scholar
Stuiver, M, Polach, HA. 1977. Discussion: reporting of 14C data. Radiocarbon 19(3):355363.CrossRefGoogle Scholar
Stuiver, M, Braziunas, T. 1998. Anthropogenic and solar component of hemispheric 14C. Geophysical Research Letters 25(3):329332.CrossRefGoogle Scholar
Wacker, L, Bayliss, A, Brown, D, Friedrich, M, Scott, M. 2018. First radiocarbon inter-comparison on annual tree-ring samples. Poster presentation at 23rd International Radiocarbon Conference, Trondheim, Norway, 17–22 June 2018.Google Scholar
Supplementary material: File

Capano et al. supplementary material

Table S1

Download Capano et al. supplementary material(File)
File 17.4 KB