Article contents
Robust train localisation method based on advanced map matching measurement-augmented tightly-coupled GNSS/INS with error-state UKF
Published online by Cambridge University Press: 12 May 2023
Abstract
This paper presents a robust train localisation system by fusing a Global Navigation Satellite System (GNSS) with an Inertial Navigation System (INS) in a tightly-coupled (TC) strategy. To improve navigation performance in GNSS partly blocked areas, an advanced map-matching (MM) measurement-augmented TC GNSS/INS method is proposed via an error-state unscented Kalman filter (UKF). The advanced MM generates a matched position using a one-step predicted position from a UKF time update step with binary search algorithm and a point–line projection algorithm. The matched position inputs as an additional measurement to fuse with the INS position to augment the degraded GNSS pseudorange measurement to optimise the state estimation in the UKF measurement update step. Both the real train test on the Qinghai–Tibet railway and the simulation were carried out and the results confirm that the proposed advanced MM measurement-augmented TC GNSS/INS with error-state UKF provides the best horizontal positioning accuracy of 0 ⋅ 67 m, which performs an improvement of about 71% and 90% with respect to TC GNSS/INS with only error-state UKF and only error-state Extended Kalman filter in GNSS partly blocked areas.
- Type
- Research Article
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Royal Institute of Navigation
References
- 5
- Cited by