Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-22T12:25:16.106Z Has data issue: false hasContentIssue false

Maintaining abstinence from smoking after a period of enforced abstinence: considerations of non-compliance and the significance of reduced smoking [Psychological Medicine, 2018, 48, 669–678]

Published online by Cambridge University Press:  24 October 2018

E. Woodward*
Affiliation:
School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
R. Richmond
Affiliation:
School of Public Health and Community Medicine, University of New South Wales, Sydney, Australia
*
Author for correspondence: E. Woodward, E-mail: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Type
Correspondence
Copyright
Copyright © Cambridge University Press 2018 

We read with interest the article by Brose and colleagues describing the findings of a systematic review and meta-analysis, entitled: ‘Maintaining abstinence from smoking after a period of enforced abstinence – systematic review, meta-analysis and analysis of behaviour change techniques with a focus on mental health’ (Brose et al., Reference Brose, Simonavicius and McNeill2018). This article endeavoured to review interventions to maintain smoking abstinence post-discharge from smoke-free institutions, with a focus on people with mental health problems. The review included studies of smokers in smoke-free prisons, inpatient mental health units and substance use treatment centres. Despite typically high rates of relapse following discharge from such facilities, the authors encouragingly conclude pharmacotherapy and/or behavioural support can help to maintain abstinence, compared with standard care (relative risk of verified point-prevalence smoking abstinence at longest follow up = 2.06, 95% confidence interval 1.30–3.27). As a secondary outcome, the authors reported most of the studies that measured cigarette consumption among those that relapsed found a decrease in consumption following discharge, compared with pre-admission levels. There are two points relating to this review that we believe warrant further discussion. Firstly, the assumption that participants in the included studies were indeed ‘smoke-free’ during admission or incarceration, and secondly, the significance of the finding of reduced cigarette consumption post-discharge.

The majority of studies included in this review acted on the premise that participants remained abstinent from smoking while in the prescribed smoke-free facilities. Two studies recorded contraband smoking while on the unit – one using technician assessment (Gariti et al., Reference Gariti, Alterman, Mulvaney, Mechanic, Dhopesh, Yu, Chychula and Sacks2002) and the other using self-report (Joseph, Reference Joseph1993), although neither mentioned whether biochemical verification occurred. Stuyt (Reference Stuyt2015) reported that random breath carbon monoxide testing was utilised in the treatment facility studied, however rates of compliance with the ban were not reported. This is important, as there is evidence to suggest many people do not adhere to smoking bans. Stockings et al. (Reference Stockings, Bowman, Bartlem, McElwaine, Baker, Terry, Clancy, Knight, Wye, Colyvas and Wiggers2015) reported 83.5% of patients in an inpatient psychiatric facility in Australia were non-compliant with a total smoking ban. Another study found over three-quarters of smokers in a United States prison continued to smoke despite a smoke-free policy (Cropsey and Kristeller, Reference Cropsey and Kristeller2005). High rates of non-adherence are not altogether surprising, considering the modest provision of cessation support documented in smoke-free facilities. Stockings et al. (Reference Stockings, Bowman, Bartlem, McElwaine, Baker, Terry, Clancy, Knight, Wye, Colyvas and Wiggers2015) found only 20% of inpatient smokers received optimal nicotine replacement therapy. Additionally, a survey conducted in two large smoke-free hospitals in Australia found 40% of staff offered nicotine replacement therapy ‘never’ or ‘rarely’ to patients (McCrabb et al., Reference McCrabb, Baker, Attia, Balogh, Lott, Palazzi, Naylor, Harris, Doran, George, Wolfenden, Skelton and Bonevski2017). High levels of non-compliance with smoking bans could introduce problems with measuring the effects of interventions designed at maintaining abstinence beyond release. Discouragingly high apparent relapse rates may underestimate the potential effectiveness of interventions in improving abstinence, if people are in fact continuing to smoke while in smoke-free facilities. The modest effect reported by Brose et al. (Reference Brose, Simonavicius and McNeill2018) of interventions in maintaining abstinence should be interpreted with this in mind. Furthermore, future research in this area should consider incorporating verified measurements of smoking during time in smoke-free facilities. This will enable more accurate assessment of interventions aimed at achieving cessation beyond discharge.

In the review by Brose and coworkers, all but one (Jonas and Eagle, Reference Jonas and Eagle1991) of the studies that measured change in cigarette consumption reported reduced consumption following discharge (Joseph, Reference Joseph1993; Gariti et al., Reference Gariti, Alterman, Mulvaney, Mechanic, Dhopesh, Yu, Chychula and Sacks2002; Strong et al., Reference Strong, Uebelacker, Schonbrun, Durst, Saritelli, Fokas, Abrantes, Brown, Miller and Apodaca2012; Stockings et al., Reference Stockings, Bowman, Baker, Terry, Clancy, Wye, Knight, Moore, Adams, Colyvas and Wiggers2014). This is common to findings from other studies examining smoking habits after periods of enforced abstinence (Azevedo et al., Reference Azevedo, Leme, Miranda, Botega and Higa2010; Puljevic et al., Reference Puljevic, de Andrade, Coomber and Kinner2018), and warrants further discussion for three main reasons.

Firstly, the role of compensation should be considered. It is known that, when faced with a situation of reduced nicotine, smokers compensate by increasing smoking behaviour (Hughes and Carpenter, Reference Hughes and Carpenter2005; Scherer and Lee, Reference Scherer and Lee2014). In this way, total nicotine and smoke exposure levels are at least partially maintained. It is therefore likely the population in question receive a more modest reduction in total smoke exposure after discharge from smoke-free facilities than suggested by the reported reduction in cigarettes per day (CPD). All but one of the reviewed studies (Gariti et al., Reference Gariti, Alterman, Mulvaney, Mechanic, Dhopesh, Yu, Chychula and Sacks2002) measured change in tobacco consumption based on CPD, without biochemical verification. In light of compensatory behaviours, the degree of reduction in smoke exposure based on CPD alone is likely to be overestimated.

Secondly, if there is a reduction in total smoking even despite compensation, is this likely to be beneficial to health? The health impacts of reduced smoking remain contested, with two recent systematic reviews (Hughes and Carpenter, Reference Hughes and Carpenter2006; Pisinger and Godtfredsen, Reference Pisinger and Godtfredsen2007) unable to conclude whether there is an associated decrease in smoking-related disease or mortality. Biological delays and compensatory smoking have been proposed as possible reasons for the lack of detectable health benefits (Hughes and Carpenter, Reference Hughes and Carpenter2006; Pisinger and Godtfredsen, Reference Pisinger and Godtfredsen2007).

Lastly, any health benefit potentially conferred by a reduction in smoking is likely to be diminished if reduction is not maintained. Evidence suggests few people are able to maintain reduced levels of smoking long-term (Hughes and Carpenter, Reference Hughes and Carpenter2005), however reduced smoking has been associated with an increased probability of future cessation (Hughes and Carpenter, Reference Hughes and Carpenter2006). This would have clear implications for health, and points to a need for longer follow-up to determine whether reduced smoking translates to future cessation in this group.

In summary, we agree with the authors that more research into efforts to reduce relapse after a period of enforced abstinence is required, particularly in populations with high mental health comorbidity. There is also a critical need for efforts to support smoking cessation within smoke-free facilities, and future research should consider verifying abstinence during periods in smoke-free facilities. In addition, biochemical verification should be used to accurately quantify reductions in smoke exposure following discharge, and longer follow-up should be incorporated to determine long-term smoking patterns. Such research will be important in guiding practice to optimise the health benefits of smoke-free policies, and to address the health needs of a substantially disadvantaged group.

Author ORCIDs

Eleanor Woodward http://orcid.org/0000-0003-0775-3235.

Financial support

This research received no specific grant from any funding agency, commercial or not-for-profit sectors.

Conflict of interest

None.

References

Azevedo, R, Leme, J, Miranda, F, Botega, N and Higa, C (2010) Implementation of a smoke-free Psychiatric Unit in a general hospital. Revista Brasileira de Psiquiatria 32, 197198.Google Scholar
Brose, LS, Simonavicius, E and McNeill, A (2018) Maintaining abstinence from smoking after a period of enforced abstinence – systematic review, meta-analysis and analysis of behaviour change techniques with a focus on mental health. Psychological Medicine 48, 669678.Google Scholar
Cropsey, KL and Kristeller, JL (2005) The effects of a prison smoking ban on smoking behavior and withdrawal symptoms. Addictive Behaviors 30, 589594.Google Scholar
Gariti, P, Alterman, A, Mulvaney, F, Mechanic, K, Dhopesh, V, Yu, E, Chychula, N and Sacks, D (2002) Nicotine intervention during detoxification and treatment for other substance use. The American Journal of Drug and Alcohol Abuse 28, 671679.Google Scholar
Hughes, JR and Carpenter, MJ (2005) The feasibility of smoking reduction: an update. Addiction 100, 10741089.Google Scholar
Hughes, JR and Carpenter, MJ (2006) Does smoking reduction increase future cessation and decrease disease risk? A qualitative review. Nicotine & Tobacco Research 8, 739749.Google Scholar
Jonas, J and Eagle, E (1991) Smoking patterns among patients discharged from a smoke-free inpatient unit. Psychiatric Services 42, 636637.Google Scholar
Joseph, AM (1993) Nicotine treatment at the drug dependency program of the Minneapolis VA Medical Center: a researcher's perspective. Journal of Substance Abuse Treatment 10, 147152.Google Scholar
McCrabb, S, Baker, AL, Attia, J, Balogh, ZJ, Lott, N, Palazzi, K, Naylor, J, Harris, IA, Doran, CM, George, J, Wolfenden, L, Skelton, E and Bonevski, B (2017) Hospital smoke-free policy: compliance, enforcement, and practices. A staff survey in two large public hospitals in Australia. International Journal of Environmental Research and Public Health 14, 1358.Google Scholar
Pisinger, C and Godtfredsen, NS (2007) Is there a health benefit of reduced tobacco consumption? A systematic review. Nicotine & Tobacco Research 9, 631646.Google Scholar
Puljevic, C, de Andrade, D, Coomber, R and Kinner, SA (2018) Relapse to smoking following release from smoke-free correctional facilities in Queensland, Australia. Drug and Alcohol Dependence 187, 127133.Google Scholar
Scherer, G and Lee, P (2014) Smoking behaviour and compensation: a review of the literature with meta-analysis. Regulatory Toxicology and Pharmacology 70, 615628.Google Scholar
Stockings, E, Bowman, J, Baker, A, Terry, M, Clancy, R, Wye, P, Knight, J, Moore, L, Adams, M, Colyvas, K and Wiggers, J (2014) Impact of a postdischarge smoking cessation intervention for smokers admitted to an inpatient psychiatric facility: a randomized controlled trial. Nicotine & Tobacco Research 16, 14171428.Google Scholar
Stockings, E, Bowman, JA, Bartlem, KM, McElwaine, KM, Baker, AL, Terry, M, Clancy, R, Knight, J, Wye, PM, Colyvas, K and Wiggers, JH (2015) Implementation of a smoke-free policy in an inpatient psychiatric facility: patient-reported adherence, support, and receipt of nicotine-dependence treatment. International Journal of Mental Health Nursing 24, 342349.Google Scholar
Strong, DR, Uebelacker, L, Schonbrun, YC, Durst, A, Saritelli, J, Fokas, K, Abrantes, A, Brown, RA, Miller, I and Apodaca, TR (2012) Development of a brief motivational intervention to facilitate engagement of smoking cessation treatment among inpatient depressed smokers. Journal of Smoking Cessation 7, 411.Google Scholar
Stuyt, EB (2015) Enforced abstinence from tobacco during in-patient dual-diagnosis treatment improves substance abuse treatment outcomes in smokers. The American Journal on Addictions 24, 252257.Google Scholar