Hostname: page-component-6bf8c574d5-956mj Total loading time: 0 Render date: 2025-02-16T19:51:16.451Z Has data issue: false hasContentIssue false

Small eigenvalues of surfaces of finite type

Published online by Cambridge University Press:  05 June 2017

Werner Ballmann
Affiliation:
Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany email [email protected]
Henrik Matthiesen
Affiliation:
Max Planck Institute for Mathematics, Vivatsgasse 7, D-53111 Bonn, Germany email [email protected]
Sugata Mondal
Affiliation:
Department of Mathematics, Indiana University, Rawles Hall, 831 E 3rd Street, Bloomington, IN 47405, USA email [email protected]

Abstract

Extending our previous work on eigenvalues of closed surfaces and work of Otal and Rosas, we show that a complete Riemannian surface $S$ of finite type and Euler characteristic $\unicode[STIX]{x1D712}(S)<0$ has at most $-\unicode[STIX]{x1D712}(S)$ small eigenvalues.

Type
Research Article
Copyright
© The Authors 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order , J. Math. Pures Appl. (9) 36 (1957), 235249; MR 0092067, Zbl 0084.30402.Google Scholar
Ballmann, W., Matthiesen, H. and Mondal, S., Small eigenvalues of closed surfaces , J. Differential Geom. 103 (2016), 113; MR 3488128, Zbl 1341.53066.Google Scholar
Ballmann, W., Matthiesen, H. and Mondal, S., On the analytic systole of Riemannian surfaces of finite type, Preprint (2016), arXiv:1611.00925.Google Scholar
Bär, C., The Dirac operator on hyperbolic manifolds of finite volume , J. Differential Geom. 54 (2000), 439488; MR 1823312, Zbl 1030.58021.Google Scholar
Bers, L., Local behavior of solutions of general linear elliptic equations , Comm. Pure Appl. Math. 8 (1955), 473496; MR 0075416, Zbl 0066.08101.CrossRefGoogle Scholar
Brooks, R., The bottom of the spectrum of a Riemannian covering , J. Reine Angew. Math. 357 (1985), 101114; MR 783536, Zbl 0553.53027.Google Scholar
Buser, P., Riemannsche Flächen mit Eigenwerten in (0, 1/4) , Comment. Math. Helv. 52 (1977), 2534; MR 0434961, Zbl 0348.53027.CrossRefGoogle Scholar
Buser, P., Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, reprint of the 1992 edition (Birkhäuser, Boston, MA, 2010); MR 2742784, Zbl 1239.32001.Google Scholar
Buser, P., Colbois, B. and Dodziuk, J., Tubes and eigenvalues for negatively curved manifolds , J. Geom. Anal. 3 (1993), 126; MR 1197014, Zbl 0766.58054.CrossRefGoogle Scholar
Cheng, S. Y., Eigenfunctions and nodal sets , Comment. Math. Helv. 51 (1976), 4355; MR 0397805, Zbl 0334.35022.CrossRefGoogle Scholar
Dodziuk, J., Pignataro, T., Randol, B. and Sullivan, D., Estimating small eigenvalues of Riemann surfaces , in The legacy of Sonya Kovalevskaya, Cambridge and Amherst, MA, 1985, Contemporary Mathematics, vol. 64 (American Mathematical Society, Providence, RI, 1987), 93121; MR 0881458, Zbl 0607.58044.Google Scholar
Helffer, B., Hoffmann-Ostenhof, T. and Terracini, S., Nodal domains and spectral minimal partitions , Ann. Inst. H. Poincaré Anal. Non Linéaire 26 (2009), 101138; MR 2483815, Zbl 1171.35083.Google Scholar
Ivanov, N. V., Subgroups of Teichmüller modular groups, Translations of Mathematical Monographs, vol. 115 (American Mathematical Society, Providence, RI, 1992); MR 1195787, Zbl 0776.57001.CrossRefGoogle Scholar
Lax, P. D. and Phillips, R. S., The asymptotic distribution of lattice points in Euclidean and non-Euclidean spaces , in Toeplitz centennial, Tel Aviv, 1981, Operator Theory: Advances and Applications, vol. 4 (Birkhäuser Basel, Boston, MA, 1982), 365375; MR 0669919, Zbl 0497.52007.Google Scholar
Mazzeo, R., The Hodge cohomology of a conformally compact metric , J. Differential Geom. 28 (1988), 309339; MR 0961517, Zbl 0656.53042.Google Scholar
Mazzeo, R., Unique continuation at infinity and embedded eigenvalues for asymptotically hyperbolic manifolds , Amer. J. Math. 113 (1991), 2545; MR 1087800, Zbl 0725.58044.Google Scholar
Mondal, S., Systole and 𝜆2g-2 of closed hyperbolic surfaces of genus g , Enseign. Math. 60 (2014), 123; MR 3262432, Zbl 1303.30037.CrossRefGoogle Scholar
Otal, J.-P. and Rosas, E., Pour toute surface hyperbolique de genre g, 𝜆2g-2 > 1/4 , Duke Math. J. 150 (2009), 101115; MR 2560109, Zbl 1179.30041.CrossRefGoogle Scholar
Sarnak, P., Spectra of hyperbolic surfaces , Bull. Amer. Math. Soc. (N.S.) 40 (2003), 441478; MR 1997348, Zbl 1045.11033.Google Scholar
Schmutz, P., Small eigenvalues on Riemann surfaces of genus 2 , Invent. Math. 106 (1991), 121138; MR 1123377, Zbl 0764.53035.Google Scholar
Schoen, R., Wolpert, S. and Yau, S.-T., Geometric bounds on the low eigenvalues of a compact surface , in Geometry of the Laplace operator, Proceedings of Symposia in Pure Mathematics, vol. 36 (American Mathematical Society, Providence, RI, 1980); MR 573440, Zbl 0446.58018.Google Scholar
Sévennec, B., Multiplicity of the second Schrödinger eigenvalue on closed surfaces , Math. Ann. 324 (2002), 195211; MR 1931764, Zbl 1053.58014.Google Scholar
Sullivan, D., Related aspects of positivity in Riemannian geometry , J. Differential Geom. 25 (1987), 327351; MR 0882827, Zbl 0615.53029.Google Scholar
Taylor, M. E., Partial differential equations. II. Qualitative studies of linear equations, Applied Mathematical Sciences, vol. 116 (Springer, New York, 1996); MR 1395147, Zbl 0869.35003.Google Scholar