Hostname: page-component-f554764f5-rj9fg Total loading time: 0 Render date: 2025-04-20T03:58:53.978Z Has data issue: false hasContentIssue false

Turn Around, Don’t Drown: A Systematic Review of Risk Factors for Motor Vehicle–Related Drowning in Floods and its Preventive Strategies

Published online by Cambridge University Press:  18 September 2024

Zahra Haghdoost
Affiliation:
Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
Shahrokh Yousefzadeh-Chabok
Affiliation:
Guilan Road Trauma Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
Enayatollah Homaie Rad*
Affiliation:
Social Determinants of Health Research Center, Trauma Institute, Guilan University of Medical Sciences, Rasht, Iran
*
Corresponding author: Enayatollah Homaie Rad; Email: [email protected]

Abstract

Objective

Exposure to flood, one of the most widespread disasters caused by natural hazards, increases the risk of drowning. Driving through flooded waterways is a cause of death due to flood-related drowning, especially in flood-prone areas. This study aimed at identifying the risk factors for motor vehicle–related drowning in floods and its prevention strategies.

Methods

International and national databases (WOS, PubMed, Scopus, Google Scholar, Magiran, and SID) were searched in the time span from 2000 to 2022. The studies investigating the risk factors relevant to land motor vehicle–related drowning in floods and its prevention strategies were included and analyzed using thematic content analysis.

Results

In 14 eligible studies, risk factors for land motor vehicle–related drowning in floods were identified and categorized in 3 subthemes: driver (3 categories: socio-demographic characteristics, knowledge and attitude, and beliefs); technology (1 category: land motor vehicles); and environment (2 categories: physical and socio-economic environment). Physical and structural measures (1 category: road safety improvement) and nonstructural measures (4 categories: research and education and raising awareness, risk management, promoting social-cognitive beliefs, and reconstruction and improvement of legal infrastructure) were proposed as drowning prevention strategies.

Conclusions

The knowledge, attitude, and belief of the driver; the vehicle; and the environment were the most important risk factors of driving through flooded waterways. These factors should be considered when designing programs and physical and structural strategies for future interventions to curb this dangerous and potentially fatal driving behavior.

Type
Original Research
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Society for Disaster Medicine and Public Health, Inc

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Hamilton, K, Peden, AE, Pearson, M, et al. Stop there’s water on the road! Identifying key beliefs guiding people’s willingness to drive through flooded waterways. Saf Sci. 2016;89:308314.CrossRefGoogle Scholar
Llasat, MC, Llasat-Botija, M, Prat, M, et al. High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci. 2010;23:4755.CrossRefGoogle Scholar
Peden, AE, Işın, A. Drowning in the Eastern Mediterranean region: a systematic literature review of the epidemiology, risk factors and strategies for prevention. BMC Public Health. 2022;22(1):16.CrossRefGoogle ScholarPubMed
Priest, SJ, Wilson, T, Tapsell, SM, et al. Building a Model to Estimate Risk to Life for European Flood Events – Final Report. Middlesex University; 2007.Google Scholar
Global Report on Drowning: Preventing a Leading Killer. World Health Organization. Published November 17, 2014. Accessed October 17, 2023. https://www.who.int/publications/i/item/global-report-on-drowning-preventing-a-leading-killer.Google Scholar
Mohammadinia, L, Ahmadi Marzaleh, M, Peyravi, MR. Report of field assessment in the flooded areas of Iran, 2019. Health Emerg Disasters. 2021;6(2):7378.CrossRefGoogle Scholar
Peyravi, M, Peyvandi, AA, Khodadadi, A, et al. Flood in the South-West of Iran in 2019; causes, problems, actions and lesson learned. Bull Emerg Trauma. 2019;7(2):199.CrossRefGoogle ScholarPubMed
Peyravi, M, Peyvandi, AA, Marzaleh, MA. Donations in the Great Flood of Iran, 2019: strengths and challenges. Iran Red Crescent Med J. 2019;21(5):e92904.Google Scholar
Sharifi, F, Samadi, SZ, Wilson, CA. Causes and consequences of recent floods in the Golestan catchments and Caspian Sea regions of Iran. Nat Hazards. 2012;61(2):533550.CrossRefGoogle Scholar
The Latest Flood Situation in 18 Provinces of the Country: Which Roads and Axes Are Blocked? The Islamic Republic of Iran News Agency. Published July 29, 2022. Accessed October 18, 2023. https://irna.ir/xjK75PGoogle Scholar
Diakakis, M, Deligiannakis, G. Vehicle-related flood fatalities in Greece. Environ. Hazards. 2013;12(3-4):278290.CrossRefGoogle Scholar
Franklin, RC, King, JC, Aitken, PJ, et al.Washed away”—assessing community perceptions of flooding and prevention strategies: a North Queensland example. Nat Hazards. 2014;73(3):19771998.CrossRefGoogle Scholar
McDonald, GK, Giesbrecht, GG. Vehicle submersion: a review of the problem, associated risks, and survival information. Aviat Space Environ Med. 2013;84(5):498510.CrossRefGoogle ScholarPubMed
Yale, JD, Cole, TB, Garrison, HG, et al. Motor vehicle-related drowning deaths associated with inland flooding after Hurricane Floyd: a field investigation. Traffic Inj Prev. 2003;4(4):279284.CrossRefGoogle Scholar
Sharif, HO, Jackson, TL, Hossain, MM, et al. Analysis of flood fatalities in Texas. Nat Hazards Rev. 2015;16(1):04014016.CrossRefGoogle Scholar
Διακάκης, Μ, Δεληγιαννάκης, Γ. Changes in flood mortality during the last 50 years in Greece. Δελτίον της Ελληνικής Γεωλογικής Εταιρίας. 2013;47(3):13971406.Google Scholar
Peden, AE, Franklin, RC, Leggat, PA. The hidden tragedy of rivers: a decade of unintentional fatal drowning in Australia. PLoS One. 2016;11(8):e0160709.CrossRefGoogle Scholar
Staes, C, Orengo, JC, Malilay, J, et al. Deaths due to flash floods in Puerto Rico, January 1992: implications for prevention. Int J Epidemiol. 1994;23(5):968975.CrossRefGoogle ScholarPubMed
Hamilton, K, Price, S, Keech, JJ, et al. Drivers’ experiences during floods: investigating the psychological influences underpinning decisions to avoid driving through floodwater. Int J Disaster Risk Reduct. 2018;28:507518.CrossRefGoogle Scholar
Pearson, M, Hamilton, K. Investigating driver willingness to drive through flooded waterways. Accid Anal Prev. 2014;72:382390.CrossRefGoogle ScholarPubMed
Maples, LZ, Tiefenbacher, JP. Landscape, development, technology and drivers: the geography of drownings associated with automobiles in Texas floods, 1950–2004. Appl Geogr. 2009;29(2):224234.CrossRefGoogle Scholar
Peden, AE, Franklin, RC, Leggat, P, et al. Causal pathways of flood related river drowning deaths in Australia. PLOS Curr. 2017;1:124.Google Scholar
Drobot, SD, Benight, C, Gruntfest, E. Risk factors for driving into flooded roads. Environ Hazards. 2007;7(3):227234.CrossRefGoogle Scholar
Drobot, SD, Gruntfest, E, Barnes, L, et al. 3.13 Driving Under the Influence of Weather: Perceptions of Flash Floods and Vehicle Safety. 16th Conference on Applied Climatology. 2007.Google Scholar
Sharif, HO, Hossain, MM, Jackson, T, et al. Person-place-time analysis of vehicle fatalities caused by flash floods in Texas. Geomat Nat Hazards Risk. 2012;3(4):311323.CrossRefGoogle Scholar
Moher, D, Liberati, A, Tetzlaff, J, et al. Reprint—preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Phys Ther. 2009;89(9):873880.CrossRefGoogle ScholarPubMed
CASP Checklists. Critical Appraisal Skills Programme. 2013. Updated 2024. Accessed September 18, 2019. http://www.casp-uk.net/#!checklists/cb36Google Scholar
von Elm, E, Altman, DG, Egger, M, et al. The strengthening the reporting of observational studies in epidemiology (STROBE) statement: guidelines for reporting observational studies. Ann Intern Med. 2007;147(8):573577.CrossRefGoogle ScholarPubMed
Coles, AR. Managing flash floods: risk perception from a cultural perspective. Working paper, The University of Arizon. 2008; (1) 2235Google Scholar
Zahran, S, Brody, SD, Peacock, WG, et al. Social vulnerability and the natural and built environment: a model of flood casualties in Texas. Disasters. 2008;32(4):537560.CrossRefGoogle Scholar
Peacock, WG, Husein, R, Center, R. The Adoption and Implementation of Hazard Mitigation Policies and Strategies by Coastal Jurisdictions in Texas: The Planning Survey Results. Texas A&M University Hazard Reduction and Recovery Center. December 2011. Published 2012. Accessed December 13, 2020. https://www.semanticscholar.org/paper/The-Adoption-and-Implementation-of-Hazard-Policies-Peacock-Husein/b43e11fdd4307fdb2acb18563d775be1b9afc319Google Scholar
Musselwhite, C. Attitudes towards vehicle driving behaviour: categorising and contextualising risk. Accid Anal Prev. 2006;38(2):324334.CrossRefGoogle ScholarPubMed
Yari, A, Ardalan, A, Ostadtaghizadeh, A, et al. Underlying factors affecting death due to flood in Iran: a qualitative content analysis. Int J Disaster Risk Reduct. 2019; 40:101258.CrossRefGoogle Scholar
Hamilton, K, Peden, AE, Keech, JJ, et al. Changing people’s attitudes and beliefs toward driving through floodwaters: evaluation of a video infographic. Transp Res Part F Traffic Psychol Behav. 2018; 53:5060.CrossRefGoogle Scholar
Ouellette, JA, Wood, W. Habit and intention in everyday life: the multiple processes by which past behavior predicts future behavior. Psychol Bull. 1998;124(1):54.CrossRefGoogle Scholar
Ajzen, I. The theory of planned behavior. Organ Behav Hum Decis Process. 1991;50(2):179211.CrossRefGoogle Scholar
Nelson, E, Atchley, P, Little, TD. The effects of perception of risk and importance of answering and initiating a cellular phone call while driving. Accid Anal Prev. 2009;41(3):438444.CrossRefGoogle ScholarPubMed
Chen, SI, Skillen, DL. Promoting personal safety of building service workers: issues and challenges. AAOHN J. 2006;54(6):262269.CrossRefGoogle ScholarPubMed
Lewis, IM, Watson, B, White, KM, et al. Promoting public health messages: should we move beyond fear-evoking appeals in road safety? Qual Health Res. 2007;17(1):6174.CrossRefGoogle ScholarPubMed
Sibley, CG, Harré, N. The impact of different styles of traffic safety advertisement on young drivers’ explicit and implicit self-enhancement biases. Transp Res Part F Traffic Psychol Behav. 2009;12(2):159167.CrossRefGoogle Scholar
Brubacher, JR, Chan, H, Brasher, P, et al. Reduction in fatalities, ambulance calls, and hospital admissions for road trauma after implementation of new traffic laws. Am J Public Health. 2014;104(10): e89e97.CrossRefGoogle ScholarPubMed
Meirambayeva, A, Vingilis, E, Zou, G, et al. Evaluation of deterrent impact of Ontario’s street racing and stunt driving law on extreme speeding convictions. Traffic Inj Prev. 2014;15(8):786793.CrossRefGoogle Scholar
Scott-Parker, B, Watson, B, King, MJ, et al.They’re lunatics on the road”: exploring the normative influences of parents, friends, and police on young novices’ risky driving decisions. Saf Sci. 2012;50(9):19171928.CrossRefGoogle Scholar
Eiser, JR, Bostrom, A, Burton, I, et al. Risk interpretation and action: a conceptual framework for responses to natural hazards. Int J Disaster Risk Reduct. 2012;1:516.CrossRefGoogle Scholar
Elliott, MA, Thomson, JA. The social cognitive determinants of offending drivers’ speeding behaviour. Accid Anal Prev. 2010;42(6):15951605.CrossRefGoogle ScholarPubMed
Luszczynska, A, Tryburcy, M, Schwarzer, R. Improving fruit and vegetable consumption: a self-efficacy intervention compared with a combined self-efficacy and planning intervention. Health Educ Res. 2007;22(5):630638.CrossRefGoogle ScholarPubMed
Gollwitzer, PM, Sheeran, P. Implementation intentions and goal achievement: a meta‐analysis of effects and processes. Adv Exp Soc Psychol. 2006;38:69119.CrossRefGoogle Scholar
Hagger, MS, Luszczynska, A, De Wit, J, et al. Implementation intention and planning interventions in health psychology: recommendations from the Synergy Expert Group for research and practice. Psychol Health. 2016;31(7):814839.CrossRefGoogle Scholar
Heidari, M, Sayfouri, N, Miresmaeeli, SS, et al. Analysis of the man-made causes of Shiraz flash flood: Iran, 2019. Prehosp Disaster Med. 2020; 35(5): 588591.CrossRefGoogle ScholarPubMed
Turn Around Don’t Drown. NOAA. Published 2004. Published 2004. Accessed July 17, 2023. http://www.nws.noaa.gov/os/water/tadd/; https://www.weather.gov/safety/flood-turn-around-dont-drownGoogle Scholar
Karimi, P, Safaval, PA, Behzadi, S, et al. Flood risk zoning using geographical information system case study: Khorramabad Flood in April 2019. Acta Hydrotech. 2022;35(63):89100.CrossRefGoogle Scholar
Franklin, R, Scarr, J A framework for prevention. In: Bierens, J, ed. Drowning. Springer; 2014:153163.CrossRefGoogle Scholar
Khosravi, K, Panahi, M, Golkarian, A, et al. Convolutional neural network approach for spatial prediction of flood hazard at national scale of Iran. J Hydrol. 2020;591:125552.CrossRefGoogle Scholar
Davoudi Moghaddam, D, Pourghasemi, HR, Rahmati, O. Assessment of the contribution of geo-environmental factors to flood inundation in a semi-arid region of SW Iran: comparison of different advanced modeling approaches. In: Pourghasemi, HR, Rossi, M, eds. Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques. 2019:5978.CrossRefGoogle Scholar
Goldenbeld, C, Twisk, D, Houwing, S. Effects of persuasive communication and group discussions on acceptability of anti-speeding policies for male and female drivers. Transp Res Part F Traffic Psychol Behav. 2008;11(3):207220.CrossRefGoogle Scholar
Yari, A, Yousefi Khoshsabegheh, H, Zarezadeh, Y, et al. Behavioral, health-related and demographic risk factors of death in floods: a case-control study. PLoS One. 2021;16(12):e0262005.CrossRefGoogle ScholarPubMed
Royal Life Saving Society – Australia. Royal Life Saving Society – Australia National Drowning Report 2016. Royal Life Saving Society – Australia; 2016.Google Scholar
Shevellar, L, Riggs, R. Understanding resistance to emergency and disaster messaging. Aust J Emerg Manag. 2015;30(3):3135.Google Scholar
Wahlberg, AA, Sjoberg, L. Risk perception and the media. J Risk Res. 2000;3(1):3150.CrossRefGoogle Scholar
Weinstein, ND, Klein, WM. Unrealistic optimism; present and future. J Soc Clin Psychol. 1996;15(1):1.CrossRefGoogle Scholar
Yeo, SW, Blong, RJ. Fiji’s worst natural disaster: the 1931 hurricane and flood. Disasters. 2010;34(3):657683.CrossRefGoogle ScholarPubMed
FitzGerald, G, Du, W, Jamal, A, et al. Flood fatalities in contemporary Australia (1997–2008). Emerg Med Australas. 2010;22(2):180186.CrossRefGoogle ScholarPubMed
Khan, G, Qin, X, Noyce, DA. Spatial analysis of weather crash patterns. J Transp Eng. 2008;134(5):191202.CrossRefGoogle Scholar
Hayden, M, Drobot, S, Radil, S, et al. Information sources for flash flood warnings in Denver, CO and Austin, TX. Environ Hazards. 2007;7(3):211219.CrossRefGoogle Scholar
Siegrist, M, Gutscher, H. Natural hazards and motivation for mitigation behavior: people cannot predict the affect evoked by a severe flood. Risk Anal. 2008;28(3):771778.CrossRefGoogle ScholarPubMed
Mileti, DS, O’Brien, PW. Warnings during disaster: normalizing communicated risk. Soc Probl. 1992;39(1):4057.CrossRefGoogle Scholar
Belville, JD. The national weather service warning system. Ann Emerg Med. 1987;16(9):10781080.CrossRefGoogle ScholarPubMed
Tierney, KJ, Lindell, MK, Perry, RW. Facing the unexpected: disaster preparedness and response in the United States. Disaster Prev Manag Int J. 2002;11(3):222223.CrossRefGoogle Scholar
Staes, C, Orengo, JC, Malilay, J, et al. Deaths due to flash floods in Puerto Rico, January 1992: implications for prevention. Int J Epidemiol. 1994;23(5):968975.CrossRefGoogle ScholarPubMed
Gissing, A, Haynes, K, Coates, L. Motorist behaviour during the 2015 Shoalhaven floods. Aust J Emerg Manag. 2016;31(2):2530.Google Scholar
Chang, H, Lafrenz, M, Jung, I-W, et al. Future flooding impacts on transportation infrastructure and traffic patterns resulting from climate change. Portland State University; 2011: 3335.CrossRefGoogle Scholar