Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-10T23:26:24.725Z Has data issue: false hasContentIssue false

A MODIFICATION TO THE SCHRÖDINGER EQUATION FOR BROADER BANDWIDTH GRAVITY-CAPILLARY WAVES ON DEEP WATER WITH DEPTH-UNIFORM CURRENT

Published online by Cambridge University Press:  03 March 2023

SOURAV HALDER*
Affiliation:
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India; e-mail: [email protected]
ASOKE KUMAR DHAR
Affiliation:
Department of Mathematics, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India; e-mail: [email protected]

Abstract

We derive a nonlinear Schrödinger equation for the propagation of the three-dimensional broader bandwidth gravity-capillary waves including the effect of depth-uniform current. In this derivation, the restriction of narrow bandwidth constraint is extended, so that this equation will be more appropriate for application to a realistic sea wave spectrum. From this equation, an instability condition is obtained and then instability regions in the perturbed wavenumber space for a uniform wave train are drawn, which are in good agreement with the exact numerical results. As it turns out, the corrections to the stability properties that occur at the fourth-order term arise from an interaction between the mean flow and the frequency-dispersion term. Since the frequency-dispersion term, in the absence of depth-uniform current, for pure capillary waves is of opposite sign for pure gravity waves, so too are the corrections to the instability properties.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benjamin, T. B. and Feir, J. E., “The disintegration of wave trains on deep water Part 1. Theory”, J. Fluid Mech. 27 (1967) 417430; doi:10.1017/S002211206700045X.CrossRefGoogle Scholar
Brantenberg, C. and Brevik, I., “Higher order water waves in currents of uniform vorticity, in the presence of surface tension”, Phys. Scr. 47 (1993) 383393; doi:10.1088/0031-8949/47/3/008.CrossRefGoogle Scholar
Bretherton, F. P. and Garrett, C. J. R., “Wavetrains in inhomogeneous moving media”, Proc. Roy. Soc. Lond. Ser. A 302 (1968) 529554; doi:10.1098/rspa.1968.0034.Google Scholar
Brinch-Nielsen, U. and Jonsson, I. G., “Fourth order evolution equations and stability analysis for stokes waves on arbitrary water depth”, Wave Motion 8 (1986) 455472; doi:10.1016/0165-2125(86)90030-2.CrossRefGoogle Scholar
Chen, B. and Saffman, P. G., “Three-dimensional stability and bifurcation of capillary and gravity waves on deep water”, Stud. Appl. Math. 72 (1985) 125147; doi:10.1002/sapm1985722125.CrossRefGoogle Scholar
Debsarma, S. and Das, K. P., “Fourth order nonlinear evolution equations for gravity-capillary waves in the presence of a thin thermocline in deep water”, ANZIAM J. 43 (2002) 513524; doi:10.1017/S1446181100012116.CrossRefGoogle Scholar
Dhar, A. K. and Das, K. P., “A fourth-order evolution equation for deep water surface gravity waves in the presence of wind blowing over water”, Phys. Fluids A 2 (1990) 778783; doi:10.1063/1.857731.CrossRefGoogle Scholar
Dhar, A. K. and Das, K. P., “Stability analysis from fourth order evolution equation for small but finite amplitude interfacial waves in the presence of a basic current shear”, ANZIAM J. 35 (1994) 348365; doi:10.1017/S0334270000009346.Google Scholar
Djordjevic, V. D. and Redekopp, L. G., “On two-dimensional packets of capillary-gravity waves”, J. Fluid Mech. 79 (1977) 703714; doi:10.1017/S0022112077000408.CrossRefGoogle Scholar
Dysthe, K. B., “Note on a modification to the nonlinear Schrödinger equation for application to deep water waves”, Proc. Roy. Soc. Lond. Ser. A 369 (1979) 105114; doi:10.1098/rspa.1979.0154.Google Scholar
Gerber, M., “The Benjamin–Feir instability of a deep-water Stokes wavepacket in the presence of a non-uniform medium”, J. Fluid Mech. 176 (1987) 311332; doi:10.1017/S0022112087000697.CrossRefGoogle Scholar
Grimshaw, R. and Pullin, D., “Stability of finite-amplitude interfacial waves. Part 1. Modulational instability for small-amplitude waves”, J. Fluid Mech. 160 (1985) 297315; doi:10.1017/S0022112085003494.CrossRefGoogle Scholar
Hjelmervik, K. B. and Trulsen, K., “Freak wave statistics on collinear currents”, J. Fluid Mech. 637 (2009) 267284; doi:10.1017/S0022112009990607.CrossRefGoogle Scholar
Hogan, S. J., “The fourth-order evolution equation for deep-water gravity-capillary waves”, Proc. Roy. Soc. Lond. Ser. A 402 (1985) 359372; doi:10.1098/rspa.1985.0122.Google Scholar
Kantardgi, I., “Effect of depth current profile on wave parameters”, Coast. Eng. 26 (1995) 195206; doi:10.1016/0378-3839(95)00021-6.CrossRefGoogle Scholar
Kawahara, T., “Nonlinear self-modulation of capillary-gravity waves on liquid layer”, J. Phys. Soc. Japan 38 (1975) 265270; doi:10.1143/JPSJ.38.265.CrossRefGoogle Scholar
Liao, B., Dong, G., Ma, Y. and Gao, J. L., “Linear-shear-current modified Schrödinger equation for gravity waves in finite water depth”, Phys. Rev. E 96 (2017) 043111; doi:10.1103/PhysRevE.96.043111.CrossRefGoogle ScholarPubMed
Longuet-Higgins, M. S., “The instabilities of gravity waves of finite amplitude in deep water II. Subharmonics”, Proc. Roy. Soc. Lond. Ser. A 360 (1978) 489505; https://royalsocietypublishing.org/doi/epdf/10.1098/rspa.1978.0081.Google Scholar
Longuet-Higgins, M. S. and Stewart, R. W., “The changes in amplitude of short gravity waves on steady non-uniform currents”, J. Fluid Mech. 10 (1961) 529549; doi:10.1017/S0022112061000342.CrossRefGoogle Scholar
McLean, J. W., “Instabilities of finite-amplitude water waves”, J. Fluid Mech. 114 (1982) 315330; doi:10.1017/S0022112082000172.CrossRefGoogle Scholar
McLean, J. W., Ma, Y. C., Martin, D. U., Saffman, P. G. and Yuen, H. C., “Three-dimensional instability of finite-amplitude water waves”, Phys. Rev. Lett. 46 (1981) 817820; doi:10.1103/PhysRevLett.46.817.CrossRefGoogle Scholar
Onorato, M., Proment, D. and Toffoli, A., “Triggering rogue waves in opposing currents”, Phys. Rev. Lett. 107 (2011) 184502; doi:10.1103/PhysRevLett.107.184502.CrossRefGoogle ScholarPubMed
Phillips, O. M., “On the dynamics of unsteady gravity waves of finite amplitude Part 1. The elementary interactions”, J. Fluid Mech. 9 (1960) 193217; doi:10.1017/S0022112060001043.CrossRefGoogle Scholar
Stiassnie, M. and Shemer, L., “On modifications of the Zakharov equation for surface gravity waves”, J. Fluid Mech. 143 (1984) 4767; doi:10.1017/S0022112084001257.CrossRefGoogle Scholar
Stocker, J. R. and Peregrine, D. H., “The current-modified nonlinear Schrödinger equation”, J. Fluid Mech. 399 (1999) 335353; doi:10.1017/S0022112099006618.CrossRefGoogle Scholar
Tiron, R. and Choi, W., “Linear stability of finite-amplitude capillary waves on water of infinite depth”, J. Fluid Mech. 696 (2012) 402422; doi:10.1017/jfm.2012.56.CrossRefGoogle Scholar
Toffoli, A., Waseda, T., Houtani, H., Cavaleri, L., Greaves, D. and Onorato, M., “Rogue waves in opposing currents: an experimental study on deterministic and stochastic wave trains”, J. Fluid Mech. 769 (2015) 277297; doi:10.1017/jfm.2015.132.CrossRefGoogle Scholar
Toffoli, A., Waseda, T., Houtani, H., Kinoshita, T., Collins, K., Proment, D. and Onorato, M., “Excitation of rogue waves in a variable medium: an experimental study on the interaction of water waves and currents”, Phys. Rev. E 87 (2013) 051201; doi:10.1103/PhysRevE.87.051201.CrossRefGoogle Scholar
Trulsen, K. and Dysthe, K. B., “A modified nonlinear Schrödinger equation for broader bandwidth gravity waves on deep water”, Wave Motion 24 (1996) 281289; doi:10.1016/S0165-2125(96)00020-0.CrossRefGoogle Scholar
Turpin, F. M., Benmoussa, C. and Mei, C. C., “Effects of slowly varying depth and current on the evolution of a Stokes wavepacket”, J. Fluid Mech. 132 (1983) 123; doi:10.1017/S0022112083001445.CrossRefGoogle Scholar
Wilton, J. R., “On ripples”, Phil. Mag. Series 29 (1915) 688700; doi:10.1080/14786440508635350.CrossRefGoogle Scholar
Zakharov, V. E., “Stability of periodic waves of finite amplitude on the surface of a deep fluid”, J. Appl. Mech. Tech. Phys. 9 (1968) 190194; doi:10.1007/bf00913182.CrossRefGoogle Scholar
Zhang, J. and Melville, W. K., “On the stability of weakly-nonlinear gravity-capillary waves”, Wave Motion 8 (1986) 439454; doi:10.1016/0165-2125(86)90029-6.CrossRefGoogle Scholar