Hostname: page-component-6bf8c574d5-8gtf8 Total loading time: 0 Render date: 2025-02-27T19:29:22.240Z Has data issue: false hasContentIssue false

Harnessing the power of genomics in hypertension: tip of the iceberg?

Published online by Cambridge University Press:  04 February 2025

Hafiz Naderi
Affiliation:
William Harvey Research Institute, Queen Mary University of London, London, UK Barts Heart Centre, St Bartholomew’s Hospital, West Smithfield, London, UK National Institute of Health and Care Research Barts Biomedical Research Centre, Queen Mary University of London, London, UK
Helen R. Warren
Affiliation:
William Harvey Research Institute, Queen Mary University of London, London, UK National Institute of Health and Care Research Barts Biomedical Research Centre, Queen Mary University of London, London, UK
Patricia B. Munroe*
Affiliation:
William Harvey Research Institute, Queen Mary University of London, London, UK National Institute of Health and Care Research Barts Biomedical Research Centre, Queen Mary University of London, London, UK
*
Corresponding author: Patricia B. Munroe; Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Despite the blaze of advancing knowledge on its complex genetic architecture, hypertension remains an elusive condition. Genetic studies of blood pressure have yielded bitter-sweet results thus far with the identification of more than 2,000 genetic loci, though the candidate causal genes and biological pathways remain largely unknown. The era of big data and sophisticated statistical tools has propelled insights into pathophysiology and causal inferences. However, new genetic risk tools for hypertension are the tip of the iceberg, and applications of genomic technology are likely to proliferate. We review the genomics of hypertension, exploring the significant milestones in our current understanding of this condition and the progress towards personalised treatment and management for hypertension.

Topics structure

Topic(s)

Subtopic(s)

Type
Review
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited.
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Impact statement

High blood pressure or hypertension is the strongest modifiable risk factor for cardiovascular disease, and it is a complex condition influenced by both genetic and environmental factors. In this review article, we explore the significant milestones to our current understanding of the genetics of hypertension. We highlight key landmarks in blood pressure-related research from the discovery of monogenic forms of hypertension to the era of genome-wide association studies. Alongside the development of polygenic risk scores for cardiovascular risk prediction, the application of multi-omics, single-cell RNA technologies and machine learning are providing new insights into the pathophysiology of hypertension. We also explore the development of pharmacogenomics in hypertension and the role of large-scale biobanks in drug development together with the challenges and future landscape.

The hype in hypertension

Hypertension is the strongest modifiable risk factor for cardiovascular disease, being responsible for the majority of stroke and up to half of cases of coronary heart disease (Perkovic et al., Reference Perkovic, Huxley, Wu, Prabhakaran and MacMahon2007). The global health burden of hypertension is immense, with 1.5 billion people projected to be affected by 2025 (Kearney et al., Reference Kearney, Whelton, Reynolds, Muntner, Whelton and He2005). The societal cost resulting from the morbidity and mortality caused by hypertension has raised an urgent need for innovative approaches, with its prevention being a top priority in governments worldwide and endorsed by the 2023 European Society of Hypertension guidelines (Mancia et al., Reference Mancia, Kreutz, Brunström, Burnier, Grassi, Januszewicz, Muiesan, Tsioufis, Agabiti-Rosei, Algharably, Azizi, Benetos, Borghi, Hitij, Cifkova, Coca, Cornelissen, Cruickshank, Cunha, Danser, Pinho, Delles, Dominiczak, Dorobantu, Doumas, Fernández-Alfonso, Halimi, Járai, Jelaković, Jordan, Kuznetsova, Laurent, Lovic, Lurbe, Mahfoud, Manolis, Miglinas, Narkiewicz, Niiranen, Palatini, Parati, Pathak, Persu, Polonia, Redon, Sarafidis, Schmieder, Spronck, Stabouli, Stergiou, Taddei, Thomopoulos, Tomaszewski, Van de Borne, Wanner, Weber, Williams, Zhang and Kjeldsen2023) and the latest 2024 European Society of Cardiology guidelines (McEvoy et al., Reference McEvoy, McCarthy, Bruno, Brouwers, Canavan, Ceconi, Christodorescu, Daskalopoulou, Ferro, Gerdts, Hanssen, Harris, Lauder, McManus, Molloy, Rahimi, Regitz-Zagrosek, Rossi, Sandset, Scheenaerts, Staessen, Uchmanowicz, Volterrani, Touyz, Abreu, Olsen, Ambrosetti, Androulakis, Bang, Bech, Borger, Boutouyrie, Bronze, Buccheri, Dalmau, De Pablo Zarzosa, Delles, Fiuza, Gabulova, Haugen, Heiss, Ibanez, James, Kapil, Kayikçioglu, Køber, Koskinas, Locati, MacDonald, Mihailidou, Mihaylova, Mindham, Mortensen, Nardai, Neubeck, Nielsen, Nilsson, Pasquet, Pedro, Prescott, Rakisheva, Rietzschel, Rocca, Rossello, Schmid, Shantsila, Sudano, Timóteo, Tsivgoulis, Ungar, Vaartjes, Visseren, Voeller, Vrints, Witkowski, Zennaro, Zeppenfeld, Shuka, Laredj, Pavo, Mirzoyev, van de Borne, Sokolović, Postadzhiyan, Samardzic, Agathangelou, Widimsky, Olsen, El-Kilany, Pauklin, Laukkanen, Boulestreau, Tsinamdzgvrishvili, Kintscher, Marketou, Páll, Hrafnkelsdóttir, Dolan, Wolak, Bilo, Tundybayeva, Mirrakhimov, Trusinskis, Kiwan, Msalem, Badarienė, Banu, Balbi, Caraus, Boskovic, Mouine, Vromen, Bosevski, Midtbø, Doroszko, Dores, Badila, Bini, Simić, Fras, Mazón, Spaak, Burkard, Barakat, Abdessalem, Gunes, Sirenko, Brady and Khamidullaeva2024). The risk for cardiovascular disease attributable to blood pressure (BP) is on a continuous exposure scale (Murray et al., Reference Murray, Aravkin, Zheng, Abbafati, Abbas, Abbasi-Kangevari, Abd-Allah, Abdelalim, Abdollahi, Abdollahpour, Abegaz, Abolhassani, Aboyans, Abreu, Abrigo, Abualhasan, Abu-Raddad, Abushouk, Adabi, Adekanmbi, Adeoye, Adetokunboh, Adham, Advani, Agarwal, Aghamir, Agrawal, Ahmad, Ahmadi, Ahmadi, Ahmadieh, Ahmed, Akalu, Akinyemi, Akinyemiju, Akombi, Akunna, Alahdab, Al-Aly, Alam, Alam, Alam, Alanezi, Alanzi, Alemu, Alhabib, Ali, Ali, Alicandro, Alinia, Alipour, Alizade, Aljunid, Alla, Allebeck, Almasi-Hashiani, Al-Mekhlafi, Alonso, Altirkawi, Amini-Rarani, Amiri, Amugsi, Ancuceanu, Anderlini, Anderson, Andrei, Andrei, Angus, Anjomshoa, Ansari, Ansari-Moghaddam, Antonazzo, Antonio, Antony, Antriyandarti, Anvari, Anwer, Appiah, Arabloo, Arab-Zozani, Ariani, Armoon, Ärnlöv, Arzani, Asadi-Aliabadi, Asadi-Pooya, Ashbaugh, Assmus, Atafar, Atnafu, Atout, Ausloos, Ausloos, Quintanilla, Ayano, Ayanore, Azari, Azarian, Azene, Badawi, Badiye, Bahrami, Bakhshaei, Bakhtiari, Bakkannavar, Baldasseroni, Ball, Ballew, Balzi, Banach, Banerjee, Bante, Baraki, Barker-Collo, Bärnighausen, Barrero, Barthelemy, Barua, Basu, Baune, Bayati, Becker, Bedi, Beghi, Béjot, Bell, Bennitt, Bensenor, Berhe, Berman, Bhagavathula, Bhageerathy, Bhala, Bhandari, Bhattacharyya, Bhutta, Bijani, Bikbov, Sayeed, Biondi, Birihane, Bisignano, Biswas, Bitew, Bohlouli, Bohluli, Boon-Dooley, Borges, Borzì, Borzouei, Bosetti, Boufous, Braithwaite, Breitborde, Breitner, Brenner, Briant, Briko, Briko, Britton, Bryazka, Bumgarner, Burkart, Burnett, Nagaraja, Butt, Santos, Cahill, Cámera, Campos-Nonato, Cárdenas, Carreras, Carrero, Carvalho, Castaldelli-Maia, Castañeda-Orjuela, Castelpietra, Castro, Causey, Cederroth, Cercy, Cerin, Chandan, Chang, Charlson, Chattu, Chaturvedi, Cherbuin, Chimed-Ochir, Cho, Choi, Christensen, Chu, Chung, Chung, Cicuttini, Ciobanu, Cirillo, Classen, Cohen, Compton, Cooper, Costa, Cousin, Cowden, Cross, Cruz, Dahlawi, Damasceno, Damiani, Dandona, Dandona, Dangel, Danielsson, Dargan, Darwesh, Daryani, Das, Gupta, Neves, Dávila-Cervantes, Davitoiu, Leo, Degenhardt, DeLang, Dellavalle, Demeke, Demoz, Demsie, Denova-Gutiérrez, Dervenis, Dhungana, Dianatinasab, Silva, Diaz, Forooshani, Djalalinia, Do, Dokova, Dorostkar, Doshmangir, Driscoll, Duncan, Duraes, Eagan, Edvardsson, Nahas, Sayed, Tantawi, Elbarazi, Elgendy, El-Jaafary, Elyazar, Emmons-Bell, Erskine, Eskandarieh, Esmaeilnejad, Esteghamati, Estep, Etemadi, Etisso, Fanzo, Farahmand, Fareed, Faridnia, Farioli, Faro, Faruque, Farzadfar, Fattahi, Fazlzadeh, Feigin, Feldman, Fereshtehnejad, Fernandes, Ferrara, Ferrari, Ferreira, Filip, Fischer, Fisher, Flor, Foigt, Folayan, Fomenkov, Force, Foroutan, Franklin, Freitas, Fu, Fukumoto, Furtado, Gad, Gakidou, Gallus, Garcia-Basteiro, Gardner, Geberemariyam, Gebreslassie, Geremew, Hayoon, Gething, Ghadimi, Ghadiri, Ghaffarifar, Ghafourifard, Ghamari, Ghashghaee, Ghiasvand, Ghith, Gholamian, Ghosh, Gill, Ginindza, Giussani, Gnedovskaya, Goharinezhad, Gopalani, Gorini, Goudarzi, Goulart, Greaves, Grivna, Grosso, Gubari, Gugnani, Guimarães, Guled, Guo, Guo, Gupta, Gupta, Haddock, Hafezi-Nejad, Hafiz, Haj-Mirzaian, Haj-Mirzaian, Hall, Halvaei, Hamadeh, Hamidi, Hammer, Hankey, Haririan, Haro, Hasaballah, Hasan, Hasanpoor, Hashi, Hassanipour, Hassankhani, Havmoeller, Hay, Hayat, Heidari, Heidari-Soureshjani, Henrikson, Herbert, Herteliu, Heydarpour, Hird, Hoek, Holla, Hoogar, Hosgood, Hossain, Hosseini, Hosseinzadeh, Hostiuc, Hostiuc, Househ, Hsairi, Hsieh, Hu, Hu, Huda, Humayun, Huynh, Hwang, Iannucci, Ibitoye, Ikeda, Ikuta, Ilesanmi, Ilic, Ilic, Inbaraj, Ippolito, Iqbal, SSN, CMS, Islam, SMS, Iso, Ivers, CCD, Iwu, Iyamu, Jaafari, Jacobsen, Jafari, Jafarinia, Jahani, Jakovljevic, Jalilian, James, Janjani, Javaheri, Javidnia, Jeemon, Jenabi, Jha, Jha, Ji, Johansson, John, John-Akinola, Johnson, Jonas, Joukar, Jozwiak, Jürisson, Kabir, Kabir, Kalani, Kalani, Kalankesh, Kalhor, Kanchan, Kapoor, Matin, Karch, Karim, Kassa, Katikireddi, Kayode, Karyani, Keiyoro, Keller, Kemmer, Kendrick, Khalid, Khammarnia, Khan, Khan, Khatab, Khater, Khatib, Khayamzadeh, Khazaei, Kieling, Kim, Kimokoti, Kisa, Kisa, Kivimäki, Knibbs, Knudsen, Kocarnik, Kochhar, Kopec, Korshunov, Koul, Koyanagi, Kraemer, Krishan, Krohn, Kromhout, Defo, Kumar, Kumar, Kurmi, Kusuma, Vecchia, Lacey, Lal, Lalloo, Lallukka, Lami, Landires, Lang, Langan, Larsson, Lasrado, Lauriola, Lazarus, Lee, Lee, LeGrand, Leigh, Leonardi, Lescinsky, Leung, Levi, Li, Lim, Linn, Liu, Liu, Liu, Lo, Lopez, Lopez, Lopukhov, Lorkowski, Lotufo, Lu, Lugo, Maddison, Mahasha, Mahdavi, Mahmoudi, Majeed, Maleki, Maleki, Malekzadeh, Malta, Mamun, Manda, Manguerra, Mansour-Ghanaei, Mansouri, Mansournia, Herrera, Maravilla, Marks, Martin, Martini, Martins-Melo, Masaka, Masoumi, Mathur, Matsushita, Maulik, McAlinden, McGrath, McKee, Mehndiratta, Mehri, Mehta, Memish, Mendoza, Menezes, Mengesha, Mereke, Mereta, Meretoja, Meretoja, Mestrovic, Miazgowski, Miazgowski, Michalek, Miller, Mills, Mini, Miri, Mirica, Mirrakhimov, Mirzaei, Mirzaei, Mirzaei, Mirzaei-Alavijeh, Misganaw, Mithra, Moazen, Mohammad, Mohammad, Mezerji, Mohammadian-Hafshejani, Mohammadifard, Mohammadpourhodki, Mohammed, Mohammed, Mohammed, Mohammed, Mokdad, Molokhia, Monasta, Mooney, Moradi, Moradi, Moradi-Lakeh, Moradzadeh, Moraga, Morawska, Morgado-da-Costa, Morrison, Mosapour, Mosser, Mouodi, Mousavi, Khaneghah, Mueller, Mukhopadhyay, Mullany, Musa, Muthupandian, Nabhan, Naderi, Nagarajan, Nagel, Naghavi, Naghshtabrizi, Naimzada, Najafi, Nangia, Nansseu, Naserbakht, Nayak, Negoi, Ngunjiri, Nguyen, Nguyen, Nguyen, Nigatu, Nikbakhsh, Nixon, Nnaji, Nomura, Norrving, Noubiap, Nowak, Nunez-Samudio, Oţoiu, Oancea, Odell, Ogbo, Oh, Okunga, Oladnabi, Olagunju, Olusanya, Olusanya, Omer, Ong, Onwujekwe, Orpana, Ortiz, Osarenotor, Osei, Ostroff, Otstavnov, Otstavnov, Øverland, Owolabi, MP, Padubidri, Palladino, Panda-Jonas, Pandey, Parry, Pasovic, Pasupula, Patel, Pathak, Patten, Patton, Toroudi, Peden, Pennini, Pepito, Peprah, Pereira, Pesudovs, Pham, Phillips, Piccinelli, Pilz, Piradov, Pirsaheb, Plass, Polinder, Polkinghorne, Pond, Postma, Pourjafar, Pourmalek, Poznańska, Prada, Prakash, Pribadi, Pupillo, Syed, Rabiee, Rabiee, Radfar, Rafiee, Raggi, Rahman, Rajabpour-Sanati, Rajati, Rakovac, Ram, Ramezanzadeh, Ranabhat, Rao, Rao, Rashedi, Rathi, Rawaf, Rawaf, Rawal, Rawassizadeh, Rawat, Razo, Redford, Reiner, Reitsma, Remuzzi, Renjith, Renzaho, Resnikoff, Rezaei, Rezaei, Rezapour, Rhinehart, Riahi, Ribeiro, Ribeiro, Rickard, Rivera, Roberts, Rodríguez-Ramírez, Roever, Ronfani, Room, Roshandel, Roth, Rothenbacher, Rubagotti, Rwegerera, Sabour, Sachdev, Saddik, Sadeghi, Sadeghi, Saeedi, Moghaddam, Safari, Safi, Safiri, Sagar, Sahebkar, Sajadi, Salam, Salamati, Salem, Salem, Salimzadeh, Salman, Salomon, Samad, Kafil, Sambala, Samy, Sanabria, Sánchez-Pimienta, Santomauro, Santos, Santos, Santric-Milicevic, Saraswathy, Sarmiento-Suárez, Sarrafzadegan, Sartorius, Sarveazad, Sathian, Sathish, Sattin, Saxena, Schaeffer, Schiavolin, Schlaich, Schmidt, Schutte, Schwebel, Schwendicke, Senbeta, Senthilkumaran, Sepanlou, Serdar, Serre, Shadid, Shafaat, Shahabi, Shaheen, Shaikh, Shalash, Shams-Beyranvand, Shamsizadeh, Sharafi, Sheikh, Sheikhtaheri, Shibuya, Shield, Shigematsu, Shin, Shin, Shiri, Shirkoohi, Shuval, Siabani, Sierpinski, Sigfusdottir, Sigurvinsdottir, Silva, Simpson, Singh, Singh, Skiadaresi, Skou, Skryabin, Smith, Soheili, Soltani, Soofi, Sorensen, Soriano, Sorrie, Soshnikov, Soyiri, Spencer, Spotin, Sreeramareddy, Srinivasan, Stanaway, Stein, Stein, Steiner, Stockfelt, Stokes, Straif, Stubbs, Sufiyan, Suleria, Abdulkader, Sulo, Sultan, Szumowski, Tabarés-Seisdedos, Tabb, Tabuchi, Taherkhani, Tajdini, Takahashi, Takala, Tamiru, Taveira, Tehrani-Banihashemi, Temsah, Tesema, Tessema, Thurston, Titova, Tohidinik, Tonelli, Topor-Madry, Topouzis, Torre, Touvier, Tovani-Palone, Tran, Travillian, Tsatsakis, Car, Tyrovolas, Uddin, Umeokonkwo, Unnikrishnan, Upadhyay, Vacante, Valdez, Donkelaar, Vasankari, Vasseghian, Veisani, Venketasubramanian, Violante, Vlassov, Vollset, Vos, Vukovic, Waheed, Wallin, Wang, Wang, Watson, Wei, Wei, Weintraub, Weiss, Werdecker, West, Westerman, Whisnant, Whiteford, Wiens, Wolfe, Wozniak, Wu, Wu, Hanson, Xu, Xu, Yadgir, Jabbari, Yamagishi, Yaminfirooz, Yano, Yaya, Yazdi-Feyzabadi, Yeheyis, Yilgwan, Yilma, Yip, Yonemoto, Younis, Younker, Yousefi, Yousefi, Yousefinezhadi, Yousuf, Yu, Yusefzadeh, Moghadam, Zamani, Zamanian, Zandian, Zastrozhin, Zhang, Zhang, Zhao, Zhao, Zhao, Zhou, Ziapour, Zimsen, Brauer, Afshin and Lim2020). Elevated BP adversely affects the heart, kidneys, brain, eyes and vessels, leading to structural and functional changes termed hypertension-mediated organ damage. Clinically, hypertension is diagnosed based on BP measurements, however, BP is a complex trait influenced by a magnitude of physiological and environmental interacting pathways. Approximately 95% of cases of hypertension are referred to as primary or essential hypertension (EH) with genetics contributing approximately 30% of BP variance, and the remainder due to lifestyle factors (Poulter et al., Reference Poulter, Prabhakaran and Caulfield2015). The other 5% of causes is termed secondary hypertension, of which 1% are monogenic disorders (Cowley, Reference Cowley2006). Currently, pharmacological treatments for hypertension are introduced when BP measurements are elevated and there is potential end-organ damage initiation. The major international guidelines recommend a combination of antihypertensive drugs as first-line therapy to improve efficacy and reduce the risk of side effects related to treatment. Challenges such as non-adherence to therapy and resistant hypertension have limited the current ability to ensure adequate BP control in the general population. The ‘precision hypertension’ approach has been proposed to consider an individual’s unique characteristics for better-targeted risk profiling and treatment strategy (Dzau and Hodgkinson, Reference Dzau and Hodgkinson2024). In this review, we highlight some of the key advances (Figure 1) in hypertension genomics together with its challenges and future landscape.

Figure 1. Key advances in hypertension genomics.

The yellow brick road

The concept that hypertension is a multifactorial disease was first proposed by Page’s Mosaic Theory in 1949 (Page, Reference Page1949). Following evidence from familial studies and the discovery of rare monogenic disorders of hypertension, the genetic contribution of hypertension was recognised. The 1950s witnessed the legendary Platt vs. Pickering debate on the genetic nature of EH. The controversy stemmed from the appearance of BP frequency distribution curves, which led to the discussion of its monogenic or polygenic potential. Platt regarded EH as a distinct condition with rare variants of hypertension as evidence for its single-gene inheritance, whilst Pickering postulated that hypertension was seen only in the extreme of a continuous distribution curve of BP values and therefore determined by a collection of genes (Zanchetti, Reference Zanchetti1986; Brown, Reference Brown2012). Later studies supported the polygenic theory of hypertension with a wide range of heritability estimates for systolic and diastolic BP from 6% to 68% (Kolifarhood et al., Reference Kolifarhood, Daneshpour, Hadaegh, Sabour, Mozafar Saadati, Akbar Haghdoust, Akbarzadeh, Sedaghati-Khayat and Khosravi2019). Differences in environmental conditions, type of study design, trait definition, and analytical techniques may explain the wide variation in heritability estimation of BP traits. In light of the new evidence, Page also acknowledged the genetic influence of hypertension in his revision of the Mosaic Theory in 1982 (Page, Reference Page1982). The 1990s saw a big boom in gene mapping with the launch of The Human Genome Project sequencing the complete human genome by 2003 (International Human Genome Sequencing Consortium, 2004). During this period there were a number of genome-wide linkage analyses performed, including the Framingham Heart Study and the British Genetics of Hypertension (BRIGHT) study, identifying regions in the DNA linked to variations in BP (Levy et al., Reference Levy, DeStefano, Larson, O’Donnell, Lifton, Gavras, Cupples and Myers2000; Caulfield et al., Reference Caulfield, Munroe, Pembroke, Samani, Dominiczak, Brown, Webster, Ratcliffe, O’Shea, Papp, Taylor, Dobson, Knight, Newhouse, Hooper, Lee, Brain, Clayton, Lathrop, Farrall, Connell and Benjamin2003). Although an important step, interpreting results from linkage analyses proved challenging, as the regions in the DNA identified were large, hence difficult to identify the responsible gene. The turn of the millennium welcomed a wave of advancing technology and bioinformatics, paving the way for the era of genome-wide association studies (GWAS).

GWAS for blood pressure

The hunt for genes implicated in BP regulation has been challenging. Before the advent of GWAS, genes and mechanisms for BP were mostly discovered using rat and mouse models and candidate gene studies (Lerman et al., Reference Lerman, Kurtz, Touyz, Ellison, Chade, Crowley, Mattson, Mullins, Osborn, Eirin, Reckelhoff, Iadecola and Coffman2019). Since the launch of single-nucleotide polymorphism (SNP) genotyping arrays in 2005, BP-GWAS of increasing scale has been performed. The first GWAS of hypertension was performed in 2007 by The Wellcome Trust Case Control Consortium (WTCCC). This consortium undertook GWAS of 2,000 cases and 3,000 shared controls for seven complex diseases, including hypertension (Wellcome Trust Case Control Consortium, 2007). Although no single SNP achieved genome-wide significance (p < 5 × 10−7), six variants were found to have suggestive associations with hypertension (p < 5 × 10−5). The Family Blood Pressure Program (FBPP) subsequently focussed on these six SNPs in a study of 11,433 individuals recruited from hypertensive families. This study did not replicate the results of the WTCCC study, however, one of the six SNPs (rs1937506) was found to be associated with hypertension in Hispanic Americans and European Americans (Ehret et al., Reference Ehret, Morrison, O’Connor, Grove, Baird, Schwander, Weder, Cooper, Rao, Hunt, Boerwinkle and Chakravarti2008). Subsequently, investigators from the Korean Association Resource (KARE) project analysed the association of the six SNPs in 7,551 unrelated individuals in Korea. The authors reported one intronic SNP (rs7961152 at the BACT1 gene locus) to be associated with hypertension risk (odds ratio 1.29, 95% confidence interval 1.01–1.64, p = 0.004) (Hong et al., Reference Hong, Jin, Cho, Lee, Lee, Cho, Shin, Lee, Park and Oh2009). The WTCCC, FBPP and KARE studies demonstrated that due to the complex genetic architecture of hypertension, a larger sample population may be necessary to identify genetic variants implicated in BP. To increase the sample sizes, consortia were established, to combine data together across many different studies. The first exciting results in BP-GWAS were in 2009 from large meta-analyses of GWAS (n = 34,433) from the Global BP Genetics Consortium (GBPGEN) and Cohorts for Heart and Ageing Research in Genomic Epidemiology-BP (CHARGE-BP) consortium, identifying 11 new loci (Levy et al., Reference Levy, Ehret, Rice, Verwoert, Launer, Dehghan, Glazer, Morrison, Johnson, Aspelund, Aulchenko, Lumley, Köttgen, Vasan, Rivadeneira, Eiriksdottir, Guo, Arking, Mitchell, Mattace-Raso, Smith, Taylor, Scharpf, Hwang, Sijbrands, Bis, Harris, Ganesh, O’Donnell, Hofman, Rotter, Coresh, Benjamin, Uitterlinden, Heiss, Fox, Witteman, Boerwinkle, Wang, Gudnason, Larson, Chakravarti, Psaty and Duijn2009; Newton-Cheh et al., Reference Newton-Cheh, Johnson, Gateva, Tobin, Bochud, Coin, Najjar, Zhao, Heath, Eyheramendy, Papadakis, Voight, Scott, Zhang, Farrall, Tanaka, Wallace, Chambers, Khaw, Nilsson, van der Harst, Polidoro, Grobbee, Onland-Moret, Bots, Wain, Elliott, Teumer, Luan, Lucas, Kuusisto, Burton, Hadley, McArdle, Brown, Dominiczak, Newhouse, Samani, Webster, Zeggini, Beckmann, Bergmann, Lim, Song, Vollenweider, Waeber, Waterworth, Yuan, Groop, Orho-Melander, Allione, Di Gregorio, Guarrera, Panico, Ricceri, Romanazzi, Sacerdote, Vineis, Barroso, Sandhu, Luben, Crawford, Jousilahti, Perola, Boehnke, Bonnycastle, Collins, Jackson, Mohlke, Stringham, Valle, Willer, Bergman, Morken, Döring, Gieger, Illig, Meitinger, Org, Pfeufer, Wichmann, Kathiresan, Marrugat, O’Donnell, Schwartz, Siscovick, Subirana, Freimer, Hartikainen, McCarthy, O’Reilly, Peltonen, Pouta, de Jong, Snieder, van Gilst, Clarke, Goel, Hamsten, Peden, Seedorf, Syvänen, Tognoni, Lakatta, Sanna, Scheet, Schlessinger, Scuteri, Dörr, Ernst, Felix, Homuth, Lorbeer, Reffelmann, Rettig, Völker, Galan, Gut, Hercberg, Lathrop, Zelenika, Deloukas, Soranzo, Williams, Zhai, Salomaa, Laakso, Elosua, Forouhi, Völzke, Uiterwaal, van der Schouw, Numans, Matullo, Navis, Berglund, Bingham, Kooner, Connell, Bandinelli, Ferrucci, Watkins, Spector, Tuomilehto, Altshuler, Strachan, Laan, Meneton, Wareham, Uda, Jarvelin, Mooser, Melander, Loos, Elliott, Abecasis, Caulfield and Munroe2009; Psaty et al., Reference Psaty, O’Donnell, Gudnason, Lunetta, Folsom, Rotter, Uitterlinden, Harris, Witteman and Boerwinkle2009). Seven of these loci were also subsequently reported in a Japanese population (Takeuchi et al., Reference Takeuchi, Isono, Katsuya, Yamamoto, Yokota, Sugiyama, Nabika, Fujioka, Ohnaka, Asano, Yamori, Yamaguchi, Kobayashi, Takayanagi, Ogihara and Kato2010). Following this success story, the two consortia GBPGEN and CHARGE-BP merged to form the International Consortia for BP (ICBP) identifying more novel loci in 2011 (Wain et al., Reference Wain, Verwoert, O’Reilly, Shi, Johnson, Johnson, Bochud, Rice, Henneman, Smith, Ehret, Amin, Larson, Mooser, Hadley, Dörr, Bis, Aspelund, Esko, Janssens, Zhao, Heath, Laan, Fu, Pistis, Luan, Arora, Lucas, Pirastu, Pichler, Jackson, Webster, Zhang, Peden, Schmidt, Tanaka, Campbell, Igl, Milaneschi, Hotteng, Vitart, Chasman, Trompet, Bragg-Gresham, Alizadeh, Chambers, Guo, Lehtimäki, Kühnel, Lopez, Polašek, Boban, Nelson, Morrison, Pihur, Ganesh, Hofman, Kundu, Mattace-Raso, Rivadeneira, Sijbrands, Uitterlinden, Hwang, Vasan, Wang, Bergmann, Vollenweider, Waeber, Laitinen, Pouta, Zitting, McArdle, Kroemer, Völker, Völzke, Glazer, Taylor, Harris, Alavere, Haller, Keis, Tammesoo, Aulchenko, Barroso, Khaw, Galan, Hercberg, Lathrop, Eyheramendy, Org, Sõber, Lu, Nolte, Penninx, Corre, Masciullo, Sala, Groop, Voight and Melander2011; Ehret et al., Reference Ehret, Munroe, Rice, Bochud, Johnson, Chasman, Smith, Tobin, Verwoert, Hwang, Pihur, Vollenweider, O’Reilly, Amin, Bragg-Gresham, Teumer, Glazer, Launer, Hua Zhao, Aulchenko, Heath, Sõber, Parsa, Luan, Arora, Dehghan, Zhang, Lucas, Hicks, Jackson, Peden, Tanaka, Wild, Rudan, Igl, Milaneschi, Parker, Fava, Chambers, Fox, Kumari, Jin Go, van der Harst, Hong Linda Kao, Sjögren, Vinay, Alexander, Tabara, Shaw-Hawkins, Whincup, Liu, Shi, Kuusisto, Tayo, Seielstad, Sim, Hoang Nguyen, Lehtimäki, Matullo, Wu, Gaunt, Charlotte Onland-Moret, Cooper, Platou, Org, Hardy, Dahgam, Palmen, Vitart, Braund, Kuznetsova, Uiterwaal, Adeyemo, Palmas, Campbell, Ludwig, Tomaszewski, Tzoulaki, Palmer, Aspelund, Garcia, Chang, O’Connell, Steinle, Grobbee, Arking, Kardia, Morrison, Hernandez, Najjar, McArdle, Hadley, Brown, Connell, Hingorani, INM, Lawlor, Beilby, Lawrence, Clarke, Hopewell, Ongen, Dreisbach, Li, Hunter Young, Bis, Kähönen, Viikari, Adair, Lee, Chen, Olden, Pattaro, Hoffman Bolton, Köttgen, Bergmann, Mooser, Chaturvedi, Frayling, Islam, Jafar, Erdmann, Kulkarni, Bornstein, Grässler, Groop, Voight, Kettunen, Howard, Taylor, Guarrera, Ricceri, Emilsson, Plump, Barroso, Khaw, Weder, Hunt, Sun, Bergman, Collins, Bonnycastle, Scott, Stringham, Peltonen, Perola, Vartiainen, Brand, Staessen, Wang, Burton, Soler Artigas, Dong, Snieder, Wang, Zhu, Lohman, Rudock, Heckbert, Smith, Wiggins, Doumatey, Shriner, Veldre, Viigimaa, Kinra, Prabhakaran, Tripathy, Langefeld, Rosengren, Thelle, Maria Corsi, Singleton, Forrester, Hilton, McKenzie, Salako, Iwai, Kita, Ogihara, Ohkubo, Okamura, Ueshima, Umemura, Eyheramendy, Meitinger, Wichmann, Shin Cho, Kim, Lee, Scott, Sehmi, Zhang, Hedblad, Nilsson, Davey Smith, Wong, Narisu, Stančáková, Raffel, Yao, Kathiresan, O’Donnell, Schwartz, Arfan Ikram, Longstreth, Mosley, Seshadri, Shrine, Wain, Morken, Swift, Laitinen, Prokopenko, Zitting, Cooper, Humphries, Danesh, Rasheed, Goel, Hamsten, Watkins, Bakker, van Gilst, Janipalli, Radha Mani, Yajnik, Hofman, Mattace-Raso, Oostra, Demirkan, Isaacs, Rivadeneira, Lakatta, Orru, Scuteri, Ala-Korpela, Kangas, Lyytikäinen, Soininen, Tukiainen, Würtz, Twee-Hee Ong, Dörr, Kroemer, Völker, Völzke, Galan, Hercberg, Lathrop, Zelenika, Deloukas, Mangino, Spector, Zhai, Meschia, Nalls, Sharma, Terzic, Kranthi Kumar, Denniff, Zukowska-Szczechowska, Wagenknecht, Gerald, Fowkes, Charchar, PEH, Hayward, Guo, Rotimi, Bots, Brand, Samani, Polasek, Talmud, Nyberg, Kuh, Laan, Hveem, Palmer, van der Schouw, Casas, Mohlke, Vineis, Raitakari, Ganesh, Wong, Shyong Tai, Cooper, Laakso, Rao, Harris, Morris, Dominiczak and Kivimaki2011). Cho et al., (Reference Cho, Go, Kim, Heo, Oh, Ban, Yoon, Lee, Kim, Park, Cha, Kim, Han, Min, Ahn, Park, Han, Jang, Cho, Lee, Cho, Shin, Park, Park, Lee, Cardon, Clarke, McCarthy, Lee, Lee, Oh and Kim2009) also reported 5 new BP loci in East Asians (Cho et al., Reference Cho, Go, Kim, Heo, Oh, Ban, Yoon, Lee, Kim, Park, Cha, Kim, Han, Min, Ahn, Park, Han, Jang, Cho, Lee, Cho, Shin, Park, Park, Lee, Cardon, Clarke, McCarthy, Lee, Lee, Oh and Kim2009). The results from these studies provided new insights into the biology of BP with opportunities for developing new therapies.

Big data, biobanks and beyond

Over the past decade, large-scale datasets have been developed, one example is the UK Biobank, permitting analysis of up to 500,000 richly phenotyped participants (Bycroft et al., Reference Bycroft, Freeman, Petkova, Band, Elliott, Sharp, Motyer, Vukcevic, Delaneau, O’Connell, Cortes, Welsh, Young, Effingham, McVean, Leslie, Allen, Donnelly and Marchini2018). Leveraging these resources, Warren et al. (Reference Warren, Evangelou, Cabrera, Gao, Ren, Mifsud, Ntalla, Surendran, Liu, Cook, Kraja, Drenos, Loh, Verweij, Marten, Karaman, Lepe, O’Reilly, Knight, Snieder, Kato, He, Tai, Said, Porteous, Alver, Poulter, Farrall, Gansevoort, Padmanabhan, Mägi, Stanton, Connell, Bakker, Metspalu, Shields, Thom, Brown, Sever, Esko, Hayward, van der Harst, Saleheen, Chowdhury, Chambers, Chasman, Chakravarti, Newton-Cheh, Lindgren, Levy, Kooner, Keavney, Tomaszewski, Samani, Howson, Tobin, Munroe, Ehret and Wain2017) performed the first UK Biobank BP-GWAS for the first 150,000 genotyped participants (Warren et al., Reference Warren, Evangelou, Cabrera, Gao, Ren, Mifsud, Ntalla, Surendran, Liu, Cook, Kraja, Drenos, Loh, Verweij, Marten, Karaman, Lepe, O’Reilly, Knight, Snieder, Kato, He, Tai, Said, Porteous, Alver, Poulter, Farrall, Gansevoort, Padmanabhan, Mägi, Stanton, Connell, Bakker, Metspalu, Shields, Thom, Brown, Sever, Esko, Hayward, van der Harst, Saleheen, Chowdhury, Chambers, Chasman, Chakravarti, Newton-Cheh, Lindgren, Levy, Kooner, Keavney, Tomaszewski, Samani, Howson, Tobin, Munroe, Ehret and Wain2017). Hoffman et al. (Reference Hoffmann, Ehret, Nandakumar, Ranatunga, Schaefer, Kwok, Iribarren, Chakravarti and Risch2017) performed a GWAS on long-term average BP from the electronic health records of 99,785 individuals identifying 39 new loci (Hoffmann et al., Reference Hoffmann, Ehret, Nandakumar, Ranatunga, Schaefer, Kwok, Iribarren, Chakravarti and Risch2017). Once all the UK Biobank data became available, Evangelou et al., (Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, Del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018) performed GWAS meta-analyses including data from both the UK Biobank and ICBP and identified 535 new genetic loci influencing BP (Evangelou et al., Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, Del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018). Alongside the GWAS for common variants for BP, there have also been large-scale consortium-based studies focused on the discovery of rare variants across many meta-analysed studies, including UK Biobank (minor allele frequencies of <1%) (Surendran et al., Reference Surendran, Feofanova, Lahrouchi, Ntalla, Karthikeyan, Cook, Chen, Mifsud, Yao, Kraja, Cartwright, Hellwege, Giri, Tragante, Thorleifsson, Liu, Prins, Stewart, Cabrera, Eales, Akbarov, Auer, Bielak, Bis, Braithwaite, Brody, Daw, Warren, Drenos, Nielsen, Faul, Fauman, Fava, Ferreira, Foley, Franceschini, Gao, Giannakopoulou, Giulianini, Gudbjartsson, Guo, Harris, Havulinna, Helgadottir, Huffman, Hwang, Kanoni, Kontto, Larson, Li-Gao, Lindström, Lotta, Lu, Luan, Mahajan, Malerba, NGD, Mei, Menni, Mook-Kanamori, Mosen-Ansorena, Müller-Nurasyid, Paré, Paul, Perola, Poveda, Rauramaa, Richard, Richardson, Sepúlveda, Sim, Smith, Smith, Staley, Stanáková, Sulem, Thériault, Thorsteinsdottir, Trompet, Varga, Velez Edwards, Veronesi, Weiss, Willems, Yao, Young, Yu, Zhang, Zhao, Zhao, Evangelou, Aeschbacher, Asllanaj, Blankenberg, Bonnycastle, Bork-Jensen, Brandslund, Braund, Burgess, Cho, Christensen, Connell, Mutsert, Dominiczak, Dörr, Eiriksdottir, Farmaki, Gaziano, Grarup, Grove, Hallmans, Hansen, Have, Heiss, Jørgensen, Jousilahti, Kajantie, Kamat, Käräjämäki, Karpe, Koistinen, Kovesdy, Kuulasmaa, Laatikainen, Lannfelt, Lee, Lee, Linneberg, Martin, Moitry, Nadkarni, Neville, Palmer, Papanicolaou, Pedersen, Peters, Poulter, Rasheed, Rasmussen, Rayner, Mägi, Renström, Rettig, Rossouw, Schreiner, Sever, Sigurdsson, Skaaby, Sun, Sundstrom, Thorgeirsson, Esko, Trabetti, Tsao, Tuomi, Turner, Tzoulaki, Vaartjes, Vergnaud, Willer, Wilson, Witte, Yonova-Doing, Zhang, Aliya, Almgren, Amouyel, Asselbergs, Barnes, Blakemore, Boehnke, Bots, Bottinger, Buring, Chambers, Chen, Chowdhury, Conen, Correa, Davey Smith, Boer, Deary, Dedoussis, Deloukas, Di Angelantonio, Elliott, Felix, Ferrières, Ford, Fornage, Franks, Franks, Frossard, Gambaro, Gaunt, Groop, Gudnason, Harris, Hayward, Hennig, Herzig, Ingelsson, Tuomilehto, Järvelin, Jukema, SLR, Kee, Kooner, Kooperberg, Launer, Lind, Loos, Majumder, Laakso, McCarthy, Melander, Mohlke, Murray, Nordestgaard, Orho-Melander, Packard, Padmanabhan, Palmas, Polasek, Porteous, Prentice, Province, Relton, Rice, Ridker, Rolandsson, Rosendaal, Rotter, Rudan, Salomaa, Samani, Sattar, Sheu, Smith, Soranzo, Spector, Starr, Sebert, Taylor, Lakka, Timpson, Tobin, van der Harst, van der Meer, Ramachandran, Verweij, Virtamo, Völker, Weir, Zeggini, Charchar, Wareham, Langenberg, Tomaszewski, Butterworth, Caulfield, Danesh, Edwards, Holm, Hung, Lindgren, Liu, Manning, Morris, Morrison, O’Donnell, Psaty, Saleheen, Stefansson, Boerwinkle, Chasman, Levy, Newton-Cheh, Munroe and Howson2020). These studies have yielded >80 rare variants, all having larger effects on BP (~1.5 mmHg per allele, compared to ~0.5 mmHg for common variants) (He et al., Reference He, Kelly, Wang, Liang, Zhu, Cade, Assimes, Becker, Beitelshees, Bielak, Bress, Brody, Chang, Chang, de Vries, Duggirala, Fox, Franceschini, Furniss, Gao, Guo, Haessler, Hung, Hwang, Irvin, Kalyani, Liu, Liu, Martin, Montasser, Muntner, Mwasongwe, Naseri, Palmas, Reupena, Rice, Sheu, Shimbo, Smith, Snively, Yanek, Zhao, Blangero, Boerwinkle, Chen, Correa, Cupples, Curran, Fornage, He, Hou, Kaplan, Kardia, Kenny, Kooperberg, Lloyd-Jones, Loos, Mathias, McGarvey, Mitchell, North, Peyser, Psaty, Raffield, Rao, Redline, Reiner, Rich, Rotter, Taylor, Tracy, Vasan, Morrison, Levy, Chakravarti, Arnett and Zhu2022).

Additional large biobanks include the Million Veteran Program (MVP, n ~ currently recruiting and with 635,969), which has created one of the largest epidemiologic research infrastructures embedded within the national health care system operated by the US Department of Veteran Affairs, these data have also been used for BP-GWAS (Giri et al., Reference Giri, Hellwege, Keaton, Park, Qiu, Warren, Torstenson, Kovesdy, Sun, Wilson, Robinson-Cohen, Roumie, Chung, Birdwell, Damrauer, SL, Klarin, Cho, Wang, Evangelou, Cabrera, Wain, Shrestha, Mautz, Akwo, Sargurupremraj, Debette, Boehnke, Scott, Luan, Jing-Hua, Willems, Thériault, Shah, Oldmeadow, Almgren, Li-Gao, Verweij, Boutin, Mangino, Ntalla, Feofanova, Surendran, Cook, Karthikeyan, Lahrouchi, Liu, Sepúlveda, Richardson, Kraja, Amouyel, Farrall, Poulter, Laakso, Zeggini, Sever, Scott, Langenberg, Wareham, Conen, Palmer, Attia, Chasman, Ridker, Melander, Mook-Kanamori, Harst, Cucca, Schlessinger, Hayward, Spector, Marjo-Riitta, Hennig, Timpson, Wei-Qi, Smith, Xu, Matheny, Siew, Lindgren, Karl-Heinz, Dedoussis, Denny, Psaty, Howson, Munroe, Newton-Cheh, Caulfield, Elliott, Gaziano, Concato, Wilson, Tsao, Edwards, Susztak, Program, O’Donnell, Hung and Edwards2019; Verma et al., Reference Verma, Huffman, Rodriguez, Conery, Liu, Ho, Kim, Heise, Guare, Panickan, Garcon, Linares, Costa, Goethert, Tipton, Honerlaw, Davies, Whitbourne, Cohen, Posner, Sangar, Murray, Wang, Dochtermann, Devineni, Shi, Nandi, Assimes, Brunette, Carroll, Clifford, Duvall, Gelernter, Hung, Iyengar, Joseph, Kember, Kranzler, Kripke, Levey, Luoh, Merritt, Overstreet, Deak, Grant, Polimanti, Roussos, Shakt, Sun, Tsao, Venkatesh, Voloudakis, Justice, Begoli, Ramoni, Tourassi, Pyarajan, Tsao, O’Donnell, Muralidhar, Moser, Casas, Bick, Zhou, Cai, Voight, Cho, Gaziano, Madduri, Damrauer and Liao2024). Other notable cohorts projected to deliver population-level genomic insights include: Genomics England’s first initiative, the 100,000 Genomes Project identifying the genetic causes of many rare diseases; and FinnGen, a Finnish biobank of 500,000 participants (100,000 Genomes Project Pilot Investigators et al., Reference Smedley, Smith, Martin, Thomas, McDonagh, Cipriani, Ellingford, Arno, Tucci, Vandrovcova, Chan, Williams, Ratnaike, Wei, Stirrups, Ibanez, Moutsianas, Wielscher, Need, Barnes, Vestito, Buchanan, Wordsworth, Ashford, Rehmström, Li, Fuller, Twiss, Spasic-Boskovic, Halsall, Floto, Poole, Wagner, Mehta, Gurnell, Burrows, James, Penkett, Dewhurst, Gräf, Mapeta, Kasanicki, Haworth, Savage, Babcock, Reese, Bale, Baple, Boustred, Brittain, de Burca, Bleda, Devereau, Halai, Haraldsdottir, Hyder, Kasperaviciute, Patch, Polychronopoulos, Matchan, Sultana, Ryten, Tavares, Tregidgo, Turnbull, Welland, Wood, Snow, Williams, Leigh, Foulger, Daugherty, Niblock, Leong, Wright, Davies, Crichton, Welch, Woods, Abulhoul, Aurora, Bockenhauer, Broomfield, Cleary, Lam, Dattani, Footitt, Ganesan, Grunewald, Compeyrot-Lacassagne, Muntoni, Pilkington, Quinlivan, Thapar, Wallis, Wedderburn, Worth, Bueser, Compton, Deshpande, Fassihi, Haque, Izatt, Josifova, Mohammed, Robert, Rose, Ruddy, Sarkany, Say, Shaw, Wolejko, Habib, Burns, Hunter, Grocock, Humphray, Robinson, Haendel, Simpson, Banka, Clayton-Smith, Douzgou, Hall, Thomas, O’Keefe, Michaelides, Moore, Malka, Pontikos, Browning, Straub, Gorman, Horvath, Quinton, Schaefer, Yu-Wai-Man, Turnbull, McFarland, Taylor, O’Connor, Yip, Newland, Morris, Polke, Wood, Campbell, Camps, Gibson, Koelling, Lester, Németh, Palles, Patel, Roy, Sen, Taylor, Cacheiro, Jacobsen, Seaby, Davison, Chitty, Douglas, Naresh, McMullan, Ellard, Temple, Mumford, Wilson, Beales, Bitner-Glindzicz, Black, Bradley, Brennan, Burn, Chinnery, Elliott, Flinter, Houlden, Irving, Newman, Rahman, Sayer, Taylor, Webster, Wilkie, Ouwehand, Raymond, Chisholm, Hill, Bentley, Scott, Fowler, Rendon and Caulfield2021; Kurki et al., Reference Kurki, Karjalainen, Palta, Sipilä, Kristiansson, Donner, Reeve, Laivuori, Aavikko, Kaunisto, Loukola, Lahtela, Mattsson, Laiho, Della Briotta Parolo, Lehisto, Kanai, Mars, Rämö, Kiiskinen, Heyne, Veerapen, Rüeger, Lemmelä, Zhou, Ruotsalainen, Pärn, Hiekkalinna, Koskelainen, Paajanen, Llorens, Gracia-Tabuenca, Siirtola, Reis, Elnahas, Sun, Foley, Aalto-Setälä, Alasoo, Arvas, Auro, Biswas, Bizaki-Vallaskangas, Carpen, Chen, Dada, Ding, Ehm, Eklund, Färkkilä, Finucane, Ganna, Ghazal, Graham, Green, Hakanen, Hautalahti, Hedman, Hiltunen, Hinttala, Hovatta, Hu, Huertas-Vazquez, Huilaja, Hunkapiller, Jacob, Jensen, Joensuu, John, Julkunen, Jung, Junttila, Kaarniranta, Kähönen, Kajanne, Kallio, Kälviäinen, Kaprio, Kerimov, Kettunen, Kilpeläinen, Kilpi, Klinger, Kosma, Kuopio, Kurra, Laisk, Laukkanen, Lawless, Liu, Longerich, Mägi, Mäkelä, Mäkitie, Malarstig, Mannermaa, Maranville, Matakidou, Meretoja, Mozaffari, Niemi, Niemi, Niiranen, O’Donnell, Obeidat, Okafo, Ollila, Palomäki, Palotie, Partanen, Paul, Pelkonen, Pendergrass, Petrovski, Pitkäranta, Platt, Pulford, Punkka, Pussinen, Raghavan, Rahimov, Rajpal, Renaud, Riley-Gillis, Rodosthenous, Saarentaus, Salminen, Salminen, Salomaa, Schleutker, Serpi, Shen, Siegel, Silander, Siltanen, Soini, Soininen, Sul, Tachmazidou, Tasanen, Tienari, Toppila-Salmi, Tukiainen, Tuomi, Turunen, Ulirsch, Vaura, Virolainen, Waring, Waterworth, Yang, Nelis, Reigo, Metspalu, Milani, Esko, Fox, Havulinna, Perola, Ripatti, Jalanko, Laitinen, Mäkelä, Plenge, McCarthy, Runz, Daly and Palotie2023).

The majority of GWAS studies for BP did not initially consider the precise role and biological significance of gene–environment interactions (GxE). To address this gap in knowledge, the CHARGE Gene-Lifestyle Interactions Working Group was formed, and this group has conducted a series of genome-wide interaction studies for various traits and exposures. Recently, the group examined interactions between genotype and the Dietary Approaches to Stop Hypertension (DASH) diet score and systolic BP (Guirette et al., Reference Guirette, Lan, McKeown, Brown, Chen, de Vries, Kim, Rebholz, Morrison, Bartz, Fretts, Guo, Lemaitre, Liu, Noordam, de Mutsert, Rosendaal, Wang, Beilin, Mori, Oddy, Pennell, Chai, Whitton, van Dam, Liu, Tai, Sim, Neuhouser, Kooperberg, Tinker, Franceschini, Huan, Winkler, Bentley, Gauderman, Heerkens, Tanaka, Rooij, Munroe, Warren, Voortman, Chen, Rao, Levy and Ma2024). They demonstrated gene-DASH diet score interaction effects on systolic BP in several loci in European population-specific and cross-population meta-analyses. Additional studies have investigated several other important lifestyle factors, including a study investigating BP × Alcohol, which found 54 loci; and BP × Smoking which found 15 loci (Sung et al., Reference Sung, Winkler, de las Fuentes, Bentley, Brown, Kraja, Schwander, Ntalla, Guo, Franceschini, Lu, Cheng, Sim, Vojinovic, Marten, Musani, Li, Feitosa, Kilpeläinen, Richard, Noordam, Aslibekyan, Aschard, Bartz, Dorajoo, Liu, Manning, Rankinen, Smith, Tajuddin, Tayo, Warren, Zhao, Zhou, Matoba, Sofer, Alver, Amini, Boissel, Chai, Chen, Divers, Gandin, Gao, Giulianini, Goel, Harris, Hartwig, Horimoto, Hsu, Jackson, Kähönen, Kasturiratne, Kühnel, Leander, Lee, Lin, Luan, McKenzie, Meian, Nelson, Rauramaa, Schupf, Scott, Sheu, Stančáková, Takeuchi, Most, Varga, Wang, Wang, Ware, Weiss, Wen, Yanek, Zhang, Zhao, Afaq, Alfred, Amin, Arking, Aung, Barr, Bielak, Boerwinkle, Bottinger, Braund, Brody, Broeckel, Cabrera, Cade, Caizheng, Campbell, Canouil, Chakravarti, Chauhan, Christensen, Cocca and Consortium2018; Feitosa et al., Reference Feitosa, Kraja, Chasman, Sung, Winkler, Ntalla, Guo, Franceschini, Cheng, Sim, Vojinovic, Marten, Musani, Li, Bentley, Brown, Schwander, Richard, Noordam, Aschard, Bartz, Bielak, Dorajoo, Fisher, Hartwig, Horimoto, Lohman, Manning, Rankinen, Smith, Tajuddin, Wojczynski, Alver, Boissel, Cai, Campbell, Chai, Chen, Divers, Gao, Goel, Hagemeijer, Harris, He, Hsu, Jackson, Kähönen, Kasturiratne, Komulainen, Kühnel, Laguzzi, Luan, Matoba, Nolte, Padmanabhan, Riaz, Rueedi, Robino, Said, Scott, Sofer, Stančáková, Takeuchi, Tayo, Most, Varga, Vitart, Wang, Ware, Warren, Weiss, Wen, Yanek, Zhang, Zhao, Afaq, Amin, Amini, Arking, Aung, Boerwinkle, Borecki, Broeckel, Brown, Brumat, Burke, Canouil, Chakravarti, Charumathi, Chen, Connell, Correa, Fuentes, Mutsert, Silva, Deng, Ding, Duan, Eaton, Ehret, Eppinga, Evangelou, Faul, Felix, Forouhi, Forrester, Franco, Friedlander, Gandin, Gao, Ghanbari, Gigante, Gu, Gu, Hagenaars, Hallmans, Harris, He, Heikkinen, Heng, Hirata, Howard, Ikram, Consortium, John, Katsuya, Khor, Kilpeläinen, Koh, Krieger, Kritchevsky, Kubo, Kuusisto, Lakka, Langefeld, Langenberg, Launer, Lehne, Lewis, Li, Lin, Liu, Liu, Loh, Louie, Mägi, McKenzie, Meitinger, Metspalu, Milaneschi, Milani, Mohlke, Momozawa, Nalls, Nelson, Sotoodehnia, Norris, O’Connell, Palmer, Perls, Pedersen, Peters, Peyser, Poulter, Raffel, Raitakari, Roll, Rose, Rosendaal, Rotter, Schmidt, Schreiner, Schupf, Scott, Sever, Shi, Sidney, Sims, Sitlani, Smith, Snieder, Starr, Strauch, Stringham, NYQ, Tang, Taylor, Teo, Tham, Turner, Uitterlinden, Vollenweider, Waldenberger, Wang, Wang, Wei, Williams, Yao, Yu, Yuan, Zhao, Zonderman, Becker, Boehnke, Bowden, Chambers, Deary, Esko, Farrall, Franks, Freedman, Froguel, Gasparini, Gieger, Jonas, Kamatani, Kato, Kooner, Kutalik, Laakso, Laurie, Leander, Lehtimäki, Study, Magnusson, Oldehinkel, Penninx, Polasek, Porteous, Rauramaa, Samani, Scott, Shu, Harst, Wagenknecht, Wareham, Watkins, Weir, Wickremasinghe, Wu, Zheng, Bouchard, Christensen, Evans, Gudnason, Horta, SLR, Liu, Pereira, Psaty, Ridker, Dam, Gauderman, Zhu, Mook-Kanamori, Fornage, Rotimi, Cupples, Kelly, Fox, Hayward, Duijn, Tai, Wong, Kooperberg, Palmas, Rice, Morrison, Elliott, Caulfield, Munroe, Rao, Province and Levy2018). These studies included ~130,000 individuals across multi-ancestry data-sets, but there were limited findings, and analyses in larger sample sizes are currently ongoing.

Polygenic risk score and cardiovascular risk prediction

As GWAS results become publicly available, this has enabled risk prediction modelling to include genetic biomarkers for clinical applications. BP is a highly polygenic trait, influenced by thousands of different SNPs each of which has a small effect on BP. Polygenic risk scores (PRS) have been developed by combining the risk associated with many common DNA sequence variants into one single aggregated risk score (Lewis and Vassos, Reference Lewis and Vassos2020). The first genetic risk score for BP was developed by the ICBP in 2011 by combining together 29 different significant genetic variants into one score (Ehret et al., Reference Ehret, Munroe, Rice, Bochud, Johnson, Chasman, Smith, Tobin, Verwoert, Hwang, Pihur, Vollenweider, O’Reilly, Amin, Bragg-Gresham, Teumer, Glazer, Launer, Hua Zhao, Aulchenko, Heath, Sõber, Parsa, Luan, Arora, Dehghan, Zhang, Lucas, Hicks, Jackson, Peden, Tanaka, Wild, Rudan, Igl, Milaneschi, Parker, Fava, Chambers, Fox, Kumari, Jin Go, van der Harst, Hong Linda Kao, Sjögren, Vinay, Alexander, Tabara, Shaw-Hawkins, Whincup, Liu, Shi, Kuusisto, Tayo, Seielstad, Sim, Hoang Nguyen, Lehtimäki, Matullo, Wu, Gaunt, Charlotte Onland-Moret, Cooper, Platou, Org, Hardy, Dahgam, Palmen, Vitart, Braund, Kuznetsova, Uiterwaal, Adeyemo, Palmas, Campbell, Ludwig, Tomaszewski, Tzoulaki, Palmer, Aspelund, Garcia, Chang, O’Connell, Steinle, Grobbee, Arking, Kardia, Morrison, Hernandez, Najjar, McArdle, Hadley, Brown, Connell, Hingorani, INM, Lawlor, Beilby, Lawrence, Clarke, Hopewell, Ongen, Dreisbach, Li, Hunter Young, Bis, Kähönen, Viikari, Adair, Lee, Chen, Olden, Pattaro, Hoffman Bolton, Köttgen, Bergmann, Mooser, Chaturvedi, Frayling, Islam, Jafar, Erdmann, Kulkarni, Bornstein, Grässler, Groop, Voight, Kettunen, Howard, Taylor, Guarrera, Ricceri, Emilsson, Plump, Barroso, Khaw, Weder, Hunt, Sun, Bergman, Collins, Bonnycastle, Scott, Stringham, Peltonen, Perola, Vartiainen, Brand, Staessen, Wang, Burton, Soler Artigas, Dong, Snieder, Wang, Zhu, Lohman, Rudock, Heckbert, Smith, Wiggins, Doumatey, Shriner, Veldre, Viigimaa, Kinra, Prabhakaran, Tripathy, Langefeld, Rosengren, Thelle, Maria Corsi, Singleton, Forrester, Hilton, McKenzie, Salako, Iwai, Kita, Ogihara, Ohkubo, Okamura, Ueshima, Umemura, Eyheramendy, Meitinger, Wichmann, Shin Cho, Kim, Lee, Scott, Sehmi, Zhang, Hedblad, Nilsson, Davey Smith, Wong, Narisu, Stančáková, Raffel, Yao, Kathiresan, O’Donnell, Schwartz, Arfan Ikram, Longstreth, Mosley, Seshadri, Shrine, Wain, Morken, Swift, Laitinen, Prokopenko, Zitting, Cooper, Humphries, Danesh, Rasheed, Goel, Hamsten, Watkins, Bakker, van Gilst, Janipalli, Radha Mani, Yajnik, Hofman, Mattace-Raso, Oostra, Demirkan, Isaacs, Rivadeneira, Lakatta, Orru, Scuteri, Ala-Korpela, Kangas, Lyytikäinen, Soininen, Tukiainen, Würtz, Twee-Hee Ong, Dörr, Kroemer, Völker, Völzke, Galan, Hercberg, Lathrop, Zelenika, Deloukas, Mangino, Spector, Zhai, Meschia, Nalls, Sharma, Terzic, Kranthi Kumar, Denniff, Zukowska-Szczechowska, Wagenknecht, Gerald, Fowkes, Charchar, PEH, Hayward, Guo, Rotimi, Bots, Brand, Samani, Polasek, Talmud, Nyberg, Kuh, Laan, Hveem, Palmer, van der Schouw, Casas, Mohlke, Vineis, Raitakari, Ganesh, Wong, Shyong Tai, Cooper, Laakso, Rao, Harris, Morris, Dominiczak and Kivimaki2011). The identification of further BP loci has led to the development of PRS with increasing performance to estimate an individual’s risk of hypertension. For example, in 2022, Parcha et al., developed and tested a BP-PRS in a multi-ancestry US cohort (n = 21,897) to evaluate the relative contributions of the traditional cardiovascular risk factors to the development of adverse events in the context of varying BP risk profiles in individuals with no previous cardiovascular disease. They demonstrated that the PRS had an incremental value beyond traditional risk factors highlighting the potential of incorporating genetic information into risk estimates (Parcha et al., Reference Parcha, Pampana, Shetty, Irvin, Natarajan, Lin, Guo, Rich, Rotter, Li, Oparil, Arora and Arora2022). Recently, Keaton et al., (Reference Keaton, Kamali, Xie, Vaez, Williams, Goleva, Ani, Evangelou, Hellwege, Yengo, Young, Traylor, Giri, Zheng, Zeng, Chasman, Morris, Caulfield, Hwang, Kooner, Conen, Attia, Morrison, Loos, Kristiansson, Schmidt, Hicks, Pramstaller, Nelson, Samani, Risch, Gyllensten, Melander, Riese, Wilson, Campbell, Rich, Psaty, Lu, Rotter, Guo, Rice, Vollenweider, Sundström, Langenberg, Tobin, Giedraitis, Luan, Tuomilehto, Kutalik, Ripatti, Salomaa, Girotto, Trompet, Jukema, van der Harst, Ridker, Giulianini, Vitart, Goel, Watkins, Harris, Deary, van der Most, Oldehinkel, Keavney, Hayward, Campbell, Boehnke, Scott, Boutin, Mamasoula, Järvelin, Peters, Gieger, Lakatta, Cucca, Hui, Knekt, Enroth, De Borst, Polašek, Concas, Catamo, Cocca, Li-Gao, Hofer, Schmidt, Spedicati, Waldenberger, Strachan, Laan, Teumer, Dörr, Gudnason, Cook, Ruggiero, Kolcic, Boerwinkle, Traglia, Lehtimäki, Raitakari, Johnson, Newton-Cheh, Brown, Dominiczak, Sever, Poulter, Chambers, Elosua, Siscovick, Esko, Metspalu, Strawbridge, Laakso, Hamsten, Hottenga, de Geus, Morris, Palmer, Nolte, Milaneschi, Marten, Wright, Zeggini, Howson, O’Donnell, Spector, Nalls, Simonsick, Liu, van Duijn, Butterworth, Danesh, Menni, Wareham, Khaw, Sun, Wilson, Cho, Visscher, Denny, Levy, Edwards, Munroe, Snieder and Warren2024) performed the largest single-stage BP GWAS to date (n = 1,028,980 European ancestry individuals), reporting a total of 2,103 independent genetic signals for BP. The BP-PRS generated from this study revealed clinically meaningful differences in BP (16.9 mmHg systolic BP, 95% CI = 15.5–18.2 mmHg, P = 2.22 × 10−126) and more than a seven-fold higher odds of hypertension risk (OR = 7.33; 95% CI = 5.54–9.70; P = 4.13 × 10−44), when comparing individuals in the top (highest genetic risk) versus bottom (lowest risk group) deciles of the PRS in an independent European cohort, Lifelines. The authors also showed that the BP-PRS was significantly associated with higher BP in individuals of African-American ancestry from the All-of-Us Research program in the United States (Keaton et al., Reference Keaton, Kamali, Xie, Vaez, Williams, Goleva, Ani, Evangelou, Hellwege, Yengo, Young, Traylor, Giri, Zheng, Zeng, Chasman, Morris, Caulfield, Hwang, Kooner, Conen, Attia, Morrison, Loos, Kristiansson, Schmidt, Hicks, Pramstaller, Nelson, Samani, Risch, Gyllensten, Melander, Riese, Wilson, Campbell, Rich, Psaty, Lu, Rotter, Guo, Rice, Vollenweider, Sundström, Langenberg, Tobin, Giedraitis, Luan, Tuomilehto, Kutalik, Ripatti, Salomaa, Girotto, Trompet, Jukema, van der Harst, Ridker, Giulianini, Vitart, Goel, Watkins, Harris, Deary, van der Most, Oldehinkel, Keavney, Hayward, Campbell, Boehnke, Scott, Boutin, Mamasoula, Järvelin, Peters, Gieger, Lakatta, Cucca, Hui, Knekt, Enroth, De Borst, Polašek, Concas, Catamo, Cocca, Li-Gao, Hofer, Schmidt, Spedicati, Waldenberger, Strachan, Laan, Teumer, Dörr, Gudnason, Cook, Ruggiero, Kolcic, Boerwinkle, Traglia, Lehtimäki, Raitakari, Johnson, Newton-Cheh, Brown, Dominiczak, Sever, Poulter, Chambers, Elosua, Siscovick, Esko, Metspalu, Strawbridge, Laakso, Hamsten, Hottenga, de Geus, Morris, Palmer, Nolte, Milaneschi, Marten, Wright, Zeggini, Howson, O’Donnell, Spector, Nalls, Simonsick, Liu, van Duijn, Butterworth, Danesh, Menni, Wareham, Khaw, Sun, Wilson, Cho, Visscher, Denny, Levy, Edwards, Munroe, Snieder and Warren2024).

As part of the study design for the large meta-analyses for BP-GWAS, the impact of biological sex has been understudied, thus results are limited in assessing differences between sexes. Kauko et al. (Reference Kauko, Aittokallio, Vaura, Ji, Ebinger, Niiranen and Cheng2021) developed a sex-specific PRS in FinnGen (N = 218,792) and found the female PRS was more strongly associated with hypertension in women than the male PRS in men (Kauko et al., Reference Kauko, Aittokallio, Vaura, Ji, Ebinger, Niiranen and Cheng2021). Similarly, Shetty et al. (Reference Shetty, Pampana, Patel, Li, Yerabolu, Gaonkar, Arora and Arora2023) developed sex-specific systolic BP-PRS in UK Biobank and tested for associations of developing hypertension in 212,669 participants in the All of Us study. They found the genetic risk of systolic BP was more strongly associated with female PRS (Shetty et al., Reference Shetty, Pampana, Patel, Li, Yerabolu, Gaonkar, Arora and Arora2023). Recently, Yang et al. (Reference Yang, Xu, Gupte, Hoffmann, Iribarren, Zhou and Ganesh2024) performed sex-stratified GWAS analyses of BP traits in the UK Biobank resource, identifying 1,346 previously reported and 29 new BP trait-associated loci. Despite equal sample sizes, sex-stratified GWAS of systolic BP, diastolic BP and pulse pressure identified 1.8-fold more loci in the female-only analyses (N = 174,664) than in the male-only analyses (N = 174,664). These sex-specific loci were enriched for hormone-related transcription factors, in particular, oestrogen receptor 1, and sex-specific polygenic association of BP traits was associated with multiple cardiovascular traits (Yang et al., Reference Yang, Xu, Gupte, Hoffmann, Iribarren, Zhou and Ganesh2024).

Integration of PRS for early disease risk prediction is an area of active research, and with an increased number of loci being found for complex diseases, the percentage of the heritability explained is increasing, and better PRS are being developed (Ge et al., Reference Ge, Chen, Ni, Feng and Smoller2019). With increasing datasets being recruited of non-European ancestry, new loci discovery and population-specific PRS are being developed (Fujii et al., Reference Fujii, Hishida, Nakatochi, Okumiyama, Takashima, Tsuboi, Suzuki, Ikezaki, Shimanoe, Kato, Tamura, Ito, Michihata, Tanoue, Suzuki, Kuriki, Kadota, Watanabe, Momozawa, Wakai and Matsuo2024). Genomics PLC have sought to integrate PRS to re-engineer prevention strategies in healthcare for commercial exploitation (Genomics PLC). In their trial, Fuat et al., (Reference Fuat, Adlen, Monane, Coll, Groves, Little, Wild, Kamali, Soni, Haining, Riding, Riveros-Mckay, Peneva, Lachapelle, Giner-Delgado, Weale, Plagnol, Harrison and Donnelly2024) enrolled 832 participants across 12 UK primary care practices. They observed that the integration of genetic data to a conventional risk algorithm (QRISK2) for cardiovascular disease was accepted by healthcare professionals and participants in primary care with planned changes in prevention strategies (Fuat et al., Reference Fuat, Adlen, Monane, Coll, Groves, Little, Wild, Kamali, Soni, Haining, Riding, Riveros-Mckay, Peneva, Lachapelle, Giner-Delgado, Weale, Plagnol, Harrison and Donnelly2024). These risk prediction tools are a funnel for personalised medicine with potential for population-level risk stratification. However, currently, it is unclear how this genetic information is best integrated into guideline-recommended risk prediction tools. One of the main weaknesses of PRS is that they report genetic risk relative to a given population, thus their contribution is only meaningful in the context of other risk factors, limiting their clinical applicability (Ding et al., Reference Ding, Hou, Burch, Lapinska, Privé, Vilhjálmsson, Sankararaman and Pasaniuc2021; Abramowitz et al., Reference Abramowitz, Boulier, Keat, Cardone, Shivakumar, DePaolo, Judy, Bermudez, Mimouni, Neylan, Kim, Rader, Ritchie, Voight, Pasaniuc, Levin, Damrauer, BioBank, Rader, Ritchie, Weaver, Naseer, Sirugo, Poindexter, Ko, Nerz, Livingstone, Vadivieso, DerOhannessian, Tran, Stephanowski, Santos, Haubein, Dunn, Verma, Kripke, Risman, Judy, Wollack, Verma, Damrauer, Bradford, Dudek and Drivas2024).

GWAS provides candidate genes, disease mechanisms and PRS for assessing relationships between BP and other traits. The PRS however do not provide information on whether there are causal relationships. Mendelian randomisation (MR) is being widely applied to infer causality using genetic data, with power equivalent to that of a randomized controlled trial, overcoming traditional bias attributed to confounders and reverse causation (Burgess et al., Reference Burgess, Butterworth, Malarstig and Thompson2012). There have been several applications of BP in an MR framework (Nazarzadeh et al., Reference Nazarzadeh, Pinho-Gomes, Byrne, Canoy, Raimondi, Solares, Otto and Rahimi2019; Tang et al., Reference Tang, Ma, Lei, Ding, Yang and He2023). In an MR study by Clarke et al., (Reference Clarke, Wright, Walters, Gan, Guo, Millwood, Yang, Chen, Lewington, Lv, Yu, Avery, Lin, Wang, Peto, Collins, Li, Bennett, Parish and Chen2023), higher levels of genetically predicted systolic BP were associated with higher risks of major cardiovascular disease in the range of 120 to 170 mmHg of participants in the China Kadoorie Biobank (Clarke et al., Reference Clarke, Wright, Walters, Gan, Guo, Millwood, Yang, Chen, Lewington, Lv, Yu, Avery, Lin, Wang, Peto, Collins, Li, Bennett, Parish and Chen2023). The associations of lower genetically-predicted systolic BP with lower risks of cardiovascular outcomes down to 120 mmHg challenge the conventional strategy of restricting the initiation of BP-lowering medication to people with systolic BP ≥140 mmHg. These findings provide support for lowering systolic BP for a wider range of the population down to 120 mmHg.

From omics to AI for gene identification

Advances in multi-omics technologies have provided new insights into the pathophysiology of hypertension. The omics approaches target different molecular levels, including the genome, transcriptome, proteome, metabolome and microbiome, providing a comprehensive assessment of the processes by which DNA is transcribed into RNA that is translated into proteins that regulate downstream metabolism. These novel datasets can provide valuable insights into the mechanisms of hypertension, allowing for a better understanding of its pathogenesis and aiding the clinical needs of early diagnosis and monitoring of the treatment response. Several computational approaches have been used to prioritise candidate genes leveraging multi-omic datasets, with most groups using the GWAS results from the 2018 Evangelou et al., study (Evangelou et al., Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, Del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018). For example, Eales et al. (Reference Eales, Jiang, Xu, Saluja, Akbarov, Cano-Gamez, McNulty, Finan, Guo, Wystrychowski, Szulinska, Thomas, Pramanik, Chopade, Prestes, Wise, Evangelou, Salehi, Shakanti, Ekholm, Denniff, Nazgiewicz, Eichinger, Godfrey, Antczak, Glyda, Król, Eyre, Brown, Berzuini, Bowes, Caulfield, Zukowska-Szczechowska, Zywiec, Bogdanski, Kretzler, Woolf, Talavera, Keavney, Maffia, Guzik, O’Keefe, Trynka, Samani, Hingorani, Sampson, Morris, Charchar and Tomaszewski2021) integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterise the effects of BP SNPs from GWAS on renal transcriptome and epigenome (Eales et al., Reference Eales, Jiang, Xu, Saluja, Akbarov, Cano-Gamez, McNulty, Finan, Guo, Wystrychowski, Szulinska, Thomas, Pramanik, Chopade, Prestes, Wise, Evangelou, Salehi, Shakanti, Ekholm, Denniff, Nazgiewicz, Eichinger, Godfrey, Antczak, Glyda, Król, Eyre, Brown, Berzuini, Bowes, Caulfield, Zukowska-Szczechowska, Zywiec, Bogdanski, Kretzler, Woolf, Talavera, Keavney, Maffia, Guzik, O’Keefe, Trynka, Samani, Hingorani, Sampson, Morris, Charchar and Tomaszewski2021). Sheng et al. created maps of expression quantitative trait loci (eQTLs) for 659 kidney samples and identified cell-type eQTLs, and integrated GWAS results with single-cell RNA sequencing (scRNA-seq) and a single-nucleus assay for transposase-accessible chromatin with high-throughput sequencing, a method for identifying regulatory elements in specific cell types. Their study indicated 200 genes for kidney function and hypertension and highlighted endothelial cells and distal tubules as being important for BP (Sheng et al., Reference Sheng, Guan, Ma, Wu, Liu, Qiu, Vitale, Miao, Seasock, Palmer, Shin, Duffin, Pullen, Edwards, Hellwege, Hung, Li, Voight, Coffman, Brown and Susztak2021). More recently, Ganji-Arjenaki et al. (Reference Ganji-Arjenaki, Kamali, Evangelou, Warren, Gao, Ntritsos, Dimou, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li -Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, Mutsert, ASF, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, FDG, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, DCM, Lin, Lind, Lindgren, Liu, RJF, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Psaty, Wain, Elliott, Caulfield, Sardari, de Borst, Snieder and Vaez2024) leveraged the largest GWAS of BP traits with scRNA-seq from 14 mature human kidneys and prioritised myofibroblasts and endothelial cells among the 33 annotated cell types involved in BP regulation (Ganji-Arjenaki et al., Reference Ganji-Arjenaki, Kamali, Evangelou, Warren, Gao, Ntritsos, Dimou, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li -Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, Mutsert, ASF, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, FDG, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, DCM, Lin, Lind, Lindgren, Liu, RJF, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Psaty, Wain, Elliott, Caulfield, Sardari, de Borst, Snieder and Vaez2024). Other efforts include van Duijvenboden et al. (2022) who conducted annotation-informed fine-mapping incorporating tissue-specific chromatin segmentation and colocalisation using transcriptomics and additional gene prioritisation utilising both scRNA-seq and proteomics datasets to identify causal variants and candidate effector genes for BP traits (Duijvenboden et al., Reference Duijvenboden, Ramírez, Young, Olczak, Ahmed, Alhammadi, Bell, Morris and Munroe2023). Kamali et al. (Reference Kamali, Keaton, Haghjooy Javanmard, Edwards, Snieder and Vaez2022) also developed a pipeline to leverage epigenomic and transcriptomic datasets and identified 1,880 prioritised genes for BP and downstream from this, the genes were assessed for druggability and tested for functional enrichment (Kamali et al., Reference Kamali, Keaton, Haghjooy Javanmard, Edwards, Snieder and Vaez2022). The different approaches have highlighted many BP genes for follow-up studies.

Machine learning (ML) approaches have also been used to prioritise candidate genes discovered through GWAS. ML algorithms build mathematical models that are learnt from training data to make predictions. ML in GWAS has been used to boost statistical power of GWAS, refine PRS produced from GWAS and prioritise candidate genes in post-GWAS-analysis (Li et al., Reference Li, Zhang and Wang2017; Nicholls et al., Reference Nicholls, John, Watson, Munroe, Barnes and Cabrera2020). Additionally, multi-parallel functional experiments have also been applied to gain insights into causality and related molecular mechanisms of genetic variants derived from GWAS. Oliveros et al. (Reference Oliveros, Delfosse, Lato, Kiriakopulos, Mokhtaridoost, Said, McMurray, Browning, Mattioli, Meng, Ellis, Mital, Melé and Maass2023) functionally characterised 4,608 genetic variants in linkage with SNPs at 135 BP loci in vascular smooth muscle cells and cardiomyocytes using parallel reporter assays. This approach demonstrated the potential to identify functionally relevant variants for a better understanding of BP genetic architecture (Oliveros et al., Reference Oliveros, Delfosse, Lato, Kiriakopulos, Mokhtaridoost, Said, McMurray, Browning, Mattioli, Meng, Ellis, Mital, Melé and Maass2023).

Pharmacogenomics, therapeutics and druggability

Genetics research has promoted the discipline of pharmacogenomics exploring the influence of genomic variation on an individual’s response to BP therapy (Roden et al., Reference Roden, McLeod, Relling, Williams, Mensah, Peterson and Driest2019). This is particularly necessary for hypertension as there is a large proportion of individuals who do not respond to current treatments. The development of new drug treatments is therefore one key driver of BP genomics and exploring potential for drug repurposing. Evangelou et al. (Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, Del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018) discovered five loci containing genes that are drug targets for several known antihypertensive classes and Surendran et al. (Reference Surendran, Feofanova, Lahrouchi, Ntalla, Karthikeyan, Cook, Chen, Mifsud, Yao, Kraja, Cartwright, Hellwege, Giri, Tragante, Thorleifsson, Liu, Prins, Stewart, Cabrera, Eales, Akbarov, Auer, Bielak, Bis, Braithwaite, Brody, Daw, Warren, Drenos, Nielsen, Faul, Fauman, Fava, Ferreira, Foley, Franceschini, Gao, Giannakopoulou, Giulianini, Gudbjartsson, Guo, Harris, Havulinna, Helgadottir, Huffman, Hwang, Kanoni, Kontto, Larson, Li-Gao, Lindström, Lotta, Lu, Luan, Mahajan, Malerba, NGD, Mei, Menni, Mook-Kanamori, Mosen-Ansorena, Müller-Nurasyid, Paré, Paul, Perola, Poveda, Rauramaa, Richard, Richardson, Sepúlveda, Sim, Smith, Smith, Staley, Stanáková, Sulem, Thériault, Thorsteinsdottir, Trompet, Varga, Velez Edwards, Veronesi, Weiss, Willems, Yao, Young, Yu, Zhang, Zhao, Zhao, Evangelou, Aeschbacher, Asllanaj, Blankenberg, Bonnycastle, Bork-Jensen, Brandslund, Braund, Burgess, Cho, Christensen, Connell, Mutsert, Dominiczak, Dörr, Eiriksdottir, Farmaki, Gaziano, Grarup, Grove, Hallmans, Hansen, Have, Heiss, Jørgensen, Jousilahti, Kajantie, Kamat, Käräjämäki, Karpe, Koistinen, Kovesdy, Kuulasmaa, Laatikainen, Lannfelt, Lee, Lee, Linneberg, Martin, Moitry, Nadkarni, Neville, Palmer, Papanicolaou, Pedersen, Peters, Poulter, Rasheed, Rasmussen, Rayner, Mägi, Renström, Rettig, Rossouw, Schreiner, Sever, Sigurdsson, Skaaby, Sun, Sundstrom, Thorgeirsson, Esko, Trabetti, Tsao, Tuomi, Turner, Tzoulaki, Vaartjes, Vergnaud, Willer, Wilson, Witte, Yonova-Doing, Zhang, Aliya, Almgren, Amouyel, Asselbergs, Barnes, Blakemore, Boehnke, Bots, Bottinger, Buring, Chambers, Chen, Chowdhury, Conen, Correa, Davey Smith, Boer, Deary, Dedoussis, Deloukas, Di Angelantonio, Elliott, Felix, Ferrières, Ford, Fornage, Franks, Franks, Frossard, Gambaro, Gaunt, Groop, Gudnason, Harris, Hayward, Hennig, Herzig, Ingelsson, Tuomilehto, Järvelin, Jukema, SLR, Kee, Kooner, Kooperberg, Launer, Lind, Loos, Majumder, Laakso, McCarthy, Melander, Mohlke, Murray, Nordestgaard, Orho-Melander, Packard, Padmanabhan, Palmas, Polasek, Porteous, Prentice, Province, Relton, Rice, Ridker, Rolandsson, Rosendaal, Rotter, Rudan, Salomaa, Samani, Sattar, Sheu, Smith, Soranzo, Spector, Starr, Sebert, Taylor, Lakka, Timpson, Tobin, van der Harst, van der Meer, Ramachandran, Verweij, Virtamo, Völker, Weir, Zeggini, Charchar, Wareham, Langenberg, Tomaszewski, Butterworth, Caulfield, Danesh, Edwards, Holm, Hung, Lindgren, Liu, Manning, Morris, Morrison, O’Donnell, Psaty, Saleheen, Stefansson, Boerwinkle, Chasman, Levy, Newton-Cheh, Munroe and Howson2020) reported 23 genes as potential drug targets (Evangelou et al., Reference Evangelou, Warren, Mosen-Ansorena, Mifsud, Pazoki, Gao, Ntritsos, Dimou, Cabrera, Karaman, Ng, Evangelou, Witkowska, Tzanis, Hellwege, Giri, Velez Edwards, Sun, Cho, Gaziano, Wilson, Tsao, Kovesdy, Esko, Mägi, Milani, Almgren, Boutin, Debette, Ding, Giulianini, Holliday, Jackson, Li-Gao, Lin, Luan, Mangino, Oldmeadow, Prins, Qian, Sargurupremraj, Shah, Surendran, Thériault, Verweij, Willems, Zhao, Amouyel, Connell, de Mutsert, Doney, Farrall, Menni, Morris, Noordam, Paré, Poulter, Shields, Stanton, Thom, Abecasis, Amin, Arking, Ayers, Barbieri, Batini, Bis, Blake, Bochud, Boehnke, Boerwinkle, Boomsma, Bottinger, Braund, Brumat, Campbell, Campbell, Chakravarti, Chambers, Chauhan, Ciullo, Cocca, Collins, Cordell, Davies, de Borst, de Geus, Deary, Deelen, Del Greco, Demirkale, Dörr, Ehret, Elosua, Enroth, Erzurumluoglu, Ferreira, Frånberg, Franco, Gandin, Gasparini, Giedraitis, Gieger, Girotto, Goel, Gow, Gudnason, Guo, Gyllensten, Hamsten, Harris, Harris, Hartman, Havulinna, Hicks, Hofer, Hofman, Hottenga, Huffman, Hwang, Ingelsson, James, Jansen, Jarvelin, Joehanes, Johansson, Johnson, Joshi, Jousilahti, Jukema, Jula, Kähönen, Kathiresan, Keavney, Khaw, Knekt, Knight, Kolcic, Kooner, Koskinen, Kristiansson, Kutalik, Laan, Larson, Launer, Lehne, Lehtimäki, Liewald, Lin, Lind, Lindgren, Liu, Loos, Lopez, Lu, Lyytikäinen, Mahajan, Mamasoula, Marrugat, Marten, Milaneschi, Morgan, Morris, Morrison, Munson, Nalls, Nandakumar, Nelson, Niiranen, Nolte, Nutile, Oldehinkel, Oostra, O’Reilly, Org, Padmanabhan, Palmas, Palotie, Pattie, Penninx, Perola, Peters, Polasek, Pramstaller, Nguyen, Raitakari, Ren, Rettig, Rice, Ridker, Ried, Riese, Ripatti, Robino, Rose, Rotter, Rudan, Ruggiero, Saba, Sala, Salomaa, Samani, Sarin, Schmidt, Schmidt, Shrine, Siscovick, Smith, Snieder, Sõber, Sorice, Starr, Stott, Strachan, Strawbridge, Sundström, Swertz, Taylor, Teumer, Tobin, Tomaszewski, Toniolo, Traglia, Trompet, Tuomilehto, Tzourio, Uitterlinden, Vaez, van der Most, van Duijn, Vergnaud, Verwoert, Vitart, Völker, Vollenweider, Vuckovic, Watkins, Wild, Willemsen, Wilson, Wright, Yao, Zemunik, Zhang, Attia, Butterworth, Chasman, Conen, Cucca, Danesh, Hayward, Howson, Laakso, Lakatta, Langenberg, Melander, Mook-Kanamori, Palmer, Risch, Scott, Scott, Sever, Spector, van der Harst, Wareham, Zeggini, Levy, Munroe, Newton-Cheh, Brown, Metspalu, Hung, O’Donnell, Edwards, Psaty, Tzoulaki, Barnes, Wain, Elliott and Caulfield2018; Surendran et al., Reference Surendran, Feofanova, Lahrouchi, Ntalla, Karthikeyan, Cook, Chen, Mifsud, Yao, Kraja, Cartwright, Hellwege, Giri, Tragante, Thorleifsson, Liu, Prins, Stewart, Cabrera, Eales, Akbarov, Auer, Bielak, Bis, Braithwaite, Brody, Daw, Warren, Drenos, Nielsen, Faul, Fauman, Fava, Ferreira, Foley, Franceschini, Gao, Giannakopoulou, Giulianini, Gudbjartsson, Guo, Harris, Havulinna, Helgadottir, Huffman, Hwang, Kanoni, Kontto, Larson, Li-Gao, Lindström, Lotta, Lu, Luan, Mahajan, Malerba, NGD, Mei, Menni, Mook-Kanamori, Mosen-Ansorena, Müller-Nurasyid, Paré, Paul, Perola, Poveda, Rauramaa, Richard, Richardson, Sepúlveda, Sim, Smith, Smith, Staley, Stanáková, Sulem, Thériault, Thorsteinsdottir, Trompet, Varga, Velez Edwards, Veronesi, Weiss, Willems, Yao, Young, Yu, Zhang, Zhao, Zhao, Evangelou, Aeschbacher, Asllanaj, Blankenberg, Bonnycastle, Bork-Jensen, Brandslund, Braund, Burgess, Cho, Christensen, Connell, Mutsert, Dominiczak, Dörr, Eiriksdottir, Farmaki, Gaziano, Grarup, Grove, Hallmans, Hansen, Have, Heiss, Jørgensen, Jousilahti, Kajantie, Kamat, Käräjämäki, Karpe, Koistinen, Kovesdy, Kuulasmaa, Laatikainen, Lannfelt, Lee, Lee, Linneberg, Martin, Moitry, Nadkarni, Neville, Palmer, Papanicolaou, Pedersen, Peters, Poulter, Rasheed, Rasmussen, Rayner, Mägi, Renström, Rettig, Rossouw, Schreiner, Sever, Sigurdsson, Skaaby, Sun, Sundstrom, Thorgeirsson, Esko, Trabetti, Tsao, Tuomi, Turner, Tzoulaki, Vaartjes, Vergnaud, Willer, Wilson, Witte, Yonova-Doing, Zhang, Aliya, Almgren, Amouyel, Asselbergs, Barnes, Blakemore, Boehnke, Bots, Bottinger, Buring, Chambers, Chen, Chowdhury, Conen, Correa, Davey Smith, Boer, Deary, Dedoussis, Deloukas, Di Angelantonio, Elliott, Felix, Ferrières, Ford, Fornage, Franks, Franks, Frossard, Gambaro, Gaunt, Groop, Gudnason, Harris, Hayward, Hennig, Herzig, Ingelsson, Tuomilehto, Järvelin, Jukema, SLR, Kee, Kooner, Kooperberg, Launer, Lind, Loos, Majumder, Laakso, McCarthy, Melander, Mohlke, Murray, Nordestgaard, Orho-Melander, Packard, Padmanabhan, Palmas, Polasek, Porteous, Prentice, Province, Relton, Rice, Ridker, Rolandsson, Rosendaal, Rotter, Rudan, Salomaa, Samani, Sattar, Sheu, Smith, Soranzo, Spector, Starr, Sebert, Taylor, Lakka, Timpson, Tobin, van der Harst, van der Meer, Ramachandran, Verweij, Virtamo, Völker, Weir, Zeggini, Charchar, Wareham, Langenberg, Tomaszewski, Butterworth, Caulfield, Danesh, Edwards, Holm, Hung, Lindgren, Liu, Manning, Morris, Morrison, O’Donnell, Psaty, Saleheen, Stefansson, Boerwinkle, Chasman, Levy, Newton-Cheh, Munroe and Howson2020). Similarly, Keaton et al. (Reference Keaton, Kamali, Xie, Vaez, Williams, Goleva, Ani, Evangelou, Hellwege, Yengo, Young, Traylor, Giri, Zheng, Zeng, Chasman, Morris, Caulfield, Hwang, Kooner, Conen, Attia, Morrison, Loos, Kristiansson, Schmidt, Hicks, Pramstaller, Nelson, Samani, Risch, Gyllensten, Melander, Riese, Wilson, Campbell, Rich, Psaty, Lu, Rotter, Guo, Rice, Vollenweider, Sundström, Langenberg, Tobin, Giedraitis, Luan, Tuomilehto, Kutalik, Ripatti, Salomaa, Girotto, Trompet, Jukema, van der Harst, Ridker, Giulianini, Vitart, Goel, Watkins, Harris, Deary, van der Most, Oldehinkel, Keavney, Hayward, Campbell, Boehnke, Scott, Boutin, Mamasoula, Järvelin, Peters, Gieger, Lakatta, Cucca, Hui, Knekt, Enroth, De Borst, Polašek, Concas, Catamo, Cocca, Li-Gao, Hofer, Schmidt, Spedicati, Waldenberger, Strachan, Laan, Teumer, Dörr, Gudnason, Cook, Ruggiero, Kolcic, Boerwinkle, Traglia, Lehtimäki, Raitakari, Johnson, Newton-Cheh, Brown, Dominiczak, Sever, Poulter, Chambers, Elosua, Siscovick, Esko, Metspalu, Strawbridge, Laakso, Hamsten, Hottenga, de Geus, Morris, Palmer, Nolte, Milaneschi, Marten, Wright, Zeggini, Howson, O’Donnell, Spector, Nalls, Simonsick, Liu, van Duijn, Butterworth, Danesh, Menni, Wareham, Khaw, Sun, Wilson, Cho, Visscher, Denny, Levy, Edwards, Munroe, Snieder and Warren2024) used transcriptome-wide association studies (TWAS) to identify 38 genes, including an established drug target for BP medications (ADRA1A) and five genes targeted by other approved drugs (Keaton et al., Reference Keaton, Kamali, Xie, Vaez, Williams, Goleva, Ani, Evangelou, Hellwege, Yengo, Young, Traylor, Giri, Zheng, Zeng, Chasman, Morris, Caulfield, Hwang, Kooner, Conen, Attia, Morrison, Loos, Kristiansson, Schmidt, Hicks, Pramstaller, Nelson, Samani, Risch, Gyllensten, Melander, Riese, Wilson, Campbell, Rich, Psaty, Lu, Rotter, Guo, Rice, Vollenweider, Sundström, Langenberg, Tobin, Giedraitis, Luan, Tuomilehto, Kutalik, Ripatti, Salomaa, Girotto, Trompet, Jukema, van der Harst, Ridker, Giulianini, Vitart, Goel, Watkins, Harris, Deary, van der Most, Oldehinkel, Keavney, Hayward, Campbell, Boehnke, Scott, Boutin, Mamasoula, Järvelin, Peters, Gieger, Lakatta, Cucca, Hui, Knekt, Enroth, De Borst, Polašek, Concas, Catamo, Cocca, Li-Gao, Hofer, Schmidt, Spedicati, Waldenberger, Strachan, Laan, Teumer, Dörr, Gudnason, Cook, Ruggiero, Kolcic, Boerwinkle, Traglia, Lehtimäki, Raitakari, Johnson, Newton-Cheh, Brown, Dominiczak, Sever, Poulter, Chambers, Elosua, Siscovick, Esko, Metspalu, Strawbridge, Laakso, Hamsten, Hottenga, de Geus, Morris, Palmer, Nolte, Milaneschi, Marten, Wright, Zeggini, Howson, O’Donnell, Spector, Nalls, Simonsick, Liu, van Duijn, Butterworth, Danesh, Menni, Wareham, Khaw, Sun, Wilson, Cho, Visscher, Denny, Levy, Edwards, Munroe, Snieder and Warren2024). However, as previously described, GWAS and downstream bioinformatics analyses do not pinpoint the causal gene, they only provide candidates for further exploration. Functional cellular studies and the development of animal models remain important tools once a gene is identified as having strong potential as a druggable target.

Drug-gene interaction databases have enabled a comprehensive catalogue of druggable genes (Gaulton et al., Reference Gaulton, Hersey, Nowotka, Bento, Chambers, Mendez, Mutowo, Atkinson, Bellis, Cibrián-Uhalte, Davies, Dedman, Karlsson, Magariños, Overington, Papadatos, Smit and Leach2017; Cotto et al., Reference Cotto, Wagner, Feng, Kiwala, Coffman, Spies, Wollam, Spies, Griffith and Griffith2018). These open-access online resources have allowed a search by gene of drug-gene interactions or potential for druggability. Canagliflozin, an SGLT2 inhibitor, is an approved and widely used medication in the treatment of type 2 diabetes targeting the gene SLC5A1. However, it was noted that it reduced systolic BP in individuals with type 2 diabetes and chronic kidney disease, providing end-organ protection for this cohort of patients who experience a high burden of hypertension (Ye et al., Reference Ye, Jardine, Oshima, Hockham, Heerspink, Agarwal, Bakris, Schutte, Arnott, Chang, Górriz, Cannon, Charytan, Zeeuw, Levin, Mahaffey, Neal, Pollock, Wheeler, Tanna, Cheng, Perkovic and Neuen2021). Although it is currently not licenced for BP treatment, it highlights the repurposing potential of existing drugs.

The most common distinct cause of hypertension is primary hyperaldosteronism, also known as Conn’s syndrome. It has been shown that some patients with treatment-resistant hypertension, defined as uncontrolled, high BP despite being on three or more different antihypertensive drug classes, have increased aldosterone production. Baxdrostat, an aldosterone synthase inhibitor, targets the gene CYP11B2, which encodes aldosterone synthase in the adrenal gland. The CYP11B2 candidate gene was found to be genome-wide significant in BP-GWAS of Japanese individuals by Kanai et al. (Reference Kanai, Akiyama, Takahashi, Matoba, Momozawa, Ikeda, Iwata, Ikegawa, Hirata, Matsuda, Kubo, Okada and Kamatani2018) and also in subsequent European ancestry BP-GWAS (Keaton et al., Reference Keaton, Kamali, Xie, Vaez, Williams, Goleva, Ani, Evangelou, Hellwege, Yengo, Young, Traylor, Giri, Zheng, Zeng, Chasman, Morris, Caulfield, Hwang, Kooner, Conen, Attia, Morrison, Loos, Kristiansson, Schmidt, Hicks, Pramstaller, Nelson, Samani, Risch, Gyllensten, Melander, Riese, Wilson, Campbell, Rich, Psaty, Lu, Rotter, Guo, Rice, Vollenweider, Sundström, Langenberg, Tobin, Giedraitis, Luan, Tuomilehto, Kutalik, Ripatti, Salomaa, Girotto, Trompet, Jukema, van der Harst, Ridker, Giulianini, Vitart, Goel, Watkins, Harris, Deary, van der Most, Oldehinkel, Keavney, Hayward, Campbell, Boehnke, Scott, Boutin, Mamasoula, Järvelin, Peters, Gieger, Lakatta, Cucca, Hui, Knekt, Enroth, De Borst, Polašek, Concas, Catamo, Cocca, Li-Gao, Hofer, Schmidt, Spedicati, Waldenberger, Strachan, Laan, Teumer, Dörr, Gudnason, Cook, Ruggiero, Kolcic, Boerwinkle, Traglia, Lehtimäki, Raitakari, Johnson, Newton-Cheh, Brown, Dominiczak, Sever, Poulter, Chambers, Elosua, Siscovick, Esko, Metspalu, Strawbridge, Laakso, Hamsten, Hottenga, de Geus, Morris, Palmer, Nolte, Milaneschi, Marten, Wright, Zeggini, Howson, O’Donnell, Spector, Nalls, Simonsick, Liu, van Duijn, Butterworth, Danesh, Menni, Wareham, Khaw, Sun, Wilson, Cho, Visscher, Denny, Levy, Edwards, Munroe, Snieder and Warren2024). It is a once daily oral medication currently under study with promising phase 2 clinical trial results, which may expand the possible choices of therapeutic agents for treatment-resistant hypertension (Freeman et al., Reference Freeman, Halvorsen, Marshall, Pater, Isaacsohn, Pearce, Murphy, Alp, Srivastava, Bhatt and Brown2022).

The biological architecture of hypertension is complex, and existing medications target only specific mechanisms in BP regulation, with variable effectiveness across individuals (Thomopoulos et al., Reference Thomopoulos, Parati and Zanchetti2015). The development of gene-editing and RNA-based approaches has inspired new treatment modalities for hypertension. These techniques allow selective and organ-specific modulation of systems involved in BP regulation. Antisense oligonucleotides (ASO) and small interfering RNA (siRNA) have been used to specifically target the hepatic angiotensinogen (AGT) production, with the scope of effectively downregulating the activation of the renin-angiotensin system (Masi et al., Reference Masi, Dalpiaz and Borghi2024). These approaches have the potential to simplify BP treatment regimens with weekly, monthly or even once-only injection of the drugs. Among the various technologies, siRNA and ASO that reduce hepatic AGT production are currently in advanced development, with phase I and II clinical trials showing their safety and effectiveness (Desai et al., Reference Desai, Webb, Taubel, Casey, Cheng, Robbie, Foster, Huang, Rhyee, Sweetser and Bakris2023; Bakris et al., Reference Bakris, Saxena, Gupta, Chalhoub, Lee, Stiglitz, Makarova, Goyal, Guo, Zappe, Desai, Carr, Case, Jaeger, Bruns, Stratman, Kidwell, Cunningham, Piccone, Klein, Acuna, Arora, Clark, Fink, Garcia, George, Gray, Mahaffey, McElheney, Ortiz, Saumya, Wallace, Watts, Zambrana, Denham, Rivera, Avworo, Hedges, Fancher, Abadier, Braud, Cenatiempo, Elwood, Gray, Gray, Griffin, Khan, Kongquee, LaTorraca, Liles, Livingston, Lozano, Lupton, Lyles, Mardini, Moss, Packer, Patel, Russ, Scinicariello, Trull, Warren, Chalhoub, Angel, Dhakhwa, Gabon, Goodwin, Jones, Joyce, Kamble, McFall, Githiiyu, Robinson, Tomlinson, Hadziavdic, Vega, Greenwald, Achan, Ruiz, Buksh, Chauhan, Derisseau, Ferguson, Grabowski, Gumerova, Hernandez, Martin, Patel, Nanda, Perez, Ribeca, Rueda, Guth, Zaki, Green, Mondoc, Buynak, Andree, Brazinsky, Fuller, Green, Ibrahim, Idowu, Lee, Lewis, Luna, McNeal, Owens, Perez, Petty, Smith, Volom, Webb, Williams, Yarosz, Gabra, Andrawis, Aziz, Hanna, Manalo, Helow, Davila, Crisp, Douglas, Everett, Graham, Heard, Mackie, Mayer, Moore, Resurreccion, Sidey, Stephens, Strickland, Camp, Wilder, Witt, Wolfer, Groben, Aeschliman, Audlehelm, Fitz, Greene, Hippen, Johnson, Latcham, Leggett, Link, Lovell, Marlow, Marske, Maxwell, Newsom-Henderson, Oelberg, Ollinger, Risius, Ryther, Waddell, Zellerman, Santofimio, Plantholt, Beatty, Blubaugh, Bootz, Cole, Conners, Coombs, Goddard, Ince, Kiddy, Klimuszka, Kuhn, Lowry, Previll, Rioux, Scott, Shepherd, Urffer, Smiley, Lucksinger, Alvord, Anderson, Block, Chan, Delgado, Frost, Gadbois, Hamlin, Johnson, Juncal, Kelly, Kelly, Kelly, Kerwin, Kuehl, Ostovar, Rackley, Rocha, Sandberg, Sheghewi, Smith, Taucher, Vasquez, Rodriguez, Weisbart, Wescom, Williams, Overcash, Anorve, Asmann, Bovee, Castillo, Chu, Coslet, Davis, Dinan, Dubbula, Esparza, Foster, Garcia, Gonzales, Gonzalez, Kappen, Kornblatt, Lauderdale, Lee, Lindholm, Lindsay, Gomez, Marquez, Meza, Odom, Orel, Paselio, Penziner, Pu, Quillin, Ramirez, Ramirez, Salgado, Shores, Taitingfong, Tande, Tuiletufuga, Tyler, Vega, Zepeda, Anderson, Carhill, Clark, Dean, Devine, DiPeri, Espinal, Hawkins, Irra, Ledezma, Lopez-Wood, Luna, Mansour, Marriott, Perez, Ramsey, Reedy, Spinks, Tanori, Tatelbaum, Vasquez, Vasquez, Vigil, Worthen, Yu, Zuniga, Dennis, Alvarado, Cox, Cullaro, Dunbar, Giorlando, Hannan, Hastings, Hoskins, Krambeck, Laurent, Martinez, Mister, Moss, Muli, Quinn, Reed, Robinson, Saavedra, Simon, Smith, Touchet, Wright, Trevino, DeVries, Allison-Hicks, Light, Rubach, Mai, Osborn, Sheets, Carver, Reichman, Lotfi, Berrios, Vulichi, Naguleswaran, Subhan, Rios, Baron, Khowaja, Nair, Vicente, LLG, USA, Lamichhane, Ekomoda, Nair, Maldonado, Naqvi, Dayani, Patro, Golandaz, Jaka, Rios, Gurung, Gongloor, Coreas, Demir, Celik, McGill, Usdan, Arnold, Heckle, Scatamacchia, Anthony, Marsh, Fair, Stewart, Hamlet, Presley, Granberry, Flowers, Houpt, O’Brien, Evans, Williams, Sinatra, Powell, Flagg, Pipkin, Wheeler, Wells, Gruber, Jones, Toor, Iskiwitz, Boyd, Epps, Cole, Grayson-Mathis, Web, Turner, Reese, Robinson, Goodwin, Parker, Ward, Solomon, Lawson, Pledger, Peterson, Carignan, Oguoma-Richards, Jones, McFarland-Head, Bundeff, Wojtowicz, Holland, Sanders, Simon, Lawrence, Bolton, Lemoine, Harris, Kingsley, Bryant, Clawson, Murphy, Allison, Newman, Preece, Zook, Roznos, Russell, Rodriguez, Roy, Layle, Mehra, Bowen, Johnson, Guillen, Leone, McCormick, Hermann, Sarno, Abellatif, Cleghorn, Elansary, Israel, Leeward, Parra, Harris, Patel, Cawley, Castro, Miroshnikova, Dever, Venereo, Paez, Isla, Martin, Fernandez, Hernandez, Lavoy, Rios, Hernandez, Denenberg, McTier, Reynolds, Thomas, Eubanks, Oliver, Jacobs, Mirkil, Menasche, Yee, Vasquez, Garcia, Elio, Arenas, Buena, Garcia, Cannon, Novotny, Oliver, Cannon, Gatdula, Gillenwater, Rafi, Derian, Ramsey, Culbreth, Fessler, Sorrill, Mauri, Rosen, Acosta, Brauchle, Castaneda, Castells, Castro, MBC, Flerisme, Garcia, Gomez, Hidalgo, Jimenez, Legon, Lella, Lemus, Rico-Aramillo, Rodriguez, Rodriguez, Salazar, Santana, Tercero, Martin, Acevedo, Anderson, Baig, Baker, Basrai, Cabrera, Caroll, Chatmon, Cheema, Chowdhry, Cordero, Deandres, Deshpande, Dileep, Dolfi, Eng, Fountain, Gali, Hernandez, Iskandar, Khan, Knight, Kundapati, Lobo, Lokhandwala, Lokhandwala, Mahmood, Marediya, Martin, Melendez, Moosa, Motiwala, Muhebb, Murray, Rehman, Rivera, Shah, Solorzano, Somani, Soneira, Starr, Thompson, Torres, Tran, Ullah, Valentine, Vaquerano, Yake, Yousif, Zaldivar, Byars, Brown, Gaskin, Clayton, Davis, Dillon, Driggers, Ferrell, Green, Hunt, Jeffers, Kirkland, Lopez, Mayfield, Mercer, Parsons, Patton, Puck, Restrepo, Sheppard, Teachman, Velez, Whitehead, Jain, Asanji, Garrett, Gill, Hester, Jain, Mitchell, Becker, McKeown-Biagas, Fragoso, Holloway, Kowalski, Barr, Colville, Yang, Glasper, Phuah, Miller, Schmidt, Jafri, Sureshbabu, Mir, Sharma, Asaad, Hasnain, Ngo, Hari, Oheri, Patwary, Mohamed, Hernandez, Gioia, Dalal, Ngban, Smith, Leal, Assaf, Martinez, Khan, Castello, Potapenko, Wahaj, Elmachtoub, Akhtar, Siddiqui, Jamal, Rizvi, Sainz, Lucky-Dania, Villarreal, Fernandez, Hampton, Bellamy, Brown, Doran, Manzanares, Palmer, Sanders, Bokhari, Fenuyi, Greer, Jang, Juanillo, Reese, Narla, Okoko, Woodham, Eaton, Khawaja, Mushtag, Bhutto, Solorsano, Ahmed, Shamim, Gonzalez, Ardoin, Moore, Nuncio, Ray, Sikes, Troutman, West, Wilson, Young, Baloch, Karimjee, Carroll, Broachwala, Calais, Laabs, Marler, Rizvi, Syed, Syed, Rizvi, Hariwala, Gloyd, Rizvi, Marcum, Carswell, Fanning, Bull, Corta, James, Martinez, Scurlark, Elliott, Beck, Beck, Glover, Bonson, Patel, Matthew, Davidoff, Vesely, Horton, Barbour, Pereira, Rivero, Alston, Miller, Downing, Crespo, Schwartz, Mederos, Tamayo, Shapiro, Mallet, Plotka, Valladares, Palmer, Deltejo, Garcia, Camacho, Chanza, Morera, Davis, Dawson, Rosales, Torres, Pinero, Cruz, Rivera, Balebona, Basurco, Montoya, Yaniz, Phar, Filgueiras, Fernandez, Skrine, Alcantara, Parodis, Parodis, Jara, Alouption, Yan, Padilla, Cruz, Bran, Flores, Perez, Labovitz, Roth, Javier, Jimenez, Ojeda, Caceres, Misir, Rudd, Ramos, Deeb, Bisharat, Dennis-Saltz, Sutton, Magee, Ashchi, Goldfaden, Sheikh-Ali, Kelly, Saikali, Ramirez, Domingo, Hodge, Greenewalt, Stamschror, Preston, Petschonek, Graf, Sutton, Edson, Charron, Taylor, Knisely, Gore, Jones, Johns, Sheldon, Merritt, Hichkad, Barbee, Riley, Alexander, Dasher, EAT, Bonilla, Loza, Hernandez, Perez, Perez, Perez, Medina, Mantero, Vega, Pedraza, Sosa, Robles, Machado, Sosa, Guzman, Grio, Frias, Kelly, Leibowitz, Nelson, Handy, Greenberg, Vega, Francisco, Soto, Arcadia, Francisco, Escareno, Ayala, Muniz, Espino, Vargas, Jimenez, Lopez, Gallaga, Heredia, Santana, Mendoza-Rodriguez, Santana, Román, Torres, Franceschini, Garcia, Jimenez, Ortiz, Antommattei, Comulada-Rivera, Pintado, Ortiz, Rodriguez, Ramirez, Olofintuyi, Alvarez, Pitts, Samraj, Vasbinder, Averett, Kane, Farley, Kendall, Kemmerlin, Saunders, Livingston, McLean, Mayer, Goodwin, Ngugi, Mishra, Carter, Szymela, Imran, Abdallah, Clarke, Latog, Moore, Lopez, Tagsip, Nepali, Kumaran, Jacinto, Magsino, Batalla, Imran, Montgomery, Riggs, Haamid, Whitt, Hopper, Smith, Kordsmeier, Sherron, Plummer, Jimenez, Newkirk, Murray, Scott, Whitney, Castro, Rhames, Cortes-Maisonet, Martinez, Allende-Vigo, Vila, Rivera, Yunker, Rivera, Rodriguez, Rivera, Blanco, Colon, Cruz, Nweke, Okafor, Nweke, Chaves-Montoya, Patrick, Alvarez, Momeh, Anaele, McArthur, Longonje, Husbands, Williams, Dillingham, Sayyah, Carey, Brock, Hussain, Sultana, Mohammad, Lopez, Bittencourt, Prasad, Akther, Smith, Rocco, Straatmann, Stoneman, Maryas, Gravier, Faggett, Jimenez, Alvarez, Evora, Herrera, Leonardi, Karns, Sisneros, Hong, Rudyk, Medentseva, Alexeeva, Strakhova, Lozyk, Babichev, Yushko, Tseluyko, Zhadan, Butko, Mishchenko, Radchenko, Karpenko, Klimko, Berezhniak, Todoriuk, Bezuglova, Mitskevych, Kizim, Nevolina, Galchenko, Korzh, Pankova, Fylenko, Ziabchenko, Krasnokutskiy, Liashok, Donets, Mishustina, Khrustalyova, Donets, Rybachok, Senchylo, Lyakhova, Takhaieva, Shkroba, Shchypak, Tryshchuk, Pieshkova, Karaia, Yakovleva, Horoshko, Lohdanidi, Belei, Kuzmenko, Demchuk, Cherniuk, Kozliuk, Kovalenko, Adarichev, Vakaliuk, Tymochko, Sovtus, Haliuk, Gaudet, Côté, Milot, Roy, Larouche, Piché, Charest, Dufour, Pageau, Audet-Verreault, Côté, Gagnon, Côté, Morin, Fortin-Mimeault, Brassard, Gagne, Rousseau, Sia, Guzzetti, Gisbert, Dias, Oliveira, Cote, Rodrigues, Blanchard, Labbe, Lemay, Beauchemin, Turcotte, Beaudoin, Saliphod, Lamontagne, Trudel, Beaudoin, Blanchard, Larouche, Robinaud, Paré, Bergeron, Bilodeau, Bellavance, Betit, Fortier, Racine, Perras, Boulanger, Beauchesne, Lehoux, Turgeon, Cote, Tardif, Aggarwal, Aggarwal, Patel, Dhaliwal, Aggarwal, Tellier, Gagne, Laperriere, Shalala, Danchuk, Barrette, Lauzon, Langille, Gagné, Lupien, Brochu, Coallier, Vaillancourt, Lachance, Carbonneau, Thibault, Bouchard, St-Cyr, Rioux, Quenneville, Gagnon, Nony, Laberge, Corbin, Patry, Savage, MacNeil, Murdock, Inglis, Libbus, Smith, Johnson, Walters-Findlay, Harris, Hutchison, Rafuse, Thorsen, MacDonald, Akhras, Assef, Irani, Khayat, Guidolin, Gupta, Price, Gandhi, Chhabra, Gandhi, Acharya, Panchal, Kansal, Bailey, Harvalik, Demchuk, Saxena, Collier, David, Quiros, Patel, Balawon, Galera, Michalska, Piniera, Uddin, Abbott, Faulkner, Yousef, Love, Zagdanski, Slaney, Anderson, Leath, Dunlop, Hardy, Wall, El-Koubani, Kelt, Connolly, Marmion, Alapati, Simmons, Colquhoun, Clyde, Mooty, Mullen, Viljoen, Trevor, Pretswell, Austin, Munthali, Munsoor, Gowda, Ozunlu, Keighley, Jones, James, Pollitt, Littlewood, Al-Sheikhly, Lee, Nistor, Roberts, Mawdsley, Sobolewska, Hannis, Wojtkiewicz, Stopford, Halliwell, Mort, McGrath, Osborne, Merrick, Basikolo, Ghysels, Fenlon, Beech, Munoz, Bilton, Goddard, Gillon, Taylor, Tyson, Connor, Felber, Fallows, Clowes and Cheung2024). The CRISPR (clustered Regularly Interspaced Short Palindromic Repeats) and its associated protein Cas9 is another gene editing tool and the first CRISPR-based human therapy was approved in 2023 for sickle cell disease and β-thalassaemia (Wong, Reference Wong2023). CRISPR-Cas9 gene editing technology has also been utilised in hypertension research in animal models (Cheng et al., Reference Cheng, Waghulde, Mell, Morgan, Pruett-Miller and Joe2017; Sun et al., Reference Sun, Hodgkinson, Pratt and Dzau2021). The application of gene-editing may be an avenue for treating single-gene causes of hypertension. Examples of monogenic hypertension include Liddle syndrome (epithelial sodium channel gain of function), Gordon syndrome (gain of function in 4 genes regulating Na-K-Cl cotransporter activity), mineralocorticoid excess (11-β-hydroxysteroid dehydrogenase type II loss of function), and glucocorticoid-remediable aldosteronism (crossover of adjacent genes, CYP11B1 and CYP11B2 as previously mentioned) (Zappa et al., Reference Zappa, Golino, Verdecchia and Angeli2024). Monogenic forms of hypertension are typically associated with early onset, severe, and resistant hypertension. In cases of monogenic hypertension, where a single gene mutation follows Mendelian inheritance patterns, gene-editing may offer a cure to the disease.

Challenges and future landscape

High-throughput next-generation sequencing technologies continue to evolve, and the cost of whole genome sequencing is continuing to fall. This will increase datasets for dissection of causal genes, BP mechanisms and data for inclusion in risk score algorithms. There are many different ethical issues raised by genomic research. Ancestral bias is an important consideration as most genetic data acquired to date has been predominantly from individuals of European ancestry. Individuals of African ancestry have the highest age-adjusted prevalence of hypertension but are relatively under-represented in BP genetic studies (Franceschini et al., Reference Franceschini, Fox, Zhang, Edwards, Nalls, Sung, Tayo, Sun, Gottesman, Adeyemo, Johnson, Young, Rice, Duan, Chen, Li, Tang, Fornage, Keene, Andrews, Smith, Faul, Guangfa, Guo, Liu, Murray, Musani, Srinivasan, Velez Edwards, Wang, Becker, Bovet, Bochud, Broeckel, Burnier, Carty, Chasman, Ehret, Chen, Chen, Chen, Ding, Dreisbach, Evans, Guo, Garcia, Jensen, Keller, Lettre, Lotay, Martin, Moore, Morrison, Mosley, Ogunniyi, Palmas, Papanicolaou, Penman, Polak, Ridker, Salako, Singleton, Shriner, Taylor, Vasan, Wiggins, Williams, Yanek, Zhao, Zonderman, Becker, Berenson, Boerwinkle, Bottinger, Cushman, Eaton, Nyberg, Heiss, Hirschhron, Howard, Karczewsk, Lanktree, Liu, Liu, Loos, Margolis, Snyder, Go, Kim, Lee, Jeon, Kim, Han, Cho, Sim, Tay, Ong, Seielstad, Liu, Aung, Wong, Teo, Tai, Chen, Chang, Chen, Wu, Kelly, Gu, Hixson, Sung, He, Tabara, Kokubo, Miki, Iwai, Kato, Takeuchi, Katsuya, Nabika, Sugiyama, Zhang, Huang, Zhang, Zhou, Jin, Zhu, Psaty, Schork, Weir, Rotimi, Sale, Harris, Kardia, Hunt, Arnett, Redline, Cooper, Risch, Rao, Rotter, Chakravarti, Reiner, Levy, Keating and Zhu2013). An increase in diverse sampling is being addressed by ongoing efforts of national biobanks which are being used to discover novel and ancestry-specific loci within, for example, Japan, Asia, Africa and Qatar (Genome Research Biobank Project Biobank Japan; GenomeAsia; H3Africa – Human Heredity & Health in Africa; Qatar Biobank). Despite these efforts to increase genetic diversity and representation, there is still more to be done. Bridging this data gap is crucial for equitable genomic testing and ensuring GWAS results are beneficial across populations, and that we avoid reinforcing existing health disparities. Furthermore, genomic data can reveal sensitive information about an individual and their family’s ancestry and health. It is therefore important that biobanks store and provide approved researchers with access to genomic data securely and responsibly. There are also ethical considerations in incorporating genetic risk stratification with implications in the insurance sector. An important step in implementing ethical and governance frameworks that balance these risks will be to ensure that any procedures command public trust.

Demographic changes with the ageing population and increased multimorbidity pose challenges to hypertension management. To date, genomic research in hypertension has been largely focused on aiding diagnosis (especially for monogenic forms of hypertension) and identifying potential target mechanisms for treatment. The next wave of genomics in hypertension has the potential to empower a preventive approach with effective screening at a population scale. Our Future Health, the flagship UK programme with the National Health Service, highlights a strategic partnership between industry, academia, and government together with patients and the public to support preventive approaches to tackling common diseases (Our Future Health). The programme combines clinical and genetic data to calculate disease risk scores with the aim of targeting individuals who are at higher risk of developing certain diseases. This will provide an opportunity to test the potential of new polygenic risk scores in health care and of new diagnostic tests or treatments to see how effective they could be for people at higher risk of certain diseases. These collaborations demonstrate that the long-term applications of genomic technology are likely to proliferate beyond genetic risk tools. New use cases are appearing and will revolutionise healthcare delivery through improved differential diagnosis with genetics and personalised medication selection, optimising safety and efficacy. These hold promise for implementing predictive, personalised and preventive approaches to hypertension management that is enduring. Central to the effective delivery of precision medicine in hypertension is patient and public involvement. A focus on a person-centred approach with emphasis on the patient perspective in research, guidelines and scientific documents ensures that the patient is at the heart of all that we do.

Open peer review

To view the open peer review materials for this article, please visit http://doi.org/10.1017/pcm.2025.1.

Acknowledgements

Graphical abstract was created using Procreate.com.

Author contribution

HN wrote the manuscript. HRW and PBM critically reviewed and approved the manuscript.

Financial support

HN acknowledges the National Institute for Health and Care Research Integrated Academic Training Programme, which supports his Academic Clinical Lectureship post (CL-2024-2119-002). PBM and HRW acknowledge support from the National Institute for Health and Care Research Biomedical Research Centre at Barts (NIHR202330).

Competing interest

The authors declare no competing interests exist.

References

100,000 Genomes Project Pilot Investigators, Smedley, D, Smith, KR, Martin, A, Thomas, EA, McDonagh, EM, Cipriani, V, Ellingford, JM, Arno, G, Tucci, A, Vandrovcova, J, Chan, G, Williams, HJ, Ratnaike, T, Wei, W, Stirrups, K, Ibanez, K, Moutsianas, L, Wielscher, M, Need, A, Barnes, MR, Vestito, L, Buchanan, J, Wordsworth, S, Ashford, S, Rehmström, K, Li, E, Fuller, G, Twiss, P, Spasic-Boskovic, O, Halsall, S, Floto, RA, Poole, K, Wagner, A, Mehta, SG, Gurnell, M, Burrows, N, James, R, Penkett, C, Dewhurst, E, Gräf, S, Mapeta, R, Kasanicki, M, Haworth, A, Savage, H, Babcock, M, Reese, MG, Bale, M, Baple, E, Boustred, C, Brittain, H, de Burca, A, Bleda, M, Devereau, A, Halai, D, Haraldsdottir, E, Hyder, Z, Kasperaviciute, D, Patch, C, Polychronopoulos, D, Matchan, A, Sultana, R, Ryten, M, Tavares, ALT, Tregidgo, C, Turnbull, C, Welland, M, Wood, S, Snow, C, Williams, E, Leigh, S, Foulger, RE, Daugherty, LC, Niblock, O, Leong, IUS, Wright, CF, Davies, J, Crichton, C, Welch, J, Woods, K, Abulhoul, L, Aurora, P, Bockenhauer, D, Broomfield, A, Cleary, MA, Lam, T, Dattani, M, Footitt, E, Ganesan, V, Grunewald, S, Compeyrot-Lacassagne, S, Muntoni, F, Pilkington, C, Quinlivan, R, Thapar, N, Wallis, C, Wedderburn, LR, Worth, A, Bueser, T, Compton, C, Deshpande, C, Fassihi, H, Haque, E, Izatt, L, Josifova, D, Mohammed, S, Robert, L, Rose, S, Ruddy, D, Sarkany, R, Say, G, Shaw, AC, Wolejko, A, Habib, B, Burns, G, Hunter, S, Grocock, RJ, Humphray, SJ, Robinson, PN, Haendel, M, Simpson, MA, Banka, S, Clayton-Smith, J, Douzgou, S, Hall, G, Thomas, HB, O’Keefe, RT, Michaelides, M, Moore, AT, Malka, S, Pontikos, N, Browning, AC, Straub, V, Gorman, GS, Horvath, R, Quinton, R, Schaefer, AM, Yu-Wai-Man, P, Turnbull, DM, McFarland, R, Taylor, RW, O’Connor, E, Yip, J, Newland, K, Morris, HR, Polke, J, Wood, NW, Campbell, C, Camps, C, Gibson, K, Koelling, N, Lester, T, Németh, AH, Palles, C, Patel, S, Roy, NBA, Sen, A, Taylor, J, Cacheiro, P, Jacobsen, JO, Seaby, EG, Davison, V, Chitty, L, Douglas, A, Naresh, K, McMullan, D, Ellard, S, Temple, IK, Mumford, AD, Wilson, G, Beales, P, Bitner-Glindzicz, M, Black, G, Bradley, JR, Brennan, P, Burn, J, Chinnery, PF, Elliott, P, Flinter, F, Houlden, H, Irving, M, Newman, W, Rahman, S, Sayer, JA, Taylor, JC, Webster, AR, Wilkie, AOM, Ouwehand, WH, Raymond, FL, Chisholm, J, Hill, S, Bentley, D, Scott, RH, Fowler, T, Rendon, A and Caulfield, M (2021) 100,000 genomes pilot on rare-disease diagnosis in health care – Preliminary report. The New England Journal of Medicine 385(20), 18681880. https://doi.org/10.1056/NEJMoa2035790.Google Scholar
Abramowitz, SA, Boulier, K, Keat, K, Cardone, KM, Shivakumar, M, DePaolo, J, Judy, R, Bermudez, F, Mimouni, N, Neylan, C, Kim, D, Rader, DJ, Ritchie, MD, Voight, BF, Pasaniuc, B, Levin, MG, Damrauer, SM, BioBank, PM, Rader, DJ, Ritchie, MD, Weaver, J, Naseer, N, Sirugo, G, Poindexter, A, Ko, Y-A, Nerz, KP, Livingstone, M, Vadivieso, F, DerOhannessian, S, Tran, T, Stephanowski, J, Santos, S, Haubein, N, Dunn, J, Verma, A, Kripke, CM, Risman, M, Judy, R, Wollack, C, Verma, SS, Damrauer, SM, Bradford, Y, Dudek, S and Drivas, T (2024) Evaluating performance and agreement of coronary heart disease polygenic risk scores. Journal of the American Medical Association https://doi.org/10.1001/jama.2024.23784.Google Scholar
Bakris, GL, Saxena, M, Gupta, A, Chalhoub, F, Lee, J, Stiglitz, D, Makarova, N, Goyal, N, Guo, W, Zappe, D, Desai, AS, Group K-1 S, Carr, G, Case, C, Jaeger, L, Bruns, L, Stratman, G, Kidwell, C, Cunningham, S, Piccone, N, Klein, M, Acuna, M, Arora, S, Clark, A, Fink, E, Garcia, C, George, A, Gray, E, Mahaffey, C, McElheney, M, Ortiz, E, Saumya, S, Wallace, A, Watts, J, Zambrana, D, Denham, D, Rivera, E, Avworo, A, Hedges, P, Fancher, C, Abadier, R, Braud, L, Cenatiempo, L, Elwood, A, Gray, L, Gray, P, Griffin, K, Khan, H, Kongquee, N, LaTorraca, S, Liles, T, Livingston, J, Lozano, M, Lupton, A, Lyles, T, Mardini, D, Moss, S, Packer, K, Patel, A, Russ, T, Scinicariello, B, Trull, S, Warren, B, Chalhoub, F, Angel, S, Dhakhwa, S, Gabon, I, Goodwin, L, Jones, NJ, Joyce, M, Kamble, N, McFall, B, Githiiyu, R, Robinson, L, Tomlinson, L, Hadziavdic, E, Vega, S, Greenwald, J, Achan, J, Ruiz, L, Buksh, M, Chauhan, O, Derisseau, E, Ferguson, F, Grabowski, M, Gumerova, L, Hernandez, M, Martin, K, Patel, K, Nanda, D, Perez, J, Ribeca, C, Rueda, E, Guth, AS, Zaki, N, Green, E, Mondoc, N, Buynak, R, Andree, S, Brazinsky, M, Fuller, L, Green, N, Ibrahim, H, Idowu, M, Lee, M, Lewis, E, Luna, G, McNeal, R, Owens, A, Perez, C, Petty, T, Smith, M, Volom, P, Webb, A, Williams, D, Yarosz, M, Gabra, N, Andrawis, N, Aziz, A, Hanna, M, Manalo, J, Helow, V, Davila, W, Crisp, S, Douglas, Y, Everett, J, Graham, S, Heard, E, Mackie, M, Mayer, S, Moore, L, Resurreccion, S, Sidey, J, Stephens, M, Strickland, M, Camp, DV, Wilder, S, Witt, A, Wolfer, J, Groben, L, Aeschliman, L, Audlehelm, E, Fitz, C, Greene, J, Hippen, E, Johnson, M, Latcham, A, Leggett, S, Link, K, Lovell, J, Marlow, K, Marske, C, Maxwell, K, Newsom-Henderson, C, Oelberg, D, Ollinger, K, Risius, R, Ryther, K, Waddell, A, Zellerman, T, Santofimio, MA, Plantholt, S, Beatty, M, Blubaugh, H, Bootz, T, Cole, J, Conners, J, Coombs, V, Goddard, C, Ince, C, Kiddy, G, Klimuszka, B, Kuhn, F, Lowry, D, Previll, P, Rioux, S, Scott, J, Shepherd, B, Urffer, A, Smiley, S, Lucksinger, G, Alvord, A, Anderson, J, Block, C, Chan, A, Delgado, J, Frost, K, Gadbois, L, Hamlin, D, Johnson, S, Juncal, V, Kelly, K, Kelly, E, Kelly, L, Kerwin, A, Kuehl, A, Ostovar, J, Rackley, R, Rocha, G, Sandberg, L, Sheghewi, S, Smith, T, Taucher, B, Vasquez, C, Rodriguez, FV, Weisbart, J, Wescom, V, Williams, K, Overcash, JS, Anorve, A, Asmann, H, Bovee, G, Castillo, L, Chu, H, Coslet, J, Davis, A, Dinan, M, Dubbula, A, Esparza, J, Foster, A, Garcia, A, Gonzales, J, Gonzalez, L, Kappen, P, Kornblatt, A, Lauderdale, B, Lee, K, Lindholm, S, Lindsay, A, Gomez, LL, Marquez, A, Meza, C, Odom, S, Orel, M, Paselio, S, Penziner, S, Pu, H, Quillin, K, Ramirez, C, Ramirez, R, Salgado, M, Shores, M, Taitingfong, R, Tande, J, Tuiletufuga, V, Tyler, K, Vega, L, Zepeda, K, Anderson, C, Carhill, N, Clark, B, Dean, L, Devine, N, DiPeri, S, Espinal, G, Hawkins, R, Irra, G, Ledezma, A, Lopez-Wood, G, Luna, M, Mansour, W, Marriott, T, Perez, A, Ramsey, J, Reedy, W, Spinks, H, Tanori, C, Tatelbaum, D, Vasquez, R, Vasquez, K, Vigil, J, Worthen, I, Yu, D, Zuniga, J, Dennis, P, Alvarado, L, Cox, A, Cullaro, V, Dunbar, J, Giorlando, K, Hannan, L, Hastings, T, Hoskins, G, Krambeck, E, Laurent, J, Martinez, OM, Mister, R, Moss, A, Muli, M, Quinn, N, Reed, B, Robinson, A, Saavedra, C, Simon, C, Smith, D, Touchet, D, Wright, A, Trevino, M, DeVries, B, Allison-Hicks, S, Light, T, Rubach, W, Mai, K, Osborn, T, Sheets, L, Carver, D, Reichman, A, Lotfi, D, Berrios, N, Vulichi, S, Naguleswaran, T, Subhan, Y, Rios, M, Baron, D, Khowaja, A, Nair, S, Vicente, M, LLG, Gomez, USA, Gomez, Lamichhane, J, Ekomoda, E, Nair, A, Maldonado, S, Naqvi, M, Dayani, F, Patro, S, Golandaz, L, Jaka, A, Rios, S, Gurung, M, Gongloor, P, Coreas, D, Demir, T, Celik, Z, McGill, L, Usdan, L, Arnold, V, Heckle, K, Scatamacchia, C, Anthony, C, Marsh, C, Fair, J, Stewart, A, Hamlet, R, Presley, R, Granberry, C, Flowers, M, Houpt, C, O’Brien, D, Evans, K, Williams, M, Sinatra, J, Powell, I, Flagg, T, Pipkin, L, Wheeler, V, Wells, E, Gruber, B, Jones, A, Toor, M, Iskiwitz, K, Boyd, M, Epps, S, Cole, F, Grayson-Mathis, C, Web, M, Turner, C, Reese, K, Robinson, D, Goodwin, A, Parker, K, Ward, C, Solomon, A, Lawson, T, Pledger, M, Peterson, AL, Carignan, M, Oguoma-Richards, D, Jones, S, McFarland-Head, K, Bundeff, B, Wojtowicz, S, Holland, C, Sanders, T, Simon, L, Lawrence, C, Bolton, B, Lemoine, K, Harris, K, Kingsley, H, Bryant, D, Clawson, K, Murphy, C, Allison, DC, Newman, G, Preece, D, Zook, P, Roznos, T, Russell, S, Rodriguez, R, Roy, A, Layle, S, Mehra, P, Bowen, S, Johnson, D, Guillen, N, Leone, S, McCormick, G, Hermann, L, Sarno, L, Abellatif, T, Cleghorn, M, Elansary, A, Israel, A, Leeward, M, Parra, C, Harris, S, Patel, P, Cawley, M, Castro, M, Miroshnikova, T, Dever, M, Venereo, J, Paez, H, Isla, A, Martin, Y, Fernandez, A, Hernandez, I, Lavoy, AI, Rios, N, Hernandez, A, Denenberg, M, McTier, T, Reynolds, C, Thomas, L, Eubanks, C, Oliver, T, Jacobs, M, Mirkil, V, Menasche, K, Yee, M, Vasquez, BA, Garcia, C, Elio, L, Arenas, A, Buena, C, Garcia, C, Cannon, M, Novotny, E, Oliver, M, Cannon, A, Gatdula, M, Gillenwater, C, Rafi, A, Derian, W, Ramsey, M, Culbreth, E, Fessler, C, Sorrill, K, Mauri, M, Rosen, J, Acosta, O, Brauchle, W, Castaneda, D, Castells, M, Castro, D, MBC, Laplace, Flerisme, M, Garcia, R, Gomez, J, Hidalgo, M, Jimenez, G, Legon, M, Lella, V, Lemus, K, Rico-Aramillo, S, Rodriguez, M, Rodriguez, Y, Salazar, L, Santana, C, Tercero, N, Martin, EE, Acevedo, M, Anderson, A, Baig, T, Baker, R, Basrai, R, Cabrera, N, Caroll, C, Chatmon, S, Cheema, S, Chowdhry, A, Cordero, N, Deandres, C, Deshpande, M, Dileep, A, Dolfi, K, Eng, L, Fountain, N, Gali, R, Hernandez, A, Iskandar, A, Khan, R, Knight, A, Kundapati, S, Lobo, I, Lokhandwala, Z, Lokhandwala, Z, Mahmood, F, Marediya, R, Martin, EF, Melendez, M, Moosa, A, Motiwala, A, Muhebb, S, Murray, M, Rehman, M, Rivera, A, Shah, A, Solorzano, S, Somani, L, Soneira, L, Starr, A, Thompson, D, Torres, A, Tran, E, Ullah, MA, Valentine, A, Vaquerano, L, Yake, A, Yousif, Y, Zaldivar, A, Byars, W, Brown, H, Gaskin, AC, Clayton, C, Davis, C, Dillon, S, Driggers, B, Ferrell, A, Green, DE, Hunt, L, Jeffers, C, Kirkland, C, Lopez, L, Mayfield, R, Mercer, C, Parsons, K, Patton, S, Puck, K, Restrepo, L, Sheppard, T, Teachman, G, Velez, J, Whitehead, A, Jain, M, Asanji, G, Garrett, J, Gill, K, Hester, D, Jain, B, Mitchell, Y, Becker, T, McKeown-Biagas, C, Fragoso, V, Holloway, L, Kowalski, T, Barr, S, Colville, B, Yang, C-H, Glasper, D, Phuah, A, Miller, V, Schmidt, S, Jafri, A, Sureshbabu, W, Mir, L, Sharma, S, Asaad, S, Hasnain, M, Ngo, T, Hari, D, Oheri, I, Patwary, A, Mohamed, M, Hernandez, P, Gioia, J, Dalal, A, Ngban, P, Smith, S, Leal, BM, Assaf, A, Martinez, A, Khan, K, Castello, J, Potapenko, M, Wahaj, Z, Elmachtoub, F, Akhtar, A, Siddiqui, MA, Jamal, M, Rizvi, M, Sainz, K, Lucky-Dania, S, Villarreal, S, Fernandez, W, Hampton, S, Bellamy, J, Brown, L, Doran, E, Manzanares, E, Palmer, J, Sanders, A, Bokhari, F, Fenuyi, O, Greer, C, Jang, H, Juanillo, A, Reese, C, Narla, D, Okoko, I, Woodham, C, Eaton, R, Khawaja, S, Mushtag, T, Bhutto, AN, Solorsano, S, Ahmed, S, Shamim, R, Gonzalez, N, Ardoin, F, Moore, J, Nuncio, N, Ray, E, Sikes, K, Troutman, I, West, N, Wilson, Q, Young, N, Baloch, M, Karimjee, N, Carroll, K, Broachwala, S, Calais, N, Laabs, J, Marler, K, Rizvi, S, Syed, A, Syed, N, Rizvi, Z, Hariwala, Z, Gloyd, P, Rizvi, A, Marcum, B, Carswell, J, Fanning, C, Bull, L, Corta, P, James, H, Martinez, D, Scurlark, R, Elliott, S, Beck, S, Beck, C, Glover, S, Bonson, J, Patel, T, Matthew, G, Davidoff, K, Vesely, J, Horton, C, Barbour, R, Pereira, I, Rivero, G, Alston, D, Miller, P, Downing, F, Crespo, NS, Schwartz, H, Mederos, S, Tamayo, JS, Shapiro, C, Mallet, O, Plotka, K, Valladares, C, Palmer, K, Deltejo, D, Garcia, K, Camacho, M, Chanza, Y, Morera, J, Davis, C, Dawson, K, Rosales, V, Torres, D, Pinero, M, Cruz, C, Rivera, B, Balebona, P, Basurco, A, Montoya, J, Yaniz, M, Phar, PP, Filgueiras, C, Fernandez, M, Skrine, L, Alcantara, A, Parodis, I, Parodis, J, Jara, J, Alouption, J, Yan, M, Padilla, J, Cruz, C, Bran, B, Flores, V, Perez, L, Labovitz, A, Roth, T, Javier, J, Jimenez, L, Ojeda, C, Caceres, M, Misir, C, Rudd, K, Ramos, J, Deeb, W, Bisharat, M, Dennis-Saltz, A, Sutton, D, Magee, J, Ashchi, M, Goldfaden, R, Sheikh-Ali, M, Kelly, S, Saikali, EN, Ramirez, GR, Domingo, D, Hodge, W, Greenewalt, A, Stamschror, L, Preston, K, Petschonek, L, Graf, K, Sutton, L, Edson, M, Charron, M, Taylor, M, Knisely, E, Gore, A, Jones, T, Johns, B, Sheldon, J, Merritt, K, Hichkad, L, Barbee, L, Riley, A, Alexander, L, Dasher, L, EAT, Lopez, Bonilla, RB, Loza, A, Hernandez, D, Perez, Y, Perez, A, Perez, Y, Medina, D, Mantero, E, Vega, R, Pedraza, N, Sosa, D, Robles, L, Machado, Y, Sosa, Y, Guzman, D, Grio, M, Frias, J, Kelly, S, Leibowitz, M, Nelson, J, Handy, C, Greenberg, A, Vega, N, Francisco, A, Soto, C, Arcadia, S, Francisco, E, Escareno, N, Ayala, N, Muniz, J, Espino, J, Vargas, D, Jimenez, R, Lopez, S, Gallaga, I, Heredia, G, Santana, EB, Mendoza-Rodriguez, R, Santana, SC, Román, A, Torres, IA, Franceschini, V, Garcia, B, Jimenez, N, Ortiz, MI, Antommattei, AT, Comulada-Rivera, A, Pintado, A, Ortiz, S, Rodriguez, A, Ramirez, RM, Olofintuyi, A, Alvarez, R, Pitts, J, Samraj, J, Vasbinder, A, Averett, A, Kane, T, Farley, H, Kendall, T, Kemmerlin, R, Saunders, J, Livingston, Y, McLean, B, Mayer, M, Goodwin, V, Ngugi, E, Mishra, P, Carter, H, Szymela, L, Imran, A, Abdallah, S, Clarke, N, Latog, SH, Moore, B, Lopez, M, Tagsip, M, Nepali, P, Kumaran, N, Jacinto, G, Magsino, C, Batalla, F, Imran, F, Montgomery, R, Riggs, S, Haamid, S, Whitt, C, Hopper, W, Smith, D, Kordsmeier, J, Sherron, C, Plummer, M, Jimenez, S, Newkirk, A, Murray, L, Scott, H, Whitney, R, Castro, M, Rhames, M, Cortes-Maisonet, G, Martinez, LM, Allende-Vigo, M, Vila, K, Rivera, MS, Yunker, V, Rivera, B, Rodriguez, A, Rivera, C, Blanco, GR, Colon, KB, Cruz, M, Nweke, C, Okafor, N, Nweke, A, Chaves-Montoya, D, Patrick, H, Alvarez, S, Momeh, E, Anaele, C, McArthur, K, Longonje, P, Husbands, D, Williams, I, Dillingham, C, Sayyah, GS, Carey, L, Brock, C, Hussain, R, Sultana, K, Mohammad, O, Lopez, J, Bittencourt, V, Prasad, S, Akther, N, Smith, T, Rocco, S, Straatmann, D, Stoneman, J, Maryas, E, Gravier, J, Faggett, W, Jimenez, A, Alvarez, MM, Evora, W, Herrera, A, Leonardi, L, Karns, A, Sisneros, E, Hong, S, Rudyk, I, Medentseva, O, Alexeeva, M, Strakhova, N, Lozyk, T, Babichev, D, Yushko, K, Tseluyko, V, Zhadan, A, Butko, O, Mishchenko, O, Radchenko, O, Karpenko, O, Klimko, P, Berezhniak, A, Todoriuk, L, Bezuglova, S, Mitskevych, L, Kizim, S, Nevolina, I, Galchenko, O, Korzh, O, Pankova, O, Fylenko, Y, Ziabchenko, V, Krasnokutskiy, S, Liashok, A, Donets, O, Mishustina, A, Khrustalyova, L, Donets, D, Rybachok, Y, Senchylo, V, Lyakhova, I, Takhaieva, O, Shkroba, A, Shchypak, D, Tryshchuk, N, Pieshkova, O, Karaia, O, Yakovleva, A, Horoshko, O, Lohdanidi, T, Belei, N, Kuzmenko, I, Demchuk, T, Cherniuk, S, Kozliuk, A, Kovalenko, V, Adarichev, V, Vakaliuk, I, Tymochko, N, Sovtus, V, Haliuk, N, Gaudet, D, Côté, F, Milot, J-P, Roy, N, Larouche, A, Piché, J, Charest, L-A, Dufour, J, Pageau, J, Audet-Verreault, N, Côté, L, Gagnon, M, Côté, V, Morin, D, Fortin-Mimeault, J, Brassard, M-O, Gagne, H, Rousseau, S, Sia, YT, Guzzetti, E, Gisbert, RA, Dias, M, Oliveira, M de, Cote, C, Rodrigues, I, Blanchard, J, Labbe, L, Lemay, SD, Beauchemin, K, Turcotte, R, Beaudoin, A, Saliphod, C, Lamontagne, C, Trudel, J, Beaudoin, C, Blanchard, J, Larouche, A, Robinaud, C, Paré, V, Bergeron, A, Bilodeau, M, Bellavance, E, Betit, E, Fortier, K, Racine, J, Perras, D, Boulanger, E, Beauchesne, C, Lehoux, S, Turgeon, V, Cote, R, Tardif, M-E, Aggarwal, N, Aggarwal, P, Patel, B, Dhaliwal, G, Aggarwal, P, Tellier, G, Gagne, G, Laperriere, L, Shalala, J, Danchuk, J, Barrette, C, Lauzon, L, Langille, N, Gagné, S, Lupien, J, Brochu, R, Coallier, S, Vaillancourt, C, Lachance, P, Carbonneau, D, Thibault, H, Bouchard, L, St-Cyr, A, Rioux, J, Quenneville, L, Gagnon, C, Nony, T, Laberge, P, Corbin, A, Patry, I, Savage, S, MacNeil, M, Murdock, A, Inglis, J, Libbus, K, Smith, K, Johnson, D, Walters-Findlay, L, Harris, L, Hutchison, T, Rafuse, A, Thorsen, J, MacDonald, G, Akhras, R, Assef, R, Irani, E, Khayat, R, Guidolin, S, Gupta, A, Price, D, Gandhi, A, Chhabra, A, Gandhi, B, Acharya, S, Panchal, M, Kansal, B, Bailey, G, Harvalik, P, Demchuk, K, Saxena, M, Collier, D, David, C, Quiros, BJ, Patel, M, Balawon, A, Galera, F, Michalska, A, Piniera, B, Uddin, R, Abbott, J, Faulkner, K, Yousef, T, Love, K, Zagdanski, A, Slaney, S, Anderson, M, Leath, A, Dunlop, C, Hardy, E, Wall, S, El-Koubani, O, Kelt, T, Connolly, B-J, Marmion, C, Alapati, M, Simmons, L, Colquhoun, C, Clyde, D, Mooty, A, Mullen, N, Viljoen, M, Trevor, L, Pretswell, C, Austin, C, Munthali, C, Munsoor, I, Gowda, MV, Ozunlu, P, Keighley, P, Jones, A, James, A, Pollitt, J, Littlewood, W, Al-Sheikhly, L, Lee, D, Nistor, D, Roberts, E, Mawdsley, G, Sobolewska, K, Hannis, K, Wojtkiewicz, K, Stopford, L, Halliwell, L, Mort, V, McGrath, V, Osborne, H, Merrick, A, Basikolo, C, Ghysels, I, Fenlon, L, Beech, L, Munoz, OL, Bilton, S, Goddard, L, Gillon, T, Taylor, S, Tyson, B, Connor, V, Felber, H, Fallows, A, Clowes, J and Cheung, S (2024) RNA interference with Zilebesiran for mild to moderate hypertension: The KARDIA-1 randomized clinical trial. JAMA 331(9), 740749. https://doi.org/10.1001/jama.2024.0728.Google Scholar
Brown, MJ (2012) Platt versus Pickering: What molecular insight to primary hyperaldosteronism tells us about hypertension. JRSM Cardiovascular Disease 1(6), cvd.2012.012020. https://doi.org/10.1258/cvd.2012.012020.Google Scholar
Burgess, S, Butterworth, A, Malarstig, A and Thompson, SG (2012) Use of Mendelian randomisation to assess potential benefit of clinical intervention. BMJ 345. https://doi.org/10.1136/bmj.e7325.Google Scholar
Bycroft, C, Freeman, C, Petkova, D, Band, G, Elliott, LT, Sharp, K, Motyer, A, Vukcevic, D, Delaneau, O, O’Connell, J, Cortes, A, Welsh, S, Young, A, Effingham, M, McVean, G, Leslie, S, Allen, N, Donnelly, P and Marchini, J (2018) The UK Biobank resource with deep phenotyping and genomic data. Nature 562(7726), 203209. https://doi.org/10.1038/s41586-018-0579-z.Google Scholar
Caulfield, M, Munroe, P, Pembroke, J, Samani, N, Dominiczak, A, Brown, M, Webster, J, Ratcliffe, P, O’Shea, S, Papp, J, Taylor, E, Dobson, R, Knight, J, Newhouse, S, Hooper, J, Lee, W, Brain, N, Clayton, D, Lathrop, GM, Farrall, M, Connell, J and Benjamin, N (2003) Genome-wide mapping of human loci for essential hypertension. The Lancet 361(9375), 21182123. https://doi.org/10.1016/S0140-6736(03)13722-1.Google Scholar
Cheng, X, Waghulde, H, Mell, B, Morgan, EE, Pruett-Miller, SM and Joe, B (2017) Positional cloning of quantitative trait nucleotides for blood pressure and cardiac QT-interval by targeted CRISPR/Cas9 editing of a novel long non-coding RNA. PLoS Genetics 13(8), e1006961. https://doi.org/10.1371/journal.pgen.1006961.Google Scholar
Cho, YS, Go, MJ, Kim, YJ, Heo, JY, Oh, JH, Ban, H-J, Yoon, D, Lee, MH, Kim, D-J, Park, M, Cha, S-H, Kim, J-W, Han, B-G, Min, H, Ahn, Y, Park, MS, Han, HR, Jang, H-Y, Cho, EY, Lee, J-E, Cho, NH, Shin, C, Park, T, Park, JW, Lee, J-K, Cardon, L, Clarke, G, McCarthy, MI, Lee, J-Y, Lee, J-K, Oh, B and Kim, H-L (2009) A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits. Nature Genetics 41(5), 527534. https://doi.org/10.1038/ng.357.Google Scholar
Clarke, R, Wright, N, Walters, R, Gan, W, Guo, Y, Millwood, IY, Yang, L, Chen, Y, Lewington, S, Lv, J, Yu, C, Avery, D, Lin, K, Wang, K, Peto, R, Collins, R, Li, L, Bennett, DA, Parish, S, Chen, Z and Group on behalf of the CKBC (2023) Genetically predicted differences in systolic blood pressure and risk of cardiovascular and noncardiovascular diseases: A Mendelian randomization study in Chinese adults. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.122.20120.Google Scholar
Cotto, KC, Wagner, AH, Feng, Y-Y, Kiwala, S, Coffman, AC, Spies, G, Wollam, A, Spies, NC, Griffith, OL and Griffith, M (2018) DGIdb 3.0: a redesign and expansion of the drug–gene interaction database. Nucleic Acids Research 46(D1), D1068D1073. https://doi.org/10.1093/nar/gkx1143.Google Scholar
Cowley, AW (2006) The genetic dissection of essential hypertension. Nature Reviews Genetics 7(11), 829840. https://doi.org/10.1038/nrg1967.Google Scholar
Desai, AS, Webb, DJ, Taubel, J, Casey, S, Cheng, Y, Robbie, GJ, Foster, D, Huang, SA, Rhyee, S, Sweetser, MT and Bakris, GL (2023) Zilebesiran, an RNA interference therapeutic agent for hypertension. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2208391.Google Scholar
Ding, Y, Hou, K, Burch, KS, Lapinska, S, Privé, F, Vilhjálmsson, B, Sankararaman, S and Pasaniuc, B (2021) Large uncertainty in individual polygenic risk score estimation impacts PRS-based risk stratification. Nature Genetics 54(1), 30. https://doi.org/10.1038/s41588-021-00961-5.Google Scholar
Duijvenboden, S van, Ramírez, J, Young, WJ, Olczak, KJ, Ahmed, F, Alhammadi, MJAY, Bell, CG, Morris, AP and Munroe, PB (2023) Integration of genetic fine-mapping and multi-omics data reveals candidate effector genes for hypertension. The American Journal of Human Genetics 110(10), 17181734. https://doi.org/10.1016/j.ajhg.2023.08.009.Google Scholar
Dzau, VJ and Hodgkinson, CP (2024) Precision hypertension. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.123.21710.Google Scholar
Eales, JM, Jiang, X, Xu, X, Saluja, S, Akbarov, A, Cano-Gamez, E, McNulty, MT, Finan, C, Guo, H, Wystrychowski, W, Szulinska, M, Thomas, HB, Pramanik, S, Chopade, S, Prestes, PR, Wise, I, Evangelou, E, Salehi, M, Shakanti, Y, Ekholm, M, Denniff, M, Nazgiewicz, A, Eichinger, F, Godfrey, B, Antczak, A, Glyda, M, Król, R, Eyre, S, Brown, J, Berzuini, C, Bowes, J, Caulfield, M, Zukowska-Szczechowska, E, Zywiec, J, Bogdanski, P, Kretzler, M, Woolf, AS, Talavera, D, Keavney, B, Maffia, P, Guzik, TJ, O’Keefe, RT, Trynka, G, Samani, NJ, Hingorani, A, Sampson, MG, Morris, AP, Charchar, FJ and Tomaszewski, M (2021) Uncovering genetic mechanisms of hypertension through multi-omic analysis of the kidney. Nature Genetics 53(5), 630637. https://doi.org/10.1038/s41588-021-00835-w.Google Scholar
Ehret, GB, Morrison, AC, O’Connor, AA, Grove, ML, Baird, L, Schwander, K, Weder, A, Cooper, RS, Rao, DC, Hunt, SC, Boerwinkle, E and Chakravarti, A (2008) Replication of the Wellcome Trust genome-wide association study of essential hypertension: The family blood pressure program. European Journal of Human Genetics 16(12), 15071511. https://doi.org/10.1038/ejhg.2008.102.Google Scholar
Ehret, GB, Munroe, PB, Rice, KM, Bochud, M, Johnson, AD, Chasman, DI, Smith, AV, Tobin, MD, Verwoert, GC, Hwang, S-J, Pihur, V, Vollenweider, P, O’Reilly, PF, Amin, N, Bragg-Gresham, JL, Teumer, A, Glazer, NL, Launer, L, Hua Zhao, J, Aulchenko, Y, Heath, S, Sõber, S, Parsa, A, Luan, J, Arora, P, Dehghan, A, Zhang, F, Lucas, G, Hicks, AA, Jackson, AU, Peden, JF, Tanaka, T, Wild, SH, Rudan, I, Igl, W, Milaneschi, Y, Parker, AN, Fava, C, Chambers, JC, Fox, ER, Kumari, M, Jin Go, M, van der Harst, P, Hong Linda Kao, W, Sjögren, M, Vinay, DG, Alexander, M, Tabara, Y, Shaw-Hawkins, S, Whincup, PH, Liu, Y, Shi, G, Kuusisto, J, Tayo, B, Seielstad, M, Sim, X, Hoang Nguyen, K-D, Lehtimäki, T, Matullo, G, Wu, Y, Gaunt, TR, Charlotte Onland-Moret, N, Cooper, MN, Platou, CGP, Org, E, Hardy, R, Dahgam, S, Palmen, J, Vitart, V, Braund, PS, Kuznetsova, T, Uiterwaal, CSPM, Adeyemo, A, Palmas, W, Campbell, H, Ludwig, B, Tomaszewski, M, Tzoulaki, I, Palmer, ND, Aspelund, T, Garcia, M, Chang, Y-PC, O’Connell, JR, Steinle, NI, Grobbee, DE, Arking, DE, Kardia, SL, Morrison, AC, Hernandez, D, Najjar, S, McArdle, WL, Hadley, D, Brown, MJ, Connell, JM, Hingorani, AD, INM, Day, Lawlor, DA, Beilby, JP, Lawrence, RW, Clarke, R, Hopewell, JC, Ongen, H, Dreisbach, AW, Li, Y, Hunter Young, J, Bis, JC, Kähönen, M, Viikari, J, Adair, LS, Lee, NR, Chen, M-H, Olden, M, Pattaro, C, Hoffman Bolton, JA, Köttgen, A, Bergmann, S, Mooser, V, Chaturvedi, N, Frayling, TM, Islam, M, Jafar, TH, Erdmann, J, Kulkarni, SR, Bornstein, SR, Grässler, J, Groop, L, Voight, BF, Kettunen, J, Howard, P, Taylor, A, Guarrera, S, Ricceri, F, Emilsson, V, Plump, A, Barroso, I, Khaw, K-T, Weder, AB, Hunt, SC, Sun, YV, Bergman, RN, Collins, FS, Bonnycastle, LL, Scott, LJ, Stringham, HM, Peltonen, L, Perola, M, Vartiainen, E, Brand, S-M, Staessen, JA, Wang, TJ, Burton, PR, Soler Artigas, M, Dong, Y, Snieder, H, Wang, X, Zhu, H, Lohman, KK, Rudock, ME, Heckbert, SR, Smith, NL, Wiggins, KL, Doumatey, A, Shriner, D, Veldre, G, Viigimaa, M, Kinra, S, Prabhakaran, D, Tripathy, V, Langefeld, CD, Rosengren, A, Thelle, DS, Maria Corsi, A, Singleton, A, Forrester, T, Hilton, G, McKenzie, CA, Salako, T, Iwai, N, Kita, Y, Ogihara, T, Ohkubo, T, Okamura, T, Ueshima, H, Umemura, S, Eyheramendy, S, Meitinger, T, Wichmann, H-E, Shin Cho, Y, Kim, H-L, Lee, J-Y, Scott, J, Sehmi, JS, Zhang, W, Hedblad, B, Nilsson, P, Davey Smith, G, Wong, A, Narisu, N, Stančáková, A, Raffel, LJ, Yao, J, Kathiresan, S, O’Donnell, CJ, Schwartz, SM, Arfan Ikram, M, Longstreth, WT Jr, Mosley, TH, Seshadri, S, Shrine, NRG, Wain, LV, Morken, MA, Swift, AJ, Laitinen, J, Prokopenko, I, Zitting, P, Cooper, JA, Humphries, SE, Danesh, J, Rasheed, A, Goel, A, Hamsten, A, Watkins, H, Bakker, SJL, van Gilst, WH, Janipalli, CS, Radha Mani, K, Yajnik, CS, Hofman, A, Mattace-Raso, FUS, Oostra, BA, Demirkan, A, Isaacs, A, Rivadeneira, F, Lakatta, EG, Orru, M, Scuteri, A, Ala-Korpela, M, Kangas, AJ, Lyytikäinen, L-P, Soininen, P, Tukiainen, T, Würtz, P, Twee-Hee Ong, R, Dörr, M, Kroemer, HK, Völker, U, Völzke, H, Galan, P, Hercberg, S, Lathrop, M, Zelenika, D, Deloukas, P, Mangino, M, Spector, TD, Zhai, G, Meschia, JF, Nalls, MA, Sharma, P, Terzic, J, Kranthi Kumar, MV, Denniff, M, Zukowska-Szczechowska, E, Wagenknecht, LE, Gerald, R, Fowkes, F, Charchar, FJ, PEH, Schwarz, Hayward, C, Guo, X, Rotimi, C, Bots, ML, Brand, E, Samani, NJ, Polasek, O, Talmud, PJ, Nyberg, F, Kuh, D, Laan, M, Hveem, K, Palmer, LJ, van der Schouw, YT, Casas, JP, Mohlke, KL, Vineis, P, Raitakari, O, Ganesh, SK, Wong, TY, Shyong Tai, E, Cooper, RS, Laakso, M, Rao, DC, Harris, TB, Morris, RW, Dominiczak, AF, Kivimaki, M, The International Consortium for Blood Pressure Genome-Wide Association Studies, CARDIoGRAM consortium, CKDGen Consortium, KidneyGen Consortium, EchoGen consortium, and CHARGE-HF consortium (2011) Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. Nature 478(7367), 103109. https://doi.org/10.1038/nature10405.Google Scholar
Genome Research Biobank Project Biobank Japan (n.d.) (BBJ) https://biobankjp.org/english/index.htmlGoogle Scholar
Evangelou, E, Warren, HR, Mosen-Ansorena, D, Mifsud, B, Pazoki, R, Gao, H, Ntritsos, G, Dimou, N, Cabrera, CP, Karaman, I, Ng, FL, Evangelou, M, Witkowska, K, Tzanis, E, Hellwege, JN, Giri, A, Velez Edwards, DR, Sun, YV, Cho, K, Gaziano, JM, Wilson, PWF, Tsao, PS, Kovesdy, CP, Esko, T, Mägi, R, Milani, L, Almgren, P, Boutin, T, Debette, S, Ding, J, Giulianini, F, Holliday, EG, Jackson, AU, Li-Gao, R, Lin, W-Y, Luan, J, Mangino, M, Oldmeadow, C, Prins, BP, Qian, Y, Sargurupremraj, M, Shah, N, Surendran, P, Thériault, S, Verweij, N, Willems, SM, Zhao, J-H, Amouyel, P, Connell, J, de Mutsert, R, Doney, ASF, Farrall, M, Menni, C, Morris, AD, Noordam, R, Paré, G, Poulter, NR, Shields, DC, Stanton, A, Thom, S, Abecasis, G, Amin, N, Arking, DE, Ayers, KL, Barbieri, CM, Batini, C, Bis, JC, Blake, T, Bochud, M, Boehnke, M, Boerwinkle, E, Boomsma, DI, Bottinger, EP, Braund, PS, Brumat, M, Campbell, A, Campbell, H, Chakravarti, A, Chambers, JC, Chauhan, G, Ciullo, M, Cocca, M, Collins, F, Cordell, HJ, Davies, G, de Borst, MH, de Geus, EJ, Deary, IJ, Deelen, J, Del Greco, M. F, Demirkale, CY, Dörr, M, Ehret, GB, Elosua, R, Enroth, S, Erzurumluoglu, AM, Ferreira, T, Frånberg, M, Franco, OH, Gandin, I, Gasparini, P, Giedraitis, V, Gieger, C, Girotto, G, Goel, A, Gow, AJ, Gudnason, V, Guo, X, Gyllensten, U, Hamsten, A, Harris, TB, Harris, SE, Hartman, CA, Havulinna, AS, Hicks, AA, Hofer, E, Hofman, A, Hottenga, J-J, Huffman, JE, Hwang, S-J, Ingelsson, E, James, A, Jansen, R, Jarvelin, M-R, Joehanes, R, Johansson, Å, Johnson, AD, Joshi, PK, Jousilahti, P, Jukema, JW, Jula, A, Kähönen, M, Kathiresan, S, Keavney, BD, Khaw, K-T, Knekt, P, Knight, J, Kolcic, I, Kooner, JS, Koskinen, S, Kristiansson, K, Kutalik, Z, Laan, M, Larson, M, Launer, LJ, Lehne, B, Lehtimäki, T, Liewald, DCM, Lin, L, Lind, L, Lindgren, CM, Liu, Y, Loos, RJF, Lopez, LM, Lu, Y, Lyytikäinen, L-P, Mahajan, A, Mamasoula, C, Marrugat, J, Marten, J, Milaneschi, Y, Morgan, A, Morris, AP, Morrison, AC, Munson, PJ, Nalls, MA, Nandakumar, P, Nelson, CP, Niiranen, T, Nolte, IM, Nutile, T, Oldehinkel, AJ, Oostra, BA, O’Reilly, PF, Org, E, Padmanabhan, S, Palmas, W, Palotie, A, Pattie, A, Penninx, BWJH, Perola, M, Peters, A, Polasek, O, Pramstaller, PP, Nguyen, QT, Raitakari, OT, Ren, M, Rettig, R, Rice, K, Ridker, PM, Ried, JS, Riese, H, Ripatti, S, Robino, A, Rose, LM, Rotter, JI, Rudan, I, Ruggiero, D, Saba, Y, Sala, CF, Salomaa, V, Samani, NJ, Sarin, A-P, Schmidt, R, Schmidt, H, Shrine, N, Siscovick, D, Smith, AV, Snieder, H, Sõber, S, Sorice, R, Starr, JM, Stott, DJ, Strachan, DP, Strawbridge, RJ, Sundström, J, Swertz, MA, Taylor, KD, Teumer, A, Tobin, MD, Tomaszewski, M, Toniolo, D, Traglia, M, Trompet, S, Tuomilehto, J, Tzourio, C, Uitterlinden, AG, Vaez, A, van der Most, PJ, van Duijn, CM, Vergnaud, A-C, Verwoert, GC, Vitart, V, Völker, U, Vollenweider, P, Vuckovic, D, Watkins, H, Wild, SH, Willemsen, G, Wilson, JF, Wright, AF, Yao, J, Zemunik, T, Zhang, W, Attia, JR, Butterworth, AS, Chasman, DI, Conen, D, Cucca, F, Danesh, J, Hayward, C, Howson, JMM, Laakso, M, Lakatta, EG, Langenberg, C, Melander, O, Mook-Kanamori, DO, Palmer, CNA, Risch, L, Scott, RA, Scott, RJ, Sever, P, Spector, TD, van der Harst, P, Wareham, NJ, Zeggini, E, Levy, D, Munroe, PB, Newton-Cheh, C, Brown, MJ, Metspalu, A, Hung, AM, O’Donnell, CJ, Edwards, TL, Psaty, BM, Tzoulaki, I, Barnes, MR, Wain, LV, Elliott, P and Caulfield, MJ (2018) Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits. Nature Genetics 50(10), 14121425. https://doi.org/10.1038/s41588-018-0205-x.Google Scholar
Feitosa, MF, Kraja, AT, Chasman, DI, Sung, YJ, Winkler, TW, Ntalla, I, Guo, X, Franceschini, N, Cheng, C-Y, Sim, X, Vojinovic, D, Marten, J, Musani, SK, Li, C, Bentley, AR, Brown, MR, Schwander, K, Richard, MA, Noordam, R, Aschard, H, Bartz, TM, Bielak, LF, Dorajoo, R, Fisher, V, Hartwig, FP, Horimoto, ARVR, Lohman, KK, Manning, AK, Rankinen, T, Smith, AV, Tajuddin, SM, Wojczynski, MK, Alver, M, Boissel, M, Cai, Q, Campbell, A, Chai, JF, Chen, X, Divers, J, Gao, C, Goel, A, Hagemeijer, Y, Harris, SE, He, M, Hsu, F-C, Jackson, AU, Kähönen, M, Kasturiratne, A, Komulainen, P, Kühnel, B, Laguzzi, F, Luan, J, Matoba, N, Nolte, IM, Padmanabhan, S, Riaz, M, Rueedi, R, Robino, A, Said, MA, Scott, RA, Sofer, T, Stančáková, A, Takeuchi, F, Tayo, BO, Most, PJ van der, Varga, TV, Vitart, V, Wang, Y, Ware, EB, Warren, HR, Weiss, S, Wen, W, Yanek, LR, Zhang, W, Zhao, JH, Afaq, S, Amin, N, Amini, M, Arking, DE, Aung, T, Boerwinkle, E, Borecki, I, Broeckel, U, Brown, M, Brumat, M, Burke, GL, Canouil, M, Chakravarti, A, Charumathi, S, Chen, Y-DI, Connell, JM, Correa, A, Fuentes, L de las, Mutsert, R de, Silva, HJ de, Deng, X, Ding, J, Duan, Q, Eaton, CB, Ehret, G, Eppinga, RN, Evangelou, E, Faul, JD, Felix, SB, Forouhi, NG, Forrester, T, Franco, OH, Friedlander, Y, Gandin, I, Gao, H, Ghanbari, M, Gigante, B, Gu, CC, Gu, D, Hagenaars, SP, Hallmans, G, Harris, TB, He, J, Heikkinen, S, Heng, C-K, Hirata, M, Howard, BV, Ikram, MA, Consortium, I, John, U, Katsuya, T, Khor, CC, Kilpeläinen, TO, Koh, W-P, Krieger, JE, Kritchevsky, SB, Kubo, M, Kuusisto, J, Lakka, TA, Langefeld, CD, Langenberg, C, Launer, LJ, Lehne, B, Lewis, CE, Li, Y, Lin, S, Liu, J, Liu, J, Loh, M, Louie, T, Mägi, R, McKenzie, CA, Meitinger, T, Metspalu, A, Milaneschi, Y, Milani, L, Mohlke, KL, Momozawa, Y, Nalls, MA, Nelson, CP, Sotoodehnia, N, Norris, JM, O’Connell, JR, Palmer, ND, Perls, T, Pedersen, NL, Peters, A, Peyser, PA, Poulter, N, Raffel, LJ, Raitakari, OT, Roll, K, Rose, LM, Rosendaal, FR, Rotter, JI, Schmidt, CO, Schreiner, PJ, Schupf, N, Scott, WR, Sever, PS, Shi, Y, Sidney, S, Sims, M, Sitlani, CM, Smith, JA, Snieder, H, Starr, JM, Strauch, K, Stringham, HM, NYQ, Tan, Tang, H, Taylor, KD, Teo, YY, Tham, YC, Turner, ST, Uitterlinden, AG, Vollenweider, P, Waldenberger, M, Wang, L, Wang, YX, Wei, WB, Williams, C, Yao, J, Yu, C, Yuan, J-M, Zhao, W, Zonderman, AB, Becker, DM, Boehnke, M, Bowden, DW, Chambers, JC, Deary, IJ, Esko, T, Farrall, M, Franks, PW, Freedman, BI, Froguel, P, Gasparini, P, Gieger, C, Jonas, JB, Kamatani, Y, Kato, N, Kooner, JS, Kutalik, Z, Laakso, M, Laurie, CC, Leander, K, Lehtimäki, T, Study, LC, Magnusson, PKE, Oldehinkel, AJ, Penninx, BWJH, Polasek, O, Porteous, DJ, Rauramaa, R, Samani, NJ, Scott, J, Shu, X-O, Harst, P van der, Wagenknecht, LE, Wareham, NJ, Watkins, H, Weir, DR, Wickremasinghe, AR, Wu, T, Zheng, W, Bouchard, C, Christensen, K, Evans, MK, Gudnason, V, Horta, BL, SLR, Kardia, Liu, Y, Pereira, AC, Psaty, BM, Ridker, PM, Dam, RM van, Gauderman, WJ, Zhu, X, Mook-Kanamori, DO, Fornage, M, Rotimi, CN, Cupples, LA, Kelly, TN, Fox, ER, Hayward, C, Duijn, CM van, Tai, ES, Wong, TY, Kooperberg, C, Palmas, W, Rice, K, Morrison, AC, Elliott, P, Caulfield, MJ, Munroe, PB, Rao, DC, Province, MA and Levy, D (2018) Novel genetic associations for blood pressure identified via gene-alcohol interaction in up to 570K individuals across multiple ancestries. PLoS One 13(6), e0198166. https://doi.org/10.1371/journal.pone.0198166.Google Scholar
Franceschini, N, Fox, E, Zhang, Z, Edwards, TL, Nalls, MA, Sung, YJ, Tayo, BO, Sun, YV, Gottesman, O, Adeyemo, A, Johnson, AD, Young, JH, Rice, K, Duan, Q, Chen, F, Li, Y, Tang, H, Fornage, M, Keene, KL, Andrews, JS, Smith, JA, Faul, JD, Guangfa, Z, Guo, W, Liu, Y, Murray, SS, Musani, SK, Srinivasan, S, Velez Edwards, DR, Wang, H, Becker, LC, Bovet, P, Bochud, M, Broeckel, U, Burnier, M, Carty, C, Chasman, DI, Ehret, G, Chen, W-M, Chen, G, Chen, W, Ding, J, Dreisbach, AW, Evans, MK, Guo, X, Garcia, ME, Jensen, R, Keller, MF, Lettre, G, Lotay, V, Martin, LW, Moore, JH, Morrison, AC, Mosley, TH, Ogunniyi, A, Palmas, W, Papanicolaou, G, Penman, A, Polak, JF, Ridker, PM, Salako, B, Singleton, AB, Shriner, D, Taylor, KD, Vasan, R, Wiggins, K, Williams, SM, Yanek, LR, Zhao, W, Zonderman, AB, Becker, DM, Berenson, G, Boerwinkle, E, Bottinger, E, Cushman, M, Eaton, C, Nyberg, F, Heiss, G, Hirschhron, JN, Howard, VJ, Karczewsk, KJ, Lanktree, MB, Liu, K, Liu, Y, Loos, R, Margolis, K, Snyder, M, Go, MJ, Kim, YJ, Lee, J-Y, Jeon, J-P, Kim, SS, Han, B-G, Cho, YS, Sim, X, Tay, WT, Ong, RTH, Seielstad, M, Liu, JJ, Aung, T, Wong, TY, Teo, YY, Tai, ES, Chen, C-H, Chang, L, Chen, Y-T, Wu, J-Y, Kelly, TN, Gu, D, Hixson, JE, Sung, YJ, He, J, Tabara, Y, Kokubo, Y, Miki, T, Iwai, N, Kato, N, Takeuchi, F, Katsuya, T, Nabika, T, Sugiyama, T, Zhang, Y, Huang, W, Zhang, X, Zhou, X, Jin, L, Zhu, D, Psaty, BM, Schork, NJ, Weir, DR, Rotimi, CN, Sale, MM, Harris, T, Kardia, SLR, Hunt, SC, Arnett, D, Redline, S, Cooper, RS, Risch, NJ, Rao, DC, Rotter, JI, Chakravarti, A, Reiner, AP, Levy, D, Keating, BJ and Zhu, X (2013) Genome-wide association analysis of blood-pressure traits in African-Ancestry individuals reveals common associated genes in African and Non-African populations. The American Journal of Human Genetics 93(3), 545554. https://doi.org/10.1016/j.ajhg.2013.07.010.Google Scholar
Freeman, MW, Halvorsen, Y-D, Marshall, W, Pater, M, Isaacsohn, J, Pearce, C, Murphy, B, Alp, N, Srivastava, A, Bhatt, DL and Brown, MJ (2022) Phase 2 trial of baxdrostat for treatment-resistant hypertension. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa2213169.Google Scholar
Fuat, A, Adlen, E, Monane, M, Coll, R, Groves, S, Little, E, Wild, J, Kamali, FJ, Soni, Y, Haining, S, Riding, H, Riveros-Mckay, F, Peneva, I, Lachapelle, A, Giner-Delgado, C, Weale, ME, Plagnol, V, Harrison, S and Donnelly, P (2024) A polygenic risk score added to a QRISK®2 cardiovascular disease risk calculator demonstrated robust clinical acceptance and clinical utility in the primary care setting. European Journal of Preventive Cardiology 31(6), 716722. https://doi.org/10.1093/eurjpc/zwae004.Google Scholar
Fujii, R, Hishida, A, Nakatochi, M, Okumiyama, H, Takashima, N, Tsuboi, Y, Suzuki, K, Ikezaki, H, Shimanoe, C, Kato, Y, Tamura, T, Ito, H, Michihata, N, Tanoue, S, Suzuki, S, Kuriki, K, Kadota, A, Watanabe, T, Momozawa, Y, Wakai, K and Matsuo, K (2024) Polygenic risk score for blood pressure and lifestyle factors with overall and CVD mortality: A prospective cohort study in a Japanese population. Hypertension Research 47(9), 22842294. https://doi.org/10.1038/s41440-024-01766-9.Google Scholar
Ganji-Arjenaki, M, Kamali, Z, Evangelou, E, Warren, HR, Gao, H, Ntritsos, G, Dimou, N, Esko, T, Mägi, R, Milani, L, Almgren, P, Boutin, T, Debette, S, Ding, J, Giulianini, F, Holliday, EG, Jackson, AU, Li -Gao, R, Lin, W-Y, Luan, J, Mangino, M, Oldmeadow, C, Prins, BP, Qian, Y, Sargurupremraj, M, Shah, N, Surendran, P, Thériault, S, Verweij, N, Willems, SM, Zhao, J-H, Amouyel, P, Connell, J, Mutsert, R de, ASF, Doney, Farrall, M, Menni, C, Morris, AD, Noordam, R, Paré, G, Poulter, NR, Shields, DC, Stanton, A, Thom, S, Abecasis, G, Amin, N, Arking, DE, Ayers, KL, Barbieri, CM, Batini, C, Bis, JC, Blake, T, Bochud, M, Boehnke, M, Boerwinkle, E, Boomsma, DI, Bottinger, EP, Braund, PS, Brumat, M, Campbell, A, Campbell, H, Chakravarti, A, Chambers, JC, Chauhan, G, Ciullo, M, Cocca, M, Collins, F, Cordell, HJ, Davies, G, de Borst, MH, de Geus, EJ, Deary, IJ, Deelen, J, FDG, M, Demirkale, CY, Dörr, M, Ehret, GB, Elosua, R, Enroth, S, Erzurumluoglu, AM, Ferreira, T, Frånberg, M, Franco, OH, Gandin, I, Gasparini, P, Giedraitis, V, Gieger, C, Girotto, G, Goel, A, Gow, AJ, Gudnason, V, Guo, X, Gyllensten, U, Hamsten, A, Harris, TB, Harris, SE, Hartman, CA, Havulinna, AS, Hicks, AA, Hofer, E, Hofman, A, Hottenga, J-J, Huffman, JE, Hwang, S-J, Ingelsson, E, James, A, Jansen, R, Jarvelin, M-R, Joehanes, R, Johansson, Å, Johnson, AD, Joshi, PK, Jousilahti, P, Jukema, JW, Jula, A, Kähönen, M, Kathiresan, S, Keavney, BD, Khaw, K-T, Knekt, P, Knight, J, Kolcic, I, Kooner, JS, Koskinen, S, Kristiansson, K, Kutalik, Z, Laan, M, Larson, M, Launer, LJ, Lehne, B, Lehtimäki, T, DCM, Liewald, Lin, L, Lind, L, Lindgren, CM, Liu, Y, RJF, Loos, Lopez, LM, Lu, Y, Lyytikäinen, L-P, Mahajan, A, Mamasoula, C, Marrugat, J, Marten, J, Milaneschi, Y, Morgan, A, Morris, AP, Morrison, AC, Munson, PJ, Nalls, MA, Nandakumar, P, Nelson, CP, Niiranen, T, Nolte, IM, Nutile, T, Oldehinkel, AJ, Oostra, BA, O’Reilly, PF, Org, E, Padmanabhan, S, Palmas, W, Palotie, A, Pattie, A, Penninx, BWJH, Perola, M, Peters, A, Polasek, O, Pramstaller, PP, Nguyen, QT, Raitakari, OT, Rettig, R, Rice, K, Ridker, PM, Ried, JS, Riese, H, Ripatti, S, Robino, A, Rose, LM, Rotter, JI, Rudan, I, Ruggiero, D, Saba, Y, Sala, CF, Salomaa, V, Samani, NJ, Sarin, A-P, Schmidt, R, Schmidt, H, Shrine, N, Siscovick, D, Smith, AV, Snieder, H, Sõber, S, Sorice, R, Starr, JM, Stott, DJ, Strachan, DP, Strawbridge, RJ, Sundström, J, Swertz, MA, Taylor, KD, Teumer, A, Tobin, MD, Tomaszewski, M, Toniolo, D, Traglia, M, Trompet, S, Tuomilehto, J, Tzourio, C, Uitterlinden, AG, Vaez, A, van der Most, PJ, van Duijn, CM, Verwoert, GC, Vitart, V, Völker, U, Vollenweider, P, Vuckovic, D, Watkins, H, Wild, SH, Willemsen, G, Wilson, JF, Wright, AF, Yao, J, Zemunik, T, Zhang, W, Attia, JR, Butterworth, AS, Chasman, DI, Conen, D, Cucca, F, Danesh, J, Hayward, C, Howson, JMM, Laakso, M, Lakatta, EG, Langenberg, C, Melander, O, Mook-Kanamori, DO, Palmer, CNA, Risch, L, Scott, RA, Scott, RJ, Sever, P, Spector, TD, van der Harst, P, Wareham, NJ, Zeggini, E, Levy, D, Munroe, PB, Newton-Cheh, C, Brown, MJ, Metspalu, A, Psaty, BM, Wain, LV, Elliott, P, Caulfield, MJ, Sardari, S, de Borst, M, Snieder, H and Vaez, A (2024) Prioritization of kidney cell types highlights myofibroblast cells in regulating human blood pressure. Kidney International Reports 9(6), 18491859. https://doi.org/10.1016/j.ekir.2024.03.001.Google Scholar
Gaulton, A, Hersey, A, Nowotka, M, Bento, AP, Chambers, J, Mendez, D, Mutowo, P, Atkinson, F, Bellis, LJ, Cibrián-Uhalte, E, Davies, M, Dedman, N, Karlsson, A, Magariños, MP, Overington, JP, Papadatos, G, Smit, I and Leach, AR (2017) The ChEMBL database in 2017. Nucleic Acids Research 45(D1), D945D954. https://doi.org/10.1093/nar/gkw1074.Google Scholar
Ge, T, Chen, C-Y, Ni, Y, Feng, Y-CA and Smoller, JW (2019) Polygenic prediction via Bayesian regression and continuous shrinkage priors. Nature Communications 10(1), 110. https://doi.org/10.1038/s41467-019-09718-5.Google Scholar
Genomics PLC (n.d.) Genomics plc. https://www.genomicsplc.com/Google Scholar
Giri, A, Hellwege, JN, Keaton, JM, Park, J, Qiu, C, Warren, HR, Torstenson, ES, Kovesdy, CP, Sun, YV, Wilson, OD, Robinson-Cohen, C, Roumie, CL, Chung, CP, Birdwell, KA, Damrauer, SM, SL, DuVall, Klarin, D, Cho, K, Wang, Y, Evangelou, E, Cabrera, CP, Wain, LV, Shrestha, R, Mautz, BS, Akwo, EA, Sargurupremraj, M, Debette, S, Boehnke, M, Scott, LJ, Luan, J, Jing-Hua, Z, Willems, SM, Thériault, S, Shah, N, Oldmeadow, C, Almgren, P, Li-Gao, R, Verweij, N, Boutin, TS, Mangino, M, Ntalla, I, Feofanova, E, Surendran, P, Cook, JP, Karthikeyan, S, Lahrouchi, N, Liu, C, Sepúlveda, N, Richardson, TG, Kraja, A, Amouyel, P, Farrall, M, Poulter, NR, Group USS, Pressure IC for B, Studies BP-IC of E chip, Laakso, M, Zeggini, E, Sever, P, Scott, RA, Langenberg, C, Wareham, NJ, Conen, D, Palmer, CNA, Attia, J, Chasman, DI, Ridker, PM, Melander, O, Mook-Kanamori, DO, Harst, P van der, Cucca, F, Schlessinger, D, Hayward, C, Spector, TD, Marjo-Riitta, J, Hennig, BJ, Timpson, NJ, Wei-Qi, W, Smith, JC, Xu, Y, Matheny, ME, Siew, EE, Lindgren, C, Karl-Heinz, H, Dedoussis, G, Denny, JC, Psaty, BM, Howson, JMM, Munroe, PB, Newton-Cheh, C, Caulfield, MJ, Elliott, P, Gaziano, JM, Concato, J, Wilson, PWF, Tsao, PS, Edwards, DRV, Susztak, K, Program, MV, O’Donnell, CJ, Hung, AM and Edwards, TL (2019) Trans-ethnic association study of blood pressure determinants in over 750,000 individuals. Nature Genetics 51(1), 51. https://doi.org/10.1038/s41588-018-0303-9.Google Scholar
Kearney, PM, Whelton, M, Reynolds, K, Muntner, P, Whelton, PK, He, J (2005) Global burden of hypertension: Analysis of worldwide data. The Lancet 365(9455), 217223. https://doi.org/10.1016/S0140-6736(05)17741-1.Google Scholar
Guirette, M, Lan, J, McKeown, NM, Brown, MR, Chen, H, de Vries, PS, Kim, H, Rebholz, CM, Morrison, AC, Bartz, TM, Fretts, AM, Guo, X, Lemaitre, RN, Liu, C-T, Noordam, R, de Mutsert, R, Rosendaal, FR, Wang, CA, Beilin, LJ, Mori, TA, Oddy, WH, Pennell, CE, Chai, JF, Whitton, C, van Dam, RM, Liu, J, Tai, ES, Sim, X, Neuhouser, ML, Kooperberg, C, Tinker, LF, Franceschini, N, Huan, T, Winkler, TW, Bentley, AR, Gauderman, WJ, Heerkens, L, Tanaka, T, Rooij, J van, Munroe, PB, Warren, HR, Voortman, T, Chen, H, Rao, DC, Levy, D, Ma, J and Group O behalf of the CG-LIW (2024) Genome-wide interaction analysis with DASH diet score identified novel loci for systolic blood pressure. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.123.22334.Google Scholar
H3Africa – Human Heredity & Health in Africa (n.d.) https://h3africa.org/Google Scholar
He, KY, Kelly, TN, Wang, H, Liang, J, Zhu, L, Cade, BE, Assimes, TL, Becker, LC, Beitelshees, AL, Bielak, LF, Bress, AP, Brody, JA, Chang, Y-PC, Chang, Y-C, de Vries, PS, Duggirala, R, Fox, ER, Franceschini, N, Furniss, AL, Gao, Y, Guo, X, Haessler, J, Hung, Y-J, Hwang, S-J, Irvin, MR, Kalyani, RR, Liu, C-T, Liu, C, Martin, LW, Montasser, ME, Muntner, PM, Mwasongwe, S, Naseri, T, Palmas, W, Reupena, MS, Rice, KM, Sheu, WH-H, Shimbo, D, Smith, JA, Snively, BM, Yanek, LR, Zhao, W, Blangero, J, Boerwinkle, E, Chen, Y-DI, Correa, A, Cupples, LA, Curran, JE, Fornage, M, He, J, Hou, L, Kaplan, RC, Kardia, SLR, Kenny, EE, Kooperberg, C, Lloyd-Jones, D, Loos, RJF, Mathias, RA, McGarvey, ST, Mitchell, BD, North, KE, Peyser, PA, Psaty, BM, Raffield, LM, Rao, DC, Redline, S, Reiner, AP, Rich, SS, Rotter, JI, Taylor, KD, Tracy, R, Vasan, RS, Morrison, AC, Levy, D, Chakravarti, A, Arnett, DK and Zhu, X (2022) Rare coding variants in RCN3 are associated with blood pressure. BMC Genomics 23(1), 118. https://doi.org/10.1186/s12864-022-08356-4.Google Scholar
Hoffmann, TJ, Ehret, GB, Nandakumar, P, Ranatunga, D, Schaefer, C, Kwok, P-Y, Iribarren, C, Chakravarti, A and Risch, N (2017) Genome-wide association analyses using electronic health records identify new loci influencing blood pressure variation. Nature Genetics 49(1), 5464. https://doi.org/10.1038/ng.3715.Google Scholar
Hong, K-W, Jin, H-S, Cho, YS, Lee, J-Y, Lee, J-E, Cho, NH, Shin, C, Lee, S-H, Park, HK and Oh, B (2009) Replication of the Wellcome Trust genome-wide association study on essential hypertension in a Korean population. Hypertension Research 32(7), 570574. https://doi.org/10.1038/hr.2009.68.Google Scholar
International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431(7011), 931945. https://doi.org/10.1038/nature03001.Google Scholar
Kamali, Z, Keaton, JM, Haghjooy Javanmard, S, International Consortium of Blood Pressure, Million Veteran Program, eQTLGen Consortium, BIOS Consortium, Edwards, TL, Snieder, H and Vaez, A (2022) Large-scale multi-omics studies provide new insights into blood pressure regulation. International Journal of Molecular Sciences 23(14), 7557. https://doi.org/10.3390/ijms23147557.Google Scholar
Kanai, M, Akiyama, M, Takahashi, A, Matoba, N, Momozawa, Y, Ikeda, M, Iwata, N, Ikegawa, S, Hirata, M, Matsuda, K, Kubo, M, Okada, Y and Kamatani, Y (2018) Genetic analysis of quantitative traits in the Japanese population links cell types to complex human diseases. Nature Genetics 50(3), 390400. https://doi.org/10.1038/s41588-018-0047-6.Google Scholar
Kauko, A, Aittokallio, J, Vaura, F, Ji, H, Ebinger, JE, Niiranen, T and Cheng, S (2021) Sex differences in genetic risk for hypertension. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.121.17796.Google Scholar
Keaton, JM, Kamali, Z, Xie, T, Vaez, A, Williams, A, Goleva, SB, Ani, A, Evangelou, E, Hellwege, JN, Yengo, L, Young, WJ, Traylor, M, Giri, A, Zheng, Z, Zeng, J, Chasman, DI, Morris, AP, Caulfield, MJ, Hwang, S-J, Kooner, JS, Conen, D, Attia, JR, Morrison, AC, Loos, RJF, Kristiansson, K, Schmidt, R, Hicks, AA, Pramstaller, PP, Nelson, CP, Samani, NJ, Risch, L, Gyllensten, U, Melander, O, Riese, H, Wilson, JF, Campbell, H, Rich, SS, Psaty, BM, Lu, Y, Rotter, JI, Guo, X, Rice, KM, Vollenweider, P, Sundström, J, Langenberg, C, Tobin, MD, Giedraitis, V, Luan, J, Tuomilehto, J, Kutalik, Z, Ripatti, S, Salomaa, V, Girotto, G, Trompet, S, Jukema, JW, van der Harst, P, Ridker, PM, Giulianini, F, Vitart, V, Goel, A, Watkins, H, Harris, SE, Deary, IJ, van der Most, PJ, Oldehinkel, AJ, Keavney, BD, Hayward, C, Campbell, A, Boehnke, M, Scott, LJ, Boutin, T, Mamasoula, C, Järvelin, M-R, Peters, A, Gieger, C, Lakatta, EG, Cucca, F, Hui, J, Knekt, P, Enroth, S, De Borst, MH, Polašek, O, Concas, MP, Catamo, E, Cocca, M, Li-Gao, R, Hofer, E, Schmidt, H, Spedicati, B, Waldenberger, M, Strachan, DP, Laan, M, Teumer, A, Dörr, M, Gudnason, V, Cook, JP, Ruggiero, D, Kolcic, I, Boerwinkle, E, Traglia, M, Lehtimäki, T, Raitakari, OT, Johnson, AD, Newton-Cheh, C, Brown, MJ, Dominiczak, AF, Sever, PJ, Poulter, N, Chambers, JC, Elosua, R, Siscovick, D, Esko, T, Metspalu, A, Strawbridge, RJ, Laakso, M, Hamsten, A, Hottenga, J-J, de Geus, E, Morris, AD, Palmer, CNA, Nolte, IM, Milaneschi, Y, Marten, J, Wright, A, Zeggini, E, Howson, JMM, O’Donnell, CJ, Spector, T, Nalls, MA, Simonsick, EM, Liu, Y, van Duijn, CM, Butterworth, AS, Danesh, JN, Menni, C, Wareham, NJ, Khaw, K-T, Sun, YV, Wilson, PWF, Cho, K, Visscher, PM, Denny, JC, Levy, D, Edwards, TL, Munroe, PB, Snieder, H and Warren, HR (2024) Genome-wide analysis in over 1 million individuals of European ancestry yields improved polygenic risk scores for blood pressure traits. Nature Genetics 56(5), 778791. https://doi.org/10.1038/s41588-024-01714-w.Google Scholar
Kolifarhood, G, Daneshpour, M, Hadaegh, F, Sabour, S, Mozafar Saadati, H, Akbar Haghdoust, A, Akbarzadeh, M, Sedaghati-Khayat, B and Khosravi, N (2019) Heritability of blood pressure traits in diverse populations: a systematic review and meta-analysis. Journal of Human Hypertension 33(11), 775785. https://doi.org/10.1038/s41371-019-0253-4.Google Scholar
Kurki, MI, Karjalainen, J, Palta, P, Sipilä, TP, Kristiansson, K, Donner, KM, Reeve, MP, Laivuori, H, Aavikko, M, Kaunisto, MA, Loukola, A, Lahtela, E, Mattsson, H, Laiho, P, Della Briotta Parolo, P, Lehisto, AA, Kanai, M, Mars, N, Rämö, J, Kiiskinen, T, Heyne, HO, Veerapen, K, Rüeger, S, Lemmelä, S, Zhou, W, Ruotsalainen, S, Pärn, K, Hiekkalinna, T, Koskelainen, S, Paajanen, T, Llorens, V, Gracia-Tabuenca, J, Siirtola, H, Reis, K, Elnahas, AG, Sun, B, Foley, CN, Aalto-Setälä, K, Alasoo, K, Arvas, M, Auro, K, Biswas, S, Bizaki-Vallaskangas, A, Carpen, O, Chen, C-Y, Dada, OA, Ding, Z, Ehm, MG, Eklund, K, Färkkilä, M, Finucane, H, Ganna, A, Ghazal, A, Graham, RR, Green, EM, Hakanen, A, Hautalahti, M, Hedman, ÅK, Hiltunen, M, Hinttala, R, Hovatta, I, Hu, X, Huertas-Vazquez, A, Huilaja, L, Hunkapiller, J, Jacob, H, Jensen, J-N, Joensuu, H, John, S, Julkunen, V, Jung, M, Junttila, J, Kaarniranta, K, Kähönen, M, Kajanne, R, Kallio, L, Kälviäinen, R, Kaprio, J, Kerimov, N, Kettunen, J, Kilpeläinen, E, Kilpi, T, Klinger, K, Kosma, V-M, Kuopio, T, Kurra, V, Laisk, T, Laukkanen, J, Lawless, N, Liu, A, Longerich, S, Mägi, R, Mäkelä, J, Mäkitie, A, Malarstig, A, Mannermaa, A, Maranville, J, Matakidou, A, Meretoja, T, Mozaffari, SV, Niemi, MEK, Niemi, M, Niiranen, T, O’Donnell, CJ, Obeidat, M, Okafo, G, Ollila, HM, Palomäki, A, Palotie, T, Partanen, J, Paul, DS, Pelkonen, M, Pendergrass, RK, Petrovski, S, Pitkäranta, A, Platt, A, Pulford, D, Punkka, E, Pussinen, P, Raghavan, N, Rahimov, F, Rajpal, D, Renaud, NA, Riley-Gillis, B, Rodosthenous, R, Saarentaus, E, Salminen, A, Salminen, E, Salomaa, V, Schleutker, J, Serpi, R, Shen, H, Siegel, R, Silander, K, Siltanen, S, Soini, S, Soininen, H, Sul, JH, Tachmazidou, I, Tasanen, K, Tienari, P, Toppila-Salmi, S, Tukiainen, T, Tuomi, T, Turunen, JA, Ulirsch, JC, Vaura, F, Virolainen, P, Waring, J, Waterworth, D, Yang, R, Nelis, M, Reigo, A, Metspalu, A, Milani, L, Esko, T, Fox, C, Havulinna, AS, Perola, M, Ripatti, S, Jalanko, A, Laitinen, T, Mäkelä, TP, Plenge, R, McCarthy, M, Runz, H, Daly, MJ and Palotie, A (2023) FinnGen provides genetic insights from a well-phenotyped isolated population. Nature 613(7944), 508518. https://doi.org/10.1038/s41586-022-05473-8.Google Scholar
Lerman, LO, Kurtz, TW, Touyz, RM, Ellison, DH, Chade, AR, Crowley, SD, Mattson, DL, Mullins, JJ, Osborn, J, Eirin, A, Reckelhoff, JF, Iadecola, C and Coffman, TM (2019) Animal models of hypertension: A scientific statement from the American Heart Association. Hypertension (Dallas, Tex. : 1979) 73(6), e87. https://doi.org/10.1161/HYP.0000000000000090.Google Scholar
Levy, D, DeStefano, AL, Larson, MG, O’Donnell, CJ, Lifton, RP, Gavras, H, Cupples, LA and Myers, RH (2000) Evidence for a gene influencing blood pressure on chromosome 17. Hypertension https://doi.org/10.1161/01.HYP.36.4.477.Google Scholar
Levy, D, Ehret, GB, Rice, K, Verwoert, GC, Launer, LJ, Dehghan, A, Glazer, NL, Morrison, AC, Johnson, AD, Aspelund, T, Aulchenko, Y, Lumley, T, Köttgen, A, Vasan, RS, Rivadeneira, F, Eiriksdottir, G, Guo, X, Arking, DE, Mitchell, GF, Mattace-Raso, FUS, Smith, AV, Taylor, K, Scharpf, RB, Hwang, S-J, Sijbrands, EJG, Bis, J, Harris, TB, Ganesh, SK, O’Donnell, CJ, Hofman, A, Rotter, JI, Coresh, J, Benjamin, EJ, Uitterlinden, AG, Heiss, G, Fox, CS, Witteman, JCM, Boerwinkle, E, Wang, TJ, Gudnason, V, Larson, MG, Chakravarti, A, Psaty, BM and Duijn, CM van (2009) Genome-wide association study of blood pressure and hypertension. Nature Genetics 41(6), 677. https://doi.org/10.1038/ng.384.Google Scholar
Lewis, CM and Vassos, E (2020) Polygenic risk scores: From research tools to clinical instruments. Genome Medicine 12(1), 111. https://doi.org/10.1186/s13073-020-00742-5.Google Scholar
Li, Y-H, Zhang, G-G and Wang, N (2017) Systematic characterization and prediction of human hypertension genes. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.116.08573.Google Scholar
Mancia, G, Kreutz, R, Brunström, M, Burnier, M, Grassi, G, Januszewicz, A, Muiesan, ML, Tsioufis, K, Agabiti-Rosei, E, Algharably, EAE, Azizi, M, Benetos, A, Borghi, C, Hitij, JB, Cifkova, R, Coca, A, Cornelissen, V, Cruickshank, JK, Cunha, PG, Danser, AHJ, Pinho, RM de, Delles, C, Dominiczak, AF, Dorobantu, M, Doumas, M, Fernández-Alfonso, MS, Halimi, J-M, Járai, Z, Jelaković, B, Jordan, J, Kuznetsova, T, Laurent, S, Lovic, D, Lurbe, E, Mahfoud, F, Manolis, A, Miglinas, M, Narkiewicz, K, Niiranen, T, Palatini, P, Parati, G, Pathak, A, Persu, A, Polonia, J, Redon, J, Sarafidis, P, Schmieder, R, Spronck, B, Stabouli, S, Stergiou, G, Taddei, S, Thomopoulos, C, Tomaszewski, M, Van de Borne, P, Wanner, C, Weber, T, Williams, B, Zhang, Z-Y and Kjeldsen, SE (2023) 2023 ESH guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension: Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). Journal of Hypertension 41(12), 1874. https://doi.org/10.1097/HJH.0000000000003480.Google Scholar
Masi, S, Dalpiaz, H and Borghi, C (2024) Gene editing of angiotensin for blood pressure management. International Journal of Cardiology Cardiovascular Risk and Prevention 23, 200323. https://doi.org/10.1016/j.ijcrp.2024.200323.Google Scholar
McEvoy, JW, McCarthy, CP, Bruno, RM, Brouwers, S, Canavan, MD, Ceconi, C, Christodorescu, RM, Daskalopoulou, SS, Ferro, CJ, Gerdts, E, Hanssen, H, Harris, J, Lauder, L, McManus, RJ, Molloy, GJ, Rahimi, K, Regitz-Zagrosek, V, Rossi, GP, Sandset, EC, Scheenaerts, B, Staessen, JA, Uchmanowicz, I, Volterrani, M, Touyz, RM, Group ESD, Abreu, A, Olsen, MH, Ambrosetti, M, Androulakis, E, Bang, LE, Bech, JN, Borger, MA, Boutouyrie, P, Bronze, L, Buccheri, S, Dalmau, R, De Pablo Zarzosa, MC, Delles, C, Fiuza, MM, Gabulova, R, Haugen, BO, Heiss, C, Ibanez, B, James, S, Kapil, V, Kayikçioglu, M, Køber, L, Koskinas, KC, Locati, ET, MacDonald, S, Mihailidou, AS, Mihaylova, B, Mindham, R, Mortensen, MB, Nardai, S, Neubeck, L, Nielsen, JC, Nilsson, PM, Pasquet, AA, Pedro, MM, Prescott, E, Rakisheva, A, Rietzschel, E, Rocca, B, Rossello, X, Schmid, J-P, Shantsila, E, Sudano, I, Timóteo, AT, Tsivgoulis, G, Ungar, A, Vaartjes, I, Visseren, F, Voeller, H, Vrints, C, Witkowski, A, Zennaro, M-C, Zeppenfeld, K, Shuka, N, Laredj, N, Pavo, N, Mirzoyev, U, van de Borne, P, Sokolović, Š, Postadzhiyan, A, Samardzic, J, Agathangelou, P, Widimsky, J, Olsen, MH, El-Kilany, WM, Pauklin, P, Laukkanen, JA, Boulestreau, R, Tsinamdzgvrishvili, B, Kintscher, U, Marketou, M, Páll, D, Hrafnkelsdóttir, ÞJ, Dolan, E, Wolak, T, Bilo, G, Tundybayeva, MK, Mirrakhimov, E, Trusinskis, K, Kiwan, G, Msalem, O, Badarienė, J, Banu, C-A, Balbi, MM, Caraus, A, Boskovic, A, Mouine, N, Vromen, T, Bosevski, M, Midtbø, HB, Doroszko, A, Dores, H, Badila, E, Bini, R, Simić, DV, Fras, Z, Mazón, P, Spaak, J, Burkard, T, Barakat, E, Abdessalem, S, Gunes, Y, Sirenko, YM, Brady, AJB and Khamidullaeva, GA (2024) 2024 ESC Guidelines for the management of elevated blood pressure and hypertension: Developed by the task force on the management of elevated blood pressure and hypertension of the European Society of Cardiology (ESC) and endorsed by the European Society of Endocrinology (ESE) and the European Stroke Organisation (ESO). European Heart Journal 45(38), 39124018. https://doi.org/10.1093/eurheartj/ehae178.Google Scholar
Murray, CJL, Aravkin, AY, Zheng, P, Abbafati, C, Abbas, KM, Abbasi-Kangevari, M, Abd-Allah, F, Abdelalim, A, Abdollahi, M, Abdollahpour, I, Abegaz, KH, Abolhassani, H, Aboyans, V, Abreu, LG, Abrigo, MRM, Abualhasan, A, Abu-Raddad, LJ, Abushouk, AI, Adabi, M, Adekanmbi, V, Adeoye, AM, Adetokunboh, OO, Adham, D, Advani, SM, Agarwal, G, Aghamir, SMK, Agrawal, A, Ahmad, T, Ahmadi, K, Ahmadi, M, Ahmadieh, H, Ahmed, MB, Akalu, TY, Akinyemi, RO, Akinyemiju, T, Akombi, B, Akunna, CJ, Alahdab, F, Al-Aly, Z, Alam, K, Alam, S, Alam, T, Alanezi, FM, Alanzi, TM, Alemu, BW, Alhabib, KF, Ali, M, Ali, S, Alicandro, G, Alinia, C, Alipour, V, Alizade, H, Aljunid, SM, Alla, F, Allebeck, P, Almasi-Hashiani, A, Al-Mekhlafi, HM, Alonso, J, Altirkawi, KA, Amini-Rarani, M, Amiri, F, Amugsi, DA, Ancuceanu, R, Anderlini, D, Anderson, JA, Andrei, CL, Andrei, T, Angus, C, Anjomshoa, M, Ansari, F, Ansari-Moghaddam, A, Antonazzo, IC, Antonio, CAT, Antony, CM, Antriyandarti, E, Anvari, D, Anwer, R, Appiah, SCY, Arabloo, J, Arab-Zozani, M, Ariani, F, Armoon, B, Ärnlöv, J, Arzani, A, Asadi-Aliabadi, M, Asadi-Pooya, AA, Ashbaugh, C, Assmus, M, Atafar, Z, Atnafu, DD, Atout, MMW, Ausloos, F, Ausloos, M, Quintanilla, BPA, Ayano, G, Ayanore, MA, Azari, S, Azarian, G, Azene, ZN, Badawi, A, Badiye, AD, Bahrami, MA, Bakhshaei, MH, Bakhtiari, A, Bakkannavar, SM, Baldasseroni, A, Ball, K, Ballew, SH, Balzi, D, Banach, M, Banerjee, SK, Bante, AB, Baraki, AG, Barker-Collo, SL, Bärnighausen, TW, Barrero, LH, Barthelemy, CM, Barua, L, Basu, S, Baune, BT, Bayati, M, Becker, JS, Bedi, N, Beghi, E, Béjot, Y, Bell, ML, Bennitt, FB, Bensenor, IM, Berhe, K, Berman, AE, Bhagavathula, AS, Bhageerathy, R, Bhala, N, Bhandari, D, Bhattacharyya, K, Bhutta, ZA, Bijani, A, Bikbov, B, Sayeed, MSB, Biondi, A, Birihane, BM, Bisignano, C, Biswas, RK, Bitew, H, Bohlouli, S, Bohluli, M, Boon-Dooley, AS, Borges, G, Borzì, AM, Borzouei, S, Bosetti, C, Boufous, S, Braithwaite, D, Breitborde, NJK, Breitner, S, Brenner, H, Briant, PS, Briko, AN, Briko, NI, Britton, GB, Bryazka, D, Bumgarner, BR, Burkart, K, Burnett, RT, Nagaraja, SB, Butt, ZA, Santos, FLC dos, Cahill, LE, Cámera, LLA, Campos-Nonato, IR, Cárdenas, R, Carreras, G, Carrero, JJ, Carvalho, F, Castaldelli-Maia, JM, Castañeda-Orjuela, CA, Castelpietra, G, Castro, F, Causey, K, Cederroth, CR, Cercy, KM, Cerin, E, Chandan, JS, Chang, K-L, Charlson, FJ, Chattu, VK, Chaturvedi, S, Cherbuin, N, Chimed-Ochir, O, Cho, DY, Choi, J-YJ, Christensen, H, Chu, D-T, Chung, MT, Chung, S-C, Cicuttini, FM, Ciobanu, LG, Cirillo, M, Classen, TKD, Cohen, AJ, Compton, K, Cooper, OR, Costa, VM, Cousin, E, Cowden, RG, Cross, DH, Cruz, JA, Dahlawi, SMA, Damasceno, AAM, Damiani, G, Dandona, L, Dandona, R, Dangel, WJ, Danielsson, A-K, Dargan, PI, Darwesh, AM, Daryani, A, Das, JK, Gupta, RD, Neves, J das, Dávila-Cervantes, CA, Davitoiu, DV, Leo, DD, Degenhardt, L, DeLang, M, Dellavalle, RP, Demeke, FM, Demoz, GT, Demsie, DG, Denova-Gutiérrez, E, Dervenis, N, Dhungana, GP, Dianatinasab, M, Silva, DD da, Diaz, D, Forooshani, ZSD, Djalalinia, S, Do, HT, Dokova, K, Dorostkar, F, Doshmangir, L, Driscoll, TR, Duncan, BB, Duraes, AR, Eagan, AW, Edvardsson, D, Nahas, NE, Sayed, IE, Tantawi, ME, Elbarazi, I, Elgendy, IY, El-Jaafary, SI, Elyazar, IR, Emmons-Bell, S, Erskine, HE, Eskandarieh, S, Esmaeilnejad, S, Esteghamati, A, Estep, K, Etemadi, A, Etisso, AE, Fanzo, J, Farahmand, M, Fareed, M, Faridnia, R, Farioli, A, Faro, A, Faruque, M, Farzadfar, F, Fattahi, N, Fazlzadeh, M, Feigin, VL, Feldman, R, Fereshtehnejad, S-M, Fernandes, E, Ferrara, G, Ferrari, AJ, Ferreira, ML, Filip, I, Fischer, F, Fisher, JL, Flor, LS, Foigt, NA, Folayan, MO, Fomenkov, AA, Force, LM, Foroutan, M, Franklin, RC, Freitas, M, Fu, W, Fukumoto, T, Furtado, JM, Gad, MM, Gakidou, E, Gallus, S, Garcia-Basteiro, AL, Gardner, WM, Geberemariyam, BS, Gebreslassie, AAAA, Geremew, A, Hayoon, AG, Gething, PW, Ghadimi, M, Ghadiri, K, Ghaffarifar, F, Ghafourifard, M, Ghamari, F, Ghashghaee, A, Ghiasvand, H, Ghith, N, Gholamian, A, Ghosh, R, Gill, PS, Ginindza, TGG, Giussani, G, Gnedovskaya, EV, Goharinezhad, S, Gopalani, SV, Gorini, G, Goudarzi, H, Goulart, AC, Greaves, F, Grivna, M, Grosso, G, Gubari, MIM, Gugnani, HC, Guimarães, RA, Guled, RA, Guo, G, Guo, Y, Gupta, R, Gupta, T, Haddock, B, Hafezi-Nejad, N, Hafiz, A, Haj-Mirzaian, A, Haj-Mirzaian, A, Hall, BJ, Halvaei, I, Hamadeh, RR, Hamidi, S, Hammer, MS, Hankey, GJ, Haririan, H, Haro, JM, Hasaballah, AI, Hasan, MM, Hasanpoor, E, Hashi, A, Hassanipour, S, Hassankhani, H, Havmoeller, RJ, Hay, SI, Hayat, K, Heidari, G, Heidari-Soureshjani, R, Henrikson, HJ, Herbert, ME, Herteliu, C, Heydarpour, F, Hird, TR, Hoek, HW, Holla, R, Hoogar, P, Hosgood, HD, Hossain, N, Hosseini, M, Hosseinzadeh, M, Hostiuc, M, Hostiuc, S, Househ, M, Hsairi, M, Hsieh, VC, Hu, G, Hu, K, Huda, TM, Humayun, A, Huynh, CK, Hwang, B-F, Iannucci, VC, Ibitoye, SE, Ikeda, N, Ikuta, KS, Ilesanmi, OS, Ilic, IM, Ilic, MD, Inbaraj, LR, Ippolito, H, Iqbal, U, SSN, Irvani, CMS, Irvine, Islam, MM, SMS, Islam, Iso, H, Ivers, RQ, CCD, Iwu, Iwu, CJ, Iyamu, IO, Jaafari, J, Jacobsen, KH, Jafari, H, Jafarinia, M, Jahani, MA, Jakovljevic, M, Jalilian, F, James, SL, Janjani, H, Javaheri, T, Javidnia, J, Jeemon, P, Jenabi, E, Jha, RP, Jha, V, Ji, JS, Johansson, L, John, O, John-Akinola, YO, Johnson, CO, Jonas, JB, Joukar, F, Jozwiak, JJ, Jürisson, M, Kabir, A, Kabir, Z, Kalani, H, Kalani, R, Kalankesh, LR, Kalhor, R, Kanchan, T, Kapoor, N, Matin, BK, Karch, A, Karim, MA, Kassa, GM, Katikireddi, SV, Kayode, GA, Karyani, AK, Keiyoro, PN, Keller, C, Kemmer, L, Kendrick, PJ, Khalid, N, Khammarnia, M, Khan, EA, Khan, M, Khatab, K, Khater, MM, Khatib, MN, Khayamzadeh, M, Khazaei, S, Kieling, C, Kim, YJ, Kimokoti, RW, Kisa, A, Kisa, S, Kivimäki, M, Knibbs, LD, Knudsen, AKS, Kocarnik, JM, Kochhar, S, Kopec, JA, Korshunov, VA, Koul, PA, Koyanagi, A, Kraemer, MUG, Krishan, K, Krohn, KJ, Kromhout, H, Defo, BK, Kumar, GA, Kumar, V, Kurmi, OP, Kusuma, D, Vecchia, CL, Lacey, B, Lal, DK, Lalloo, R, Lallukka, T, Lami, FH, Landires, I, Lang, JJ, Langan, SM, Larsson, AO, Lasrado, S, Lauriola, P, Lazarus, JV, Lee, PH, Lee, SWH, LeGrand, KE, Leigh, J, Leonardi, M, Lescinsky, H, Leung, J, Levi, M, Li, S, Lim, L-L, Linn, S, Liu, S, Liu, S, Liu, Y, Lo, J, Lopez, AD, Lopez, JCF, Lopukhov, PD, Lorkowski, S, Lotufo, PA, Lu, A, Lugo, A, Maddison, ER, Mahasha, PW, Mahdavi, MM, Mahmoudi, M, Majeed, A, Maleki, A, Maleki, S, Malekzadeh, R, Malta, DC, Mamun, AA, Manda, AL, Manguerra, H, Mansour-Ghanaei, F, Mansouri, B, Mansournia, MA, Herrera, AMM, Maravilla, JC, Marks, A, Martin, RV, Martini, S, Martins-Melo, FR, Masaka, A, Masoumi, SZ, Mathur, MR, Matsushita, K, Maulik, PK, McAlinden, C, McGrath, JJ, McKee, M, Mehndiratta, MM, Mehri, F, Mehta, KM, Memish, ZA, Mendoza, W, Menezes, RG, Mengesha, EW, Mereke, A, Mereta, ST, Meretoja, A, Meretoja, TJ, Mestrovic, T, Miazgowski, B, Miazgowski, T, Michalek, IM, Miller, TR, Mills, EJ, Mini, GK, Miri, M, Mirica, A, Mirrakhimov, EM, Mirzaei, H, Mirzaei, M, Mirzaei, R, Mirzaei-Alavijeh, M, Misganaw, AT, Mithra, P, Moazen, B, Mohammad, DK, Mohammad, Y, Mezerji, NMG, Mohammadian-Hafshejani, A, Mohammadifard, N, Mohammadpourhodki, R, Mohammed, AS, Mohammed, H, Mohammed, JA, Mohammed, S, Mokdad, AH, Molokhia, M, Monasta, L, Mooney, MD, Moradi, G, Moradi, M, Moradi-Lakeh, M, Moradzadeh, R, Moraga, P, Morawska, L, Morgado-da-Costa, J, Morrison, SD, Mosapour, A, Mosser, JF, Mouodi, S, Mousavi, SM, Khaneghah, AM, Mueller, UO, Mukhopadhyay, S, Mullany, EC, Musa, KI, Muthupandian, S, Nabhan, AF, Naderi, M, Nagarajan, AJ, Nagel, G, Naghavi, M, Naghshtabrizi, B, Naimzada, MD, Najafi, F, Nangia, V, Nansseu, JR, Naserbakht, M, Nayak, VC, Negoi, I, Ngunjiri, JW, Nguyen, CT, Nguyen, HLT, Nguyen, M, Nigatu, YT, Nikbakhsh, R, Nixon, MR, Nnaji, CA, Nomura, S, Norrving, B, Noubiap, JJ, Nowak, C, Nunez-Samudio, V, Oţoiu, A, Oancea, B, Odell, CM, Ogbo, FA, Oh, I-H, Okunga, EW, Oladnabi, M, Olagunju, AT, Olusanya, BO, Olusanya, JO, Omer, MO, Ong, KL, Onwujekwe, OE, Orpana, HM, Ortiz, A, Osarenotor, O, Osei, FB, Ostroff, SM, Otstavnov, N, Otstavnov, SS, Øverland, S, Owolabi, MO, MP, A, Padubidri, JR, Palladino, R, Panda-Jonas, S, Pandey, A, Parry, CDH, Pasovic, M, Pasupula, DK, Patel, SK, Pathak, M, Patten, SB, Patton, GC, Toroudi, HP, Peden, AE, Pennini, A, Pepito, VCF, Peprah, EK, Pereira, DM, Pesudovs, K, Pham, HQ, Phillips, MR, Piccinelli, C, Pilz, TM, Piradov, MA, Pirsaheb, M, Plass, D, Polinder, S, Polkinghorne, KR, Pond, CD, Postma, MJ, Pourjafar, H, Pourmalek, F, Poznańska, A, Prada, SI, Prakash, V, Pribadi, DRA, Pupillo, E, Syed, ZQ, Rabiee, M, Rabiee, N, Radfar, A, Rafiee, A, Raggi, A, Rahman, MA, Rajabpour-Sanati, A, Rajati, F, Rakovac, I, Ram, P, Ramezanzadeh, K, Ranabhat, CL, Rao, PC, Rao, SJ, Rashedi, V, Rathi, P, Rawaf, DL, Rawaf, S, Rawal, L, Rawassizadeh, R, Rawat, R, Razo, C, Redford, SB, Reiner, RC, Reitsma, MB, Remuzzi, G, Renjith, V, Renzaho, AMN, Resnikoff, S, Rezaei, N, Rezaei, N, Rezapour, A, Rhinehart, P-A, Riahi, SM, Ribeiro, DC, Ribeiro, D, Rickard, J, Rivera, JA, Roberts, NLS, Rodríguez-Ramírez, S, Roever, L, Ronfani, L, Room, R, Roshandel, G, Roth, GA, Rothenbacher, D, Rubagotti, E, Rwegerera, GM, Sabour, S, Sachdev, PS, Saddik, B, Sadeghi, E, Sadeghi, M, Saeedi, R, Moghaddam, SS, Safari, Y, Safi, S, Safiri, S, Sagar, R, Sahebkar, A, Sajadi, SM, Salam, N, Salamati, P, Salem, H, Salem, MRR, Salimzadeh, H, Salman, OM, Salomon, JA, Samad, Z, Kafil, HS, Sambala, EZ, Samy, AM, Sanabria, J, Sánchez-Pimienta, TG, Santomauro, DF, Santos, IS, Santos, JV, Santric-Milicevic, MM, Saraswathy, SYI, Sarmiento-Suárez, R, Sarrafzadegan, N, Sartorius, B, Sarveazad, A, Sathian, B, Sathish, T, Sattin, D, Saxena, S, Schaeffer, LE, Schiavolin, S, Schlaich, MP, Schmidt, MI, Schutte, AE, Schwebel, DC, Schwendicke, F, Senbeta, AM, Senthilkumaran, S, Sepanlou, SG, Serdar, B, Serre, ML, Shadid, J, Shafaat, O, Shahabi, S, Shaheen, AA, Shaikh, MA, Shalash, AS, Shams-Beyranvand, M, Shamsizadeh, M, Sharafi, K, Sheikh, A, Sheikhtaheri, A, Shibuya, K, Shield, KD, Shigematsu, M, Shin, JI, Shin, M-J, Shiri, R, Shirkoohi, R, Shuval, K, Siabani, S, Sierpinski, R, Sigfusdottir, ID, Sigurvinsdottir, R, Silva, JP, Simpson, KE, Singh, JA, Singh, P, Skiadaresi, E, Skou, ST, Skryabin, VY, Smith, EUR, Soheili, A, Soltani, S, Soofi, M, Sorensen, RJD, Soriano, JB, Sorrie, MB, Soshnikov, S, Soyiri, IN, Spencer, CN, Spotin, A, Sreeramareddy, CT, Srinivasan, V, Stanaway, JD, Stein, C, Stein, DJ, Steiner, C, Stockfelt, L, Stokes, MA, Straif, K, Stubbs, JL, Sufiyan, MB, Suleria, HAR, Abdulkader, RS, Sulo, G, Sultan, I, Szumowski, Ł, Tabarés-Seisdedos, R, Tabb, KM, Tabuchi, T, Taherkhani, A, Tajdini, M, Takahashi, K, Takala, JS, Tamiru, AT, Taveira, N, Tehrani-Banihashemi, A, Temsah, M-H, Tesema, GA, Tessema, ZT, Thurston, GD, Titova, MV, Tohidinik, HR, Tonelli, M, Topor-Madry, R, Topouzis, F, Torre, AE, Touvier, M, Tovani-Palone, MRR, Tran, BX, Travillian, R, Tsatsakis, A, Car, LT, Tyrovolas, S, Uddin, R, Umeokonkwo, CD, Unnikrishnan, B, Upadhyay, E, Vacante, M, Valdez, PR, Donkelaar, A van, Vasankari, TJ, Vasseghian, Y, Veisani, Y, Venketasubramanian, N, Violante, FS, Vlassov, V, Vollset, SE, Vos, T, Vukovic, R, Waheed, Y, Wallin, MT, Wang, Y, Wang, Y-P, Watson, A, Wei, J, Wei, MYW, Weintraub, RG, Weiss, J, Werdecker, A, West, JJ, Westerman, R, Whisnant, JL, Whiteford, HA, Wiens, KE, Wolfe, CDA, Wozniak, SS, Wu, A-M, Wu, J, Hanson, SW, Xu, G, Xu, R, Yadgir, S, Jabbari, SHY, Yamagishi, K, Yaminfirooz, M, Yano, Y, Yaya, S, Yazdi-Feyzabadi, V, Yeheyis, TY, Yilgwan, CS, Yilma, MT, Yip, P, Yonemoto, N, Younis, MZ, Younker, TP, Yousefi, B, Yousefi, Z, Yousefinezhadi, T, Yousuf, AY, Yu, C, Yusefzadeh, H, Moghadam, TZ, Zamani, M, Zamanian, M, Zandian, H, Zastrozhin, MS, Zhang, Y, Zhang, Z-J, Zhao, JT, Zhao, X-JG, Zhao, Y, Zhou, M, Ziapour, A, Zimsen, SRM, Brauer, M, Afshin, A and Lim, SS (2020) Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 396(10258), 12231249. https://doi.org/10.1016/S0140-6736(20)30752-2.Google Scholar
Nazarzadeh, M, Pinho-Gomes, A-C, Byrne, KS, Canoy, D, Raimondi, F, Solares, JRA, Otto, CM and Rahimi, K (2019) Systolic blood pressure and risk of valvular heart disease: A Mendelian randomization study. JAMA Cardiology 4(8), 788795. https://doi.org/10.1001/jamacardio.2019.2202.Google Scholar
Newton-Cheh, C, Johnson, T, Gateva, V, Tobin, MD, Bochud, M, Coin, L, Najjar, SS, Zhao, JH, Heath, SC, Eyheramendy, S, Papadakis, K, Voight, BF, Scott, LJ, Zhang, F, Farrall, M, Tanaka, T, Wallace, C, Chambers, JC, Khaw, K-T, Nilsson, P, van der Harst, P, Polidoro, S, Grobbee, DE, Onland-Moret, NC, Bots, ML, Wain, LV, Elliott, KS, Teumer, A, Luan, J, Lucas, G, Kuusisto, J, Burton, PR, Hadley, D, McArdle, WL, Brown, M, Dominiczak, A, Newhouse, SJ, Samani, NJ, Webster, J, Zeggini, E, Beckmann, JS, Bergmann, S, Lim, N, Song, K, Vollenweider, P, Waeber, G, Waterworth, DM, Yuan, X, Groop, L, Orho-Melander, M, Allione, A, Di Gregorio, A, Guarrera, S, Panico, S, Ricceri, F, Romanazzi, V, Sacerdote, C, Vineis, P, Barroso, I, Sandhu, MS, Luben, RN, Crawford, GJ, Jousilahti, P, Perola, M, Boehnke, M, Bonnycastle, LL, Collins, FS, Jackson, AU, Mohlke, KL, Stringham, HM, Valle, TT, Willer, CJ, Bergman, RN, Morken, MA, Döring, A, Gieger, C, Illig, T, Meitinger, T, Org, E, Pfeufer, A, Wichmann, HE, Kathiresan, S, Marrugat, J, O’Donnell, CJ, Schwartz, SM, Siscovick, DS, Subirana, I, Freimer, NB, Hartikainen, A-L, McCarthy, MI, O’Reilly, PF, Peltonen, L, Pouta, A, de Jong, PE, Snieder, H, van Gilst, WH, Clarke, R, Goel, A, Hamsten, A, Peden, JF, Seedorf, U, Syvänen, A-C, Tognoni, G, Lakatta, EG, Sanna, S, Scheet, P, Schlessinger, D, Scuteri, A, Dörr, M, Ernst, F, Felix, SB, Homuth, G, Lorbeer, R, Reffelmann, T, Rettig, R, Völker, U, Galan, P, Gut, IG, Hercberg, S, Lathrop, GM, Zelenika, D, Deloukas, P, Soranzo, N, Williams, FM, Zhai, G, Salomaa, V, Laakso, M, Elosua, R, Forouhi, NG, Völzke, H, Uiterwaal, CS, van der Schouw, YT, Numans, ME, Matullo, G, Navis, G, Berglund, G, Bingham, SA, Kooner, JS, Connell, JM, Bandinelli, S, Ferrucci, L, Watkins, H, Spector, TD, Tuomilehto, J, Altshuler, D, Strachan, DP, Laan, M, Meneton, P, Wareham, NJ, Uda, M, Jarvelin, M-R, Mooser, V, Melander, O, Loos, RJ, Elliott, P, Abecasis, GR, Caulfield, M and Munroe, PB (2009) Genome-wide association study identifies eight loci associated with blood pressure. Nature Genetics 41(6), 666676. https://doi.org/10.1038/ng.361.Google Scholar
Nicholls, HL, John, CR, Watson, DS, Munroe, PB, Barnes, MR and Cabrera, CP (2020) Reaching the end-game for GWAS: Machine learning approaches for the prioritization of complex disease loci. Frontiers in Genetics 11, 521712. https://doi.org/10.3389/fgene.2020.00350.Google Scholar
Oliveros, W, Delfosse, K, Lato, DF, Kiriakopulos, K, Mokhtaridoost, M, Said, A, McMurray, BJ, Browning, JWL, Mattioli, K, Meng, G, Ellis, J, Mital, S, Melé, M and Maass, PG (2023) Systematic characterization of regulatory variants of blood pressure genes Cell Genomics 3(7). https://doi.org/10.1016/j.xgen.2023.100330.Google Scholar
Page, IH (1949) Pathogenesis of arterial hypertension. Journal of the American Medical Association 140(5), 451458. https://doi.org/10.1001/jama.1949.02900400005002.Google Scholar
Page, IH (1982) The mosaic theory 32 years later. Hypertension (Dallas, Tex.: 1979) 4(2), 177. https://doi.org/10.1161/01.hyp.4.2.177.Google Scholar
Parcha, V, Pampana, A, Shetty, NS, Irvin, MR, Natarajan, P, Lin, HJ, Guo, X, Rich, SS, Rotter, JI, Li, P, Oparil, S, Arora, G and Arora, P (2022) Association of a multiancestry genome-wide blood pressure polygenic risk score with adverse cardiovascular events. Circulation: Genomic and Precision Medicine. https://doi.org/10.1161/CIRCGEN.122.003946.Google Scholar
Perkovic, V, Huxley, R, Wu, Y, Prabhakaran, D and MacMahon, S (2007) The burden of blood pressure-related disease. Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.107.095497.Google Scholar
Poulter, NR, Prabhakaran, D and Caulfield, M (2015) Hypertension. The Lancet 386(9995), 801812. https://doi.org/10.1016/S0140-6736(14)61468-9.Google Scholar
Psaty, BM, O’Donnell, CJ, Gudnason, V, Lunetta, KL, Folsom, AR, Rotter, JI, Uitterlinden, AG, Harris, TB, Witteman, JCM and Boerwinkle, E (2009) Cohorts for heart and aging research in genomic epidemiology (CHARGE) consortium. Circulation: Cardiovascular Genetics. https://doi.org/10.1161/CIRCGENETICS.108.829747.Google Scholar
Roden, DM, McLeod, HL, Relling, MV, Williams, MS, Mensah, GA, Peterson, JF and Driest, SLV (2019) Pharmacogenomics. The Lancet 394(10197), 521532. https://doi.org/10.1016/S0140-6736(19)31276-0.Google Scholar
Sheng, X, Guan, Y, Ma, Z, Wu, J, Liu, H, Qiu, C, Vitale, S, Miao, Z, Seasock, MJ, Palmer, M, Shin, MK, Duffin, KL, Pullen, SS, Edwards, TL, Hellwege, JN, Hung, AM, Li, M, Voight, BF, Coffman, TM, Brown, CD and Susztak, K (2021) Mapping the genetic architecture of human traits to cell types in the kidney identifies mechanisms of disease and potential treatments. Nature Genetics 53(9), 13221333. https://doi.org/10.1038/s41588-021-00909-9.Google Scholar
Shetty, NS, Pampana, A, Patel, N, Li, P, Yerabolu, K, Gaonkar, M, Arora, G and Arora, P (2023) Sex differences in the association of genome-wide systolic blood pressure polygenic risk score with hypertension. Circulation: Genomic and Precision Medicine. https://doi.org/10.1161/CIRCGEN.123.004259.Google Scholar
Sun, H, Hodgkinson, CP, Pratt, RE and Dzau, VJ (2021) CRISPR/Cas9 mediated deletion of the angiotensinogen gene reduces hypertension: A potential for cure? Hypertension https://doi.org/10.1161/HYPERTENSIONAHA.120.16870.Google Scholar
Sung, YJ, Winkler, TW, de las Fuentes, L, Bentley, AR, Brown, MR, Kraja, AT, Schwander, K, Ntalla, I, Guo, X, Franceschini, N, Lu, Y, Cheng, C-Y, Sim, X, Vojinovic, D, Marten, J, Musani, SK, Li, C, Feitosa, MF, Kilpeläinen, TO, Richard, MA, Noordam, R, Aslibekyan, S, Aschard, H, Bartz, TM, Dorajoo, R, Liu, Y, Manning, AK, Rankinen, T, Smith, AV, Tajuddin, SM, Tayo, BO, Warren, HR, Zhao, W, Zhou, Y, Matoba, N, Sofer, T, Alver, M, Amini, M, Boissel, M, Chai, JF, Chen, X, Divers, J, Gandin, I, Gao, C, Giulianini, F, Goel, A, Harris, SE, Hartwig, FP, Horimoto, AR, Hsu, F-C, Jackson, AU, Kähönen, M, Kasturiratne, A, Kühnel, B, Leander, K, Lee, W-J, Lin, K-H, Luan, J ‘an, McKenzie, CA, Meian, H, Nelson, CP, Rauramaa, R, Schupf, N, Scott, RA, Sheu, WH, Stančáková, A, Takeuchi, F, Most, PJ van der, Varga, TV, Wang, H, Wang, Y, Ware, EB, Weiss, S, Wen, W, Yanek, LR, Zhang, W, Zhao, JH, Afaq, S, Alfred, T, Amin, N, Arking, D, Aung, T, Barr, RG, Bielak, LF, Boerwinkle, E, Bottinger, EP, Braund, PS, Brody, JA, Broeckel, U, Cabrera, CP, Cade, B, Caizheng, Y, Campbell, A, Canouil, M, Chakravarti, A, Group TCNW, Chauhan, G, Christensen, K, Cocca, M and Consortium, TC-K (2018) A large-scale multi-ancestry genome-wide study accounting for smoking behavior identifies multiple significant loci for blood pressure. American Journal of Human Genetics 102(3), 375. https://doi.org/10.1016/j.ajhg.2018.01.015.Google Scholar
Surendran, P, Feofanova, EV, Lahrouchi, N, Ntalla, I, Karthikeyan, S, Cook, J, Chen, L, Mifsud, B, Yao, C, Kraja, AT, Cartwright, JH, Hellwege, JN, Giri, A, Tragante, V, Thorleifsson, G, Liu, DJ, Prins, BP, Stewart, ID, Cabrera, CP, Eales, JM, Akbarov, A, Auer, PL, Bielak, LF, Bis, JC, Braithwaite, VS, Brody, JA, Daw, EW, Warren, HR, Drenos, F, Nielsen, SF, Faul, JD, Fauman, EB, Fava, C, Ferreira, T, Foley, CN, Franceschini, N, Gao, H, Giannakopoulou, O, Giulianini, F, Gudbjartsson, DF, Guo, X, Harris, SE, Havulinna, AS, Helgadottir, A, Huffman, JE, Hwang, S-J, Kanoni, S, Kontto, J, Larson, MG, Li-Gao, R, Lindström, J, Lotta, LA, Lu, Y, Luan, J, Mahajan, A, Malerba, G, NGD, Masca, Mei, H, Menni, C, Mook-Kanamori, DO, Mosen-Ansorena, D, Müller-Nurasyid, M, Paré, G, Paul, DS, Perola, M, Poveda, A, Rauramaa, R, Richard, M, Richardson, TG, Sepúlveda, N, Sim, X, Smith, AV, Smith, JA, Staley, JR, Stanáková, A, Sulem, P, Thériault, S, Thorsteinsdottir, U, Trompet, S, Varga, TV, Velez Edwards, DR, Veronesi, G, Weiss, S, Willems, SM, Yao, J, Young, R, Yu, B, Zhang, W, Zhao, J-H, Zhao, W, Evangelou, E, Aeschbacher, S, Asllanaj, E, Blankenberg, S, Bonnycastle, LL, Bork-Jensen, J, Brandslund, I, Braund, PS, Burgess, S, Cho, K, Christensen, C, Connell, J, Mutsert, R de, Dominiczak, AF, Dörr, M, Eiriksdottir, G, Farmaki, A-E, Gaziano, JM, Grarup, N, Grove, ML, Hallmans, G, Hansen, T, Have, CT, Heiss, G, Jørgensen, ME, Jousilahti, P, Kajantie, E, Kamat, M, Käräjämäki, A, Karpe, F, Koistinen, HA, Kovesdy, CP, Kuulasmaa, K, Laatikainen, T, Lannfelt, L, Lee, I-T, Lee, W-J, Linneberg, A, Martin, LW, Moitry, M, Nadkarni, G, Neville, MJ, Palmer, CNA, Papanicolaou, GJ, Pedersen, O, Peters, J, Poulter, N, Rasheed, A, Rasmussen, KL, Rayner, NW, Mägi, R, Renström, F, Rettig, R, Rossouw, J, Schreiner, PJ, Sever, PS, Sigurdsson, EL, Skaaby, T, Sun, YV, Sundstrom, J, Thorgeirsson, G, Esko, T, Trabetti, E, Tsao, PS, Tuomi, T, Turner, ST, Tzoulaki, I, Vaartjes, I, Vergnaud, A-C, Willer, CJ, Wilson, PWF, Witte, DR, Yonova-Doing, E, Zhang, H, Aliya, N, Almgren, P, Amouyel, P, Asselbergs, FW, Barnes, MR, Blakemore, AI, Boehnke, M, Bots, ML, Bottinger, EP, Buring, JE, Chambers, JC, Chen, Y-DI, Chowdhury, R, Conen, D, Correa, A, Davey Smith, G, Boer, RA de, Deary, IJ, Dedoussis, G, Deloukas, P, Di Angelantonio, E, Elliott, P, Felix, SB, Ferrières, J, Ford, I, Fornage, M, Franks, PW, Franks, S, Frossard, P, Gambaro, G, Gaunt, TR, Groop, L, Gudnason, V, Harris, TB, Hayward, C, Hennig, BJ, Herzig, K-H, Ingelsson, E, Tuomilehto, J, Järvelin, M-R, Jukema, JW, SLR, Kardia, Kee, F, Kooner, JS, Kooperberg, C, Launer, LJ, Lind, L, Loos, RJF, Majumder, A al S, Laakso, M, McCarthy, MI, Melander, O, Mohlke, KL, Murray, AD, Nordestgaard, BG, Orho-Melander, M, Packard, CJ, Padmanabhan, S, Palmas, W, Polasek, O, Porteous, DJ, Prentice, AM, Province, MA, Relton, CL, Rice, K, Ridker, PM, Rolandsson, O, Rosendaal, FR, Rotter, JI, Rudan, I, Salomaa, V, Samani, NJ, Sattar, N, Sheu, WH-H, Smith, BH, Soranzo, N, Spector, TD, Starr, JM, Sebert, S, Taylor, KD, Lakka, TA, Timpson, NJ, Tobin, MD, van der Harst, P, van der Meer, P, Ramachandran, VS, Verweij, N, Virtamo, J, Völker, U, Weir, DR, Zeggini, E, Charchar, FJ, Wareham, NJ, Langenberg, C, Tomaszewski, M, Butterworth, AS, Caulfield, MJ, Danesh, J, Edwards, TL, Holm, H, Hung, AM, Lindgren, CM, Liu, C, Manning, AK, Morris, AP, Morrison, AC, O’Donnell, CJ, Psaty, BM, Saleheen, D, Stefansson, K, Boerwinkle, E, Chasman, DI, Levy, D, Newton-Cheh, C, Munroe, PB and Howson, JMM (2020) Discovery of rare variants associated with blood pressure regulation through meta-analysis of 1.3 million individuals. Nature Genetics 52(12), 13141332. https://doi.org/10.1038/s41588-020-00713-x.Google Scholar
Takeuchi, F, Isono, M, Katsuya, T, Yamamoto, K, Yokota, M, Sugiyama, T, Nabika, T, Fujioka, A, Ohnaka, K, Asano, H, Yamori, Y, Yamaguchi, S, Kobayashi, S, Takayanagi, R, Ogihara, T and Kato, N (2010) Blood pressure and hypertension are associated with 7 loci in the japanese population. Circulation https://doi.org/10.1161/CIRCULATIONAHA.109.904664.Google Scholar
Tang, C, Ma, Y, Lei, X, Ding, Y, Yang, S and He, D (2023) Hypertension linked to Alzheimer’s disease via stroke: Mendelian randomization. Scientific Reports 13(1), 19. https://doi.org/10.1038/s41598-023-49087-0.Google Scholar
Thomopoulos, C, Parati, G and Zanchetti, A (2015) Effects of blood pressure lowering on outcome incidence in hypertension: 4. Effects of various classes of antihypertensive drugs – Overview and meta-analyses. Journal of Hypertension 33(2), 195. https://doi.org/10.1097/HJH.0000000000000447.Google Scholar
Verma, A, Huffman, JE, Rodriguez, A, Conery, M, Liu, M, Ho, Y-L, Kim, Y, Heise, DA, Guare, L, Panickan, VA, Garcon, H, Linares, F, Costa, L, Goethert, I, Tipton, R, Honerlaw, J, Davies, L, Whitbourne, S, Cohen, J, Posner, DC, Sangar, R, Murray, M, Wang, X, Dochtermann, DR, Devineni, P, Shi, Y, Nandi, TN, Assimes, TL, Brunette, CA, Carroll, RJ, Clifford, R, Duvall, S, Gelernter, J, Hung, A, Iyengar, SK, Joseph, J, Kember, R, Kranzler, H, Kripke, CM, Levey, D, Luoh, S-W, Merritt, VC, Overstreet, C, Deak, JD, Grant, SFA, Polimanti, R, Roussos, P, Shakt, G, Sun, YV, Tsao, N, Venkatesh, S, Voloudakis, G, Justice, A, Begoli, E, Ramoni, R, Tourassi, G, Pyarajan, S, Tsao, P, O’Donnell, CJ, Muralidhar, S, Moser, J, Casas, JP, Bick, AG, Zhou, W, Cai, T, Voight, BF, Cho, K, Gaziano, JM, Madduri, RK, Damrauer, S and Liao, KP (2024) Diversity and scale: Genetic architecture of 2068 traits in the VA Million Veteran Program. Science https://doi.org/10.1126/science.adj1182.Google Scholar
Wain, LV, Verwoert, GC, O’Reilly, PF, Shi, G, Johnson, T, Johnson, AD, Bochud, M, Rice, KM, Henneman, P, Smith, AV, Ehret, GB, Amin, N, Larson, MG, Mooser, V, Hadley, D, Dörr, M, Bis, JC, Aspelund, T, Esko, T, Janssens, ACJ, Zhao, JH, Heath, S, Laan, M, Fu, J, Pistis, G, Luan, J, Arora, P, Lucas, G, Pirastu, N, Pichler, I, Jackson, AU, Webster, RJ, Zhang, F, Peden, JF, Schmidt, H, Tanaka, T, Campbell, H, Igl, W, Milaneschi, Y, Hotteng, J-J, Vitart, V, Chasman, DI, Trompet, S, Bragg-Gresham, JL, Alizadeh, BZ, Chambers, JC, Guo, X, Lehtimäki, T, Kühnel, B, Lopez, LM, Polašek, O, Boban, M, Nelson, CP, Morrison, AC, Pihur, V, Ganesh, SK, Hofman, A, Kundu, S, Mattace-Raso, FU, Rivadeneira, F, Sijbrands, EJ, Uitterlinden, AG, Hwang, S-J, Vasan, RS, Wang, TJ, Bergmann, S, Vollenweider, P, Waeber, G, Laitinen, J, Pouta, A, Zitting, P, McArdle, WL, Kroemer, HK, Völker, U, Völzke, H, Glazer, NL, Taylor, KD, Harris, TB, Alavere, H, Haller, T, Keis, A, Tammesoo, M-L, Aulchenko, Y, Barroso, I, Khaw, K-T, Galan, P, Hercberg, S, Lathrop, M, Eyheramendy, S, Org, E, Sõber, S, Lu, X, Nolte, IM, Penninx, BW, Corre, T, Masciullo, C, Sala, C, Groop, L, Voight, BF and Melander, O (2011) Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nature Genetics 43(10), 1005. https://doi.org/10.1038/ng.922.Google Scholar
Warren, HR, Evangelou, E, Cabrera, CP, Gao, H, Ren, M, Mifsud, B, Ntalla, I, Surendran, P, Liu, C, Cook, JP, Kraja, AT, Drenos, F, Loh, M, Verweij, N, Marten, J, Karaman, I, Lepe, MPS, O’Reilly, PF, Knight, J, Snieder, H, Kato, N, He, J, Tai, ES, Said, MA, Porteous, D, Alver, M, Poulter, N, Farrall, M, Gansevoort, RT, Padmanabhan, S, Mägi, R, Stanton, A, Connell, J, Bakker, SJL, Metspalu, A, Shields, DC, Thom, S, Brown, M, Sever, P, Esko, T, Hayward, C, van der Harst, P, Saleheen, D, Chowdhury, R, Chambers, JC, Chasman, DI, Chakravarti, A, Newton-Cheh, C, Lindgren, CM, Levy, D, Kooner, JS, Keavney, B, Tomaszewski, M, Samani, NJ, Howson, JMM, Tobin, MD, Munroe, PB, Ehret, GB and Wain, LV (2017) Genome-wide association analysis identifies novel blood pressure loci and offers biological insights into cardiovascular risk. Nature Genetics 49(3), 403415. https://doi.org/10.1038/ng.3768.Google Scholar
Wellcome Trust Case Control Consortium (2007) Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447(7145), 661678. https://doi.org/10.1038/nature05911.Google Scholar
Wong, C (2023, November 16) UK First to Approve CRISPR Treatment for Diseases: What You Need to Know. [News]. https://www.nature.com/articles/d41586-023-03590-6 (accessed 11 December 2024).Google Scholar
Yang, M-L, Xu, C, Gupte, T, Hoffmann, TJ, Iribarren, C, Zhou, X and Ganesh, SK (2024) Sex-specific genetic architecture of blood pressure. Nature Medicine 30(3), 818828. https://doi.org/10.1038/s41591-024-02858-2.Google Scholar
Ye, N, Jardine, MJ, Oshima, M, Hockham, C, Heerspink, HJL, Agarwal, R, Bakris, G, Schutte, AE, Arnott, C, Chang, TI, Górriz, JL, Cannon, CP, Charytan, DM, Zeeuw, D de, Levin, A, Mahaffey, KW, Neal, B, Pollock, C, Wheeler, DC, Tanna, GLD, Cheng, H, Perkovic, V and Neuen, BL (2021) Blood pressure effects of canagliflozin and clinical outcomes in type 2 diabetes and chronic kidney disease. Circulation https://doi.org/10.1161/CIRCULATIONAHA.120.048740.Google Scholar
Zanchetti, A (1986) Platt versus Pickering: An episode in recent medical history. By J. D. Swales, editor. An essay review. Medical History 30(1), 94. https://doi.org/10.1017/s0025727300045075.Google Scholar
Zappa, M, Golino, M, Verdecchia, P and Angeli, F (2024) Genetics of hypertension: From monogenic analysis to GETomics. Journal of Cardiovascular Development and Disease 11(5), 154. https://doi.org/10.3390/jcdd11050154.Google Scholar
Figure 0

Figure 1. Key advances in hypertension genomics.

Author comment: Harnessing the power of genomics in hypertension: tip of the iceberg? — R0/PR1

Comments

Dear Anna,

We have prepared a perspective article for consideration for publication in Cambridge Prisms: Precision Medicine. The idea of writing this article stems from the BIHS essay competition last year which Hafiz had entered. Subsequent to this he has developed the essay.

In the article we explore the significant milestones to our current understanding of hypertension. We highlight key landmarks in blood pressure related research, including early epidemiologic insights from the Pickering-Platt debate in the 1950s and beyond, the big boom in gene mapping of the 1990s and the wave of advancing technology paving the way for the era of genome wide association studies at the turn of the millennium. We also explore the development of pharmacogenomics in hypertension and the role of large-scale biobanks in drug development together with the challenges and future landscape.

We hope this article will be of interest to the Cambridge Prisms: Precision Medicine readership.

All authors have read and approved the submission of the manuscript; the manuscript has not been published and is not being considered for publication elsewhere, in whole or in part, in any language.

We look forward to hearing from you and thank you in advance for your consideration.

Best wishes,

Patricia Munroe, PhD, FMedSci

Review: Harnessing the power of genomics in hypertension: tip of the iceberg? — R0/PR2

Conflict of interest statement

Reviewer declares none.

Comments

This manuscript focuses on genomic research on hypertension and discusses the historical development, current progress and future prospects of this field. But there are still some problems.

Major comments:

a) It is suggested that an additional paragraph be added to the Introduction section to provide more specific information on the clinical importance of hypertension, the limitations of existing treatments, and the potential role of genomics in addressing these issues.

b) Consider adding a timeline chart that visually illustrates the key milestones from the Platt-Pickering debate in the 1950s to modern large-scale GWAS studies.

c) The manuscript mentioned a variety of research methods, such as GWAS, PRS, etc. A section could be added to discuss the advantages and disadvantages of these methods and their specific applications in hypertension research.

d) To explore the advantages of GWAS in discovering new gene loci and its limitations in explaining causal relationships.

e) Expand the scope of multi-omics research and discuss how multi-omics integration can help us understand the molecular mechanisms of hypertension more comprehensively.

f) The manuscript did not explore sex differences in hypertension genomics research.

g) The manuscript mainly focuses on genetic factors, but there is less analysis of the interaction between genes and environmental factors (such as diet, stress, lifestyle, etc.).

h) Single-cell sequencing technology applications were not mentioned.

i) The manuscript did not discuss the potential application of gene editing technologies (such as CRISPR-Cas9) in the treatment of hypertension, which is an important direction for future genomic research.

j) nsights into specific barriers to translating genomic discoveries into clinical practice.

k) The ethical issues that may arise from genomics research and applications, such as genetic information privacy and genetic discrimination, have not been fully discussed.

Review: Harnessing the power of genomics in hypertension: tip of the iceberg? — R0/PR3

Conflict of interest statement

Reviewer declares none.

Comments

While the present work contributes to this important field, I believe it could be strengthened by considering some recent advances and perspectives in hypertension genomics research.

Please consider the following points:

1. Integration of Multi-Omics Data:

The field is moving towards integrating various ‘omics’ data (genomics, transcriptomics, proteomics, metabolomics) to better understand the pathophysiology of hypertension. Please discuss how this multi-omics approach is providing valuable insights into blood pressure regulation and potential therapeutic targets.

2. Mendelian Randomization Studies

Recent Mendelian randomization studies have been instrumental in identifying causal pathways for hypertension. It would strengthen your manuscript to include several sentences on how these studies are contributing to our understanding of hypertension etiology and potential interventions.

3. Rare Variants and Mendelian Forms of Hypertension:

While the current paper focuses on common variants of primary hypertension, it’s important to also address the role of rare variants and Mendelian forms of hypertension. These can provide valuable insights into blood pressure regulation mechanisms and potential therapeutic targets.

4. Future Directions:

Please discuss the potential of integrating genomic information with clinical data to improve risk prediction and treatment strategies.

Your work significantly contributes to the field of hypertension genomics; however, it may be further strengthened by incorporating recent advances and perspectives. Consider the following points:

1. **Integration of Multi-Omics Data**:

The field is advancing towards integrating various ‘omics’ data, including genomics, transcriptomics, proteomics, and metabolomics, to enhance the understanding of hypertension pathophysiology. Discussing this multi-omics approach could enrich your paper by highlighting how it provides insights into blood pressure regulation and identifies potential therapeutic targets.

2. **Mendelian Randomization Studies**:

Recent Mendelian randomization studies have been pivotal in identifying causal pathways for hypertension. Incorporating a discussion on how these studies advance our understanding of hypertension etiology and inform potential interventions would add substantial value to your manuscript.

3. **Rare Variants and Mendelian Forms of Hypertension**:

While the current focus is on common variants, it is crucial to address the role of rare variants and Mendelian forms of hypertension. This inclusion could offer critical insights into mechanisms of blood pressure regulation and potential therapeutic targets.

4. **Future Directions**:

It is advisable to explore the potential of integrating genomic information with clinical data to enhance risk prediction and inform treatment strategies. This discussion could serve as a forward-looking component of your work.

Recommendation: Harnessing the power of genomics in hypertension: tip of the iceberg? — R0/PR4

Comments

No accompanying comment.

Decision: Harnessing the power of genomics in hypertension: tip of the iceberg? — R0/PR5

Comments

No accompanying comment.

Author comment: Harnessing the power of genomics in hypertension: tip of the iceberg? — R1/PR6

Comments

No accompanying comment.

Recommendation: Harnessing the power of genomics in hypertension: tip of the iceberg? — R1/PR7

Comments

No accompanying comment.

Decision: Harnessing the power of genomics in hypertension: tip of the iceberg? — R1/PR8

Comments

No accompanying comment.