No CrossRef data available.
Published online by Cambridge University Press: 20 November 2018
Given an integer $n\,\ge \,3$, a metrizable compact topological $n$-manifold $X$ with boundary, and a finite positive Borel measure $\mu$ on $X$, we prove that for the typical homeomorphism $f:\,X\,\to \,X$, it is true that for $\mu$-almost every point $x$ in $X$ the restriction of $f$ (respectively of ${{f}^{-1}}$) to the omega limit set $\omega \left( f,\,x \right)$ (respectively to the alpha limit set $\alpha \left( f,\,x \right)$) is topologically conjugate to the universal odometer.
The author was partially supported by CAPES: Bolsista - Proc. no BEX 4012/11-9.