No CrossRef data available.
Article contents
Meta-learned models as tools to test theories of cognitive development
Published online by Cambridge University Press: 23 September 2024
Abstract
Binz et al. argue that meta-learned models are essential tools for understanding adult cognition. Here, we propose that these models are particularly useful for testing hypotheses about why learning processes change across development. By leveraging their ability to discover optimal algorithms and account for capacity limitations, researchers can use these models to test competing theories of developmental change in learning.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2024. Published by Cambridge University Press
References
Binz, M., & Schulz, E. (2022). Modeling human exploration through resource-rational reinforcement learning. Advances in Neural Information Processing Systems, 35, 31755–31768.Google Scholar
Blanco, N. J., & Sloutsky, V. M. (2021). Systematic exploration and uncertainty dominate young children's choices. Developmental Science, 24(2), e13026.CrossRefGoogle ScholarPubMed
Bolenz, F., Reiter, A. M. F., & Eppinger, B. (2017). Developmental changes in learning: Computational mechanisms and social influences. Frontiers in Psychology, 8, 2048.CrossRefGoogle ScholarPubMed
Craik, F. I. M., & Bialystok, E. (2006). Cognition through the lifespan: Mechanisms of change. Trends in Cognitive Sciences, 10(3), 131–138.CrossRefGoogle ScholarPubMed
Decker, J. H., Otto, A. R., Daw, N. D., & Hartley, C. A. (2016). From creatures of habit to goal-directed learners: Tracking the developmental emergence of model-based reinforcement learning. Psychological Science, 27(6), 848–858.CrossRefGoogle ScholarPubMed
Gopnik, A. (2020). Childhood as a solution to explore–exploit tensions. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 375(1803), 20190502.CrossRefGoogle ScholarPubMed
Gualtieri, S., & Finn, A. S. (2022). The sweet spot: When children's developing abilities, brains, and knowledge make them better learners than adults. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 17(5), 1322–1338.CrossRefGoogle ScholarPubMed
Hartley, C. A., Nussenbaum, K., & Cohen, A. O. (2021). Interactive development of adaptive learning and memory. Annual Review of Developmental Psychology, 3, 59–85.CrossRefGoogle Scholar
Liquin, E. G., & Gopnik, A. (2022). Children are more exploratory and learn more than adults in an approach-avoid task. Cognition, 218, 104940.CrossRefGoogle Scholar
Nussenbaum, K., & Hartley, C. A. (2019). Reinforcement learning across development: What insights can we draw from a decade of research? Developmental Cognitive Neuroscience, 40, 100733.CrossRefGoogle ScholarPubMed
Nussenbaum, K., & Hartley, C.A. (in press). Understanding the development of reward learning through the lens of meta-learning. Nature Reviews Psychology.Google Scholar
Raab, H. A., & Hartley, C. A. (2018). The development of goal-directed decision-making. In Morris, R., Bornstein, A., & Shenhav, A. (Eds.), Goal-directed decision making: Computations and neural circuits (pp. 279–308). Elsevier Academic Press.CrossRefGoogle Scholar
Ruel, A., Devine, S., & Eppinger, B. (2021). Resource-rational approach to meta-control problems across the lifespan. Wiley Interdisciplinary Reviews. Cognitive Science, 12(5), e1556.CrossRefGoogle ScholarPubMed
Somerville, L. H., Sasse, S. F., Garrad, M. C., Drysdale, A. T., Abi Akar, N., Insel, C., & Wilson, R. C. (2017). Charting the expansion of strategic exploratory behavior during adolescence. Journal of Experimental Psychology. General, 146(2), 155–164.CrossRefGoogle ScholarPubMed
Sumner, E., Li, A. X., Perfors, A., Hayes, B., Navarro, D., & Sarnecka, B. W. (2019). The exploration advantage: Children's instinct to explore allows them to find information that adults miss. https://doi.org/10.31234/osf.io/h437vCrossRefGoogle Scholar
Wang, J. X. (2021). Meta-learning in natural and artificial intelligence. Current Opinion in Behavioral Sciences, 38, 90–95.CrossRefGoogle Scholar
Zelazo, P. D., Frye, D., & Rapus, T. (1996). An age-related dissociation between knowing rules and using them. Cognitive Development, 11(1), 37–63.CrossRefGoogle Scholar
Target article
Meta-learned models of cognition
Related commentaries (22)
Bayes beyond the predictive distribution
Challenges of meta-learning and rational analysis in large worlds
Combining meta-learned models with process models of cognition
Integrative learning in the lens of meta-learned models of cognition: Impacts on animal and human learning outcomes
Is human compositionality meta-learned?
Learning and memory are inextricable
Linking meta-learning to meta-structure
Meta-learned models as tools to test theories of cognitive development
Meta-learned models beyond and beneath the cognitive
Meta-learning and the evolution of cognition
Meta-learning as a bridge between neural networks and symbolic Bayesian models
Meta-learning goes hand-in-hand with metacognition
Meta-learning in active inference
Meta-learning modeling and the role of affective-homeostatic states in human cognition
Meta-learning: Bayesian or quantum?
Probabilistic programming versus meta-learning as models of cognition
Quantum Markov blankets for meta-learned classical inferential paradoxes with suboptimal free energy
Quo vadis, planning?
The added value of affective processes for models of human cognition and learning
The hard problem of meta-learning is what-to-learn
The meta-learning toolkit needs stronger constraints
The reinforcement metalearner as a biologically plausible meta-learning framework
Author response
Meta-learning: Data, architecture, and both