Hostname: page-component-6587cd75c8-9kljr Total loading time: 0 Render date: 2025-04-24T00:36:57.385Z Has data issue: false hasContentIssue false

Myocardial infarction in a 17-year-old patient diagnosed with MPOD II syndrome

Published online by Cambridge University Press:  04 October 2024

Cécilia Clarac
Affiliation:
Medical and surgical unit of Congenital and Paediatric Cardiology, Reference Centre for Complex Congenital Heart Defects-M3C, University Hospital Necker-Enfants Malades, Paris, France
Julie Karila-Cohen*
Affiliation:
Medical and surgical unit of Congenital and Paediatric Cardiology, Reference Centre for Complex Congenital Heart Defects-M3C, University Hospital Necker-Enfants Malades, Paris, France
Damien Bonnet
Affiliation:
Medical and surgical unit of Congenital and Paediatric Cardiology, Reference Centre for Complex Congenital Heart Defects-M3C, University Hospital Necker-Enfants Malades, Paris, France University of Paris Cité, Paris, France
*
Corresponding author: Julie Karila-Cohen; Email: [email protected]

Abstract

Introduction:

Microcephalic osteodysplastic primordial dwarfism (MOPD) syndrome type 2, caused by a mutation in the PCNT gene (21q22.3), is a rare autosomal recessive disorder. Patients present with bone dysplasia, insulin resistance, kidney diseases, and cardiac malformations, making them prone to vascular diseases. Cardiomyopathy, hypertension, and coronary diseases are documented. The prognosis is associated with cerebrovascular complications.

Method:

We report a case of a patient with MOPD type II who suffered a myocardial infarction in our institution. Informed consent for publishing was obtained.

Result:

A 17-year-old female with MPOD II syndrome (20 kg and 86 cm) was referred for chest pain. Thoracic pains had been occurring for over a month, increasing in intensity, with an episode prompting emergency consultation. Initial tests revealed elevated troponin and an inflammatory response. Electrocardiogram (ECG) showed ST-segment depression and elevation. Echocardiography revealed hypokinetic inferior walls with moderate concentric hypertrophy. A coronary CT scan showed subendocardial hypodensity. Diagnostic coronary angiography revealed tri-branch lesions and almost complete stenoses or occlusions on the circumflex artery (Image). No indication for interventional treatment due to diffuse atheromatous lesions. Exclusive medical treatment was initiated.

Conclusion:

MPOD II syndrome is associated with cardiac malformations and neurovascular complications, including myocardial infarction. Regular ECG monitoring is advisable. Active surveillance for coronary diseases is necessary from adolescence. Recognising this complication allows for prompt intervention. This case highlights the need for specific monitoring and prompt management of chest pain in patients with MPOD II syndrome. Primary prevention could mitigate the occurrence of coronary events in this high-risk population.

Type
Brief Report
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Willems, M, Geneviève, D, Borck, G et al. Molecular analysis of pericentrin gene (PCNT) in a series of 24 Seckel/microcephalic osteodysplastic primordial dwarfism type II (MOPD II) families. J Med Genet 2010; 47(12): 797802.CrossRefGoogle Scholar
Bober, MB, Jackson, AP. Microcephalic osteodysplastic primordial dwarfism, type II: a clinical review. Curr Osteoporos Rep 2017; 15(2): 6169.CrossRefGoogle ScholarPubMed
Majewski, F, Ranke, M, Schinzel, A, Opitz, JM. Studies of microcephalic primordial dwarfism II: the osteodysplastic type II of primordial dwarfism. Am J Med Genet 1982; 12(1): 2335.CrossRefGoogle ScholarPubMed
Hall, JG, Flora, C, Scott, CI Jr, Pauli, RM, Tanaka, KI. Majewski osteodysplastic primordial dwarfism type II (MOPD II): natural history and clinical findings. Am J Med Genet A 2004; 130A(1): 5572.CrossRefGoogle ScholarPubMed
Duker, AL, Kinderman, D, Jordan, C et al. Microcephalic osteodysplastic primordial dwarfism type II is associated with global vascular disease. Orphanet J Rare Dis 2021; 16(1): 231.CrossRefGoogle ScholarPubMed
Eslava, A, Garcia-Puig, M, Corripio, R. A 10-year-old boy with short stature and microcephaly, diagnosed with Moyamoya syndrome and microcephalic osteodysplastic primordial dwarfism type II (MOPD II). Am J Case Rep 2021; 22: e933919.CrossRefGoogle ScholarPubMed
Duker, A, Jackson A, Bober MB. Microcephalic Osteodysplastic Primordial Dwarfism Type II. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJ, et al., éditeurs. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993 [cité 24 janv 2024]. Disponible sur: http://www.ncbi.nlm.nih.gov/books/NBK575926/ Google Scholar
Chung, H, Kim, SY, Kang, Jet al. Siblings with familial dwarfism presenting with acute myocardial infarction at adolescence. JACC Case Rep 2021; 3(5): 795800.CrossRefGoogle ScholarPubMed