Published online by Cambridge University Press: 18 January 2013
The parameter regime of strong stable density stratification and weak rotation is an important one in geophysical fluid dynamics. These conditions exist at intermediate length scales in the atmosphere and ocean (mesoscale and sub-mesoscale, respectively), and turbulence here links large-scale quasi-geostrophic motions with small-scale dissipation. While major advances in the theory of stratified turbulence have been made over the last few decades, many open questions remain, particularly about the nature of the energy cascade. Recent numerical experiments and analysis by Augier, Chomaz & Billant (J. Fluid Mech., vol. 713, 2012, pp. 86–108) present a remarkably vivid illustration of the nonlinear interactions that drive such turbulence. They consider a columnar vortex dipole, which naturally three-dimensionalizes under the influence of strong stratification. Kelvin–Helmholtz instabilities subsequently transfer energy directly to small scales, where the flow transitions into three-dimensional turbulence. This direct link between large and small scales is quite distinct from the usual picture of a turbulent cascade, in which nonlinear interactions are local in scale. But how important is this mechanism in the atmosphere and ocean?