Hostname: page-component-f554764f5-nwwvg Total loading time: 0 Render date: 2025-04-20T06:54:54.551Z Has data issue: false hasContentIssue false

A non-linear unsteady vortex-lattice method for rotorcraft applications

Published online by Cambridge University Press:  18 September 2024

A. Cocco
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156, Milan, Italy
A. Savino
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156, Milan, Italy
A. Colli
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156, Milan, Italy
P. Masarati
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156, Milan, Italy
A. Zanotti*
Affiliation:
Dipartimento di Scienze e Tecnologie Aerospaziali, Politecnico di Milano, via La Masa 34, 20156, Milan, Italy
*
Corresponding author: A. Zanotti; Email: [email protected]

Abstract

The present work aims to extend the capabilities of DUST, a mid-fidelity aerodynamic solver developed at Politecnico di Milano, for the aerodynamic simulation of rotorcraft applications. With this aim, a numerical element was implemented in the solver obtained by a coupling between the potential unsteady vortex lattice method and viscous aerodynamic data of aerofoil sections available from two-dimensional high-fidelity computational fluid dynamics (CFD) simulations or experimental wind-tunnel tests. The paper describes the mathematical formulation of the method as well as a validation of the implementation performed by comparison with both high-fidelity CFD simulation results and experimental data obtained over aerodynamics and aeroelastic fixed-wing benchmarks. Then, the method was used for the evaluation of the aerodynamic performance of two rotorcraft test cases, i.e. the full-scale proprotor of the XV-15 tiltrotor operating in different flight conditions and two propellers in tandem with overlapping disks. Simulation results comparison with high-fidelity CFD and data from wind tunnel tests highlighted the potentialities and advantages of the implemented approach to be used for the design and investigation of rotorcraft configurations characterised by consistent viscosity effects.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Decours, J., Beaumier, P., Khier, W., Kneisch, T., Valentini, M. and Vigevano, L. Experimental validation of tilt-rotor aerodynamic predictions, In Proceedings of the 40th European Rotorcraft Forum, Southampton, UK, 2–5 September 2014.Google Scholar
Garcia, A.J. and Barakos, G.N. CFD simulations on the Erica Tiltrotor using HMB2, In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016.Google Scholar
Winckelmans, G.S. Topics in Vortex Methods for the Computation of Three-and Two-Dimensional Incompressible Unsteady Flows, Ph.D. dissertation, California Institute of Technology, 1989.Google Scholar
Cottet, G.H. and Koumoutsakos, P.D. Vortex Methods: Theory and Practice. Cambridge University Press, 2000.CrossRefGoogle Scholar
Yin, J. and Ahmed, S.R. Helicopter main-rotor/tail-rotor interaction, J. Amer. Helicop. Soc., 2000, 4, pp 293302.CrossRefGoogle Scholar
Wentrup, M., Yin, J., Kunze, P., Streit, T., Wendisch, J.H., Schwarz, T., Pinacho, J.P., Kicker, K. and Fukari, R. An overview of DLR compound rotorcraft aerodynamics and aeroacoustics activities within the CleanSky2 NACOR project, In Proceedings of 74th AHS Annual Forum & Technology Display, Phoenix, AZ, USA, 14–17 May 2018.Google Scholar
Opoku, D.G., Triantos, D.G., Nitzsche, F. and Voutsinas, S.G. Rotorcraft aerodynamic and aeroacoustic modelling using vortex particle methods, In Proceedings of the 23rd International Congress of Aeronautical Sciences, ICAS, Toronto, Canada, 8–13 September 2002.Google Scholar
Tan, J., Sun, J. and Barakos, G.N. Unsteady loads for coaxial rotors in forward flight computed using a vortex particle method. Aeronaut. J., 2018, 122, (1251), pp 693714.CrossRefGoogle Scholar
Tan, J., Zhou, T., Sun, J. and Barakos, G.N. Numerical investigation of the aerodynamic interaction between a tiltrotor and a tandem rotor during shipboard operations, Aerosp. Sci. Technol., 2019, 87, pp 6272.CrossRefGoogle Scholar
Alvarez, E.J. and Ning, A. High-fidelity modeling of multirotor aerodynamic interactions for aircraft design, AIAA J., 2020, 58, (10), pp 43854400.CrossRefGoogle Scholar
Tugnoli, M., Montagnani, D., Syal, M., Droandi, G. and Zanotti, A. Mid-fidelity approach to aerodynamic simulations of unconventional VTOL aircraft configurations, Aerosp. Sci. Technol., 2021, 115, p 106804.CrossRefGoogle Scholar
Savino, A., Cocco, A., Zanotti, A., Tugnoli, M., Masarati, P. and Muscarello, V. Coupling mid-fidelity aerodynamics and multibody dynamics for the aeroelastic analysis of rotary-wing vehicles, Energies, 2021, 14, (21), p 6979.CrossRefGoogle Scholar
Montagnani, D., Tugnoli, M., Zanotti, A., Syal, M. and Droandi, G. Analysis of the interactional aerodynamics of the Vahana eVTOL using a medium fidelity open source tool, In Proceedings of the VFS Aeromechanics for Advanced Vertical Flight Technical Meeting, San Jose, CA, USA, January 21-23 2020. AHS International.Google Scholar
Zanotti, A., Savino, A., Palazzi, M., Tugnoli, M. and Muscarello, V. Assessment of a mid-fidelity numerical approach for the investigation of tiltrotor aerodynamics, Appl. Sci., 2021, 11, (8), p 3385.CrossRefGoogle Scholar
dos Santos, C.R. and Marques, F.D. Lift prediction including stall, using vortex lattice method with Kirchhoff-based correction, J. Aircr., 2018, 55, (2), pp 887891.CrossRefGoogle Scholar
Parenteau, M., Laurendeau, E. and Carrier, G. Combined high-speed and high-lift wing aerodynamic optimization using a coupled VLM-2.5 d rans approach, Aerosp. Sci. Technol., 2018, 76, pp 484496.CrossRefGoogle Scholar
Mukherjee, R. and Gopalarathnam, A. Poststall prediction of multiple-lifting-surface configurations using a decambering approach, J. Aircr., 2006, 43, (3), pp 660668.CrossRefGoogle Scholar
Lee, H. and Lee, D.-J. Numerical investigation of the aerodynamics and wake structures of horizontal axis wind turbines by using nonlinear vortex lattice method, Renew. Energy, 2019, 132, pp 11211133.CrossRefGoogle Scholar
Morino, L. and Kuot, C.-C.. Subsonic potential aerodynamics for complex configurations: A general theory. AIAA J., 1974, 12(2), pp 191197. https://doi.org/10.2514/3.49191 CrossRefGoogle Scholar
Piszkin, S.T. and Levinsky, E.S. Nonlinear lifting line theory for predicting stalling instabilities on wings of moderate aspect ratio, Technical report, GENERAL DYNAMICS SAN DIEGO CA CONVAIR DIV, 1976.Google Scholar
Küttler, U. and Wall, W.A. Fixed-point fluid-structure interaction solvers with dynamic relaxation, Computat. Mech., 2008, 43, (1), pp 6172.CrossRefGoogle Scholar
Petrilli, J.L., Paul, R.C., Gopalarathnam, A. and Frink, N.T. A CFD database for airfoils and wings at post-stall angles of attack, In 31st AIAA Applied Aerodynamics Conference, p 2916, 2013.CrossRefGoogle Scholar
Lovell, D.A.. A Wind-Tunnel Investigation of the Effects of Flap Span and Deflection Angle, Wing Planform and a Body on the High-Lift Performance of a 28° Swept Wing. Citeseer, 1977.Google Scholar
Goland, M. The flutter of a uniform cantilever wing, J. Appl. Mech.-Trans. ASME, 1945, 12, (4), pp A197A208.CrossRefGoogle Scholar
Murua, J., Palacios, R. and Graham, J.M.R. Assessment of wake-tail interference effects on the dynamics of flexible aircraft, AIAA J., 2012, 50, (7), pp 15751585.CrossRefGoogle Scholar
Hua, Y. and Sarkar, T.K. Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise, IEEE Trans. Acoust. Speech Sig. Process., 1990, 38, (5), pp 814824.CrossRefGoogle Scholar
Patil, M.J., Hodges, D.H. and Cesnik, C.E.S. Nonlinear aeroelastic analysis of complete aircraft in subsonic flow, J. Aircr., 2000, 37, (5), pp 753760.CrossRefGoogle Scholar
Wang, Z., Chen, P.C., Liu, D.D., Mook, D.T. and Patil, M.J. Time domain nonlinear aeroelastic analysis for HALE wings, In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference 14th AIAA/ASME/AHS Adaptive Structures Conference 7th, p 1640, 2006.CrossRefGoogle Scholar
Signor, D.B., Felker, F.F. and Betzina, M.D. Performance and loads data from a hover test of a full-scale XV-15 rotor, Technical report, NASA Ames Research Center, Moffett Field California, 1985.Google Scholar
Jia, F., Moore, J. and Wang, Q. Assessment of detached eddy simulation and sliding mesh interface in predicting tiltrotor performance in helicopter and airplane modes, In AIAA AVIATION 2021 FORUM, p 2601, 2021.Google Scholar
Betzina, M.D. Rotor performance of an isolated full-scale xv-15 tiltrotor in helicopter mode, Technical report, National Aeronautics and Space Administration Moffett Field, CA, Rotorcraft, 2002.Google Scholar
Zanotti, A. Experimental study of the aerodynamic interaction between side-by-side propellers in eVTOL airplane mode through stereoscopic particle image velocimetry, Aerospace, 2021, 8, (9), p 239.CrossRefGoogle Scholar
Zanotti, A. and Algarotti, D. Aerodynamic interaction between tandem overlapping propellers in eVTOL airplane mode flight condition, Aerospace Science and Technology, 2022, 124, p 107518.CrossRefGoogle Scholar
Drela, M. Xfoil: An analysis and design system for low Reynolds number airfoils, In T.J. Mueller (ed.), Low Reynolds Number Aerodynamics, pp 1–12, Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.CrossRefGoogle Scholar
Battisti, L., Zanne, L., Castelli, M.R., Bianchini, A. and Brighenti, A. A generalized method to extend airfoil polars over the full range of angles of attack, Renew. Energy, 2020, 155, pp 862875.CrossRefGoogle Scholar
Caccia, F., Abergo, L., Savino, A., Morelli, M., Zhou, B.Y., Gori, G., Zanotti, A., Gibertini, G., Vigevano, L. and Guardone, A. Multi-fidelity numerical approach to aeroacoustics of tandem propellers in eVTOL airplane mode, In American Institute of Aeronautics and Astronautics (AIAA) AVIATION 2023 Forum, 12-16 June, San Diego, CA, USA, 2023.CrossRefGoogle Scholar