In [Reference Flechsig4], Flechsig pointed out an error in [Reference Roushon6, Proposition 4.1], which was needed to deduce the Farrell–Jones isomorphism conjecture for the affine Artin groups ${\cal A}_{\widetilde B_n}$ ( $n\geq 3$ ) of type ${\widetilde B}_n$ .
In this note, we give an alternate argument to prove the conjecture.
Theorem 0.1 The Farrell–Jones isomorphism conjecture wreath product with finite groups ( $FICwF$ ) is true for ${\cal A}_{\widetilde B_n}$ ( $n\geq 3$ ).
Proof Consider the following hyperplane arrangement complement.
In [Reference Callegaro, Moroni and Salvetti2, Section 3], the following homeomorphism was observed. Let ${\Bbb C}^*={\Bbb C}-\{0\}$ .
In [Reference Callegaro, Moroni and Salvetti2, Lemma 3.1], it was then proved that the hyperplane arrangement complement X is simplicial, in the sense of [Reference Deligne3].
From [Reference Huang and Osajda5], it follows that $FICwF$ is true for $\pi _1(X)$ , since X is a finite real simplicial arrangement complement. Hence, $FICwF$ is true for $\pi _1(W)$ , as $\pi _1(W)$ is a subgroup of $\pi _1(X)$ and $FICwF$ has hereditary property (see [Reference Roushon6]).
Next, note that there are the following two finite sheeted orbifold covering maps:
and $PB_n(Z)\to B_n(Z):=PB_n(Z)/S_n$ . Here, $Z={\Bbb C}(1,1;2)$ (see [Reference Roushon6]) is the orbifold whose underlying space is ${\Bbb C}-\{1\}$ , and $0$ is an order $2$ cone point. And, the symmetric group $S_n$ is acting on $PB_n(Z)$ by permuting coordinates.
Therefore, $\pi _1(W)$ embeds in $\pi _1^{orb}(B_n(Z))$ as a finite index subgroup. Hence, $FICwF$ is true for $\pi _1^{orb}(B_n(Z))$ , since $FICwF$ passes to finite index overgroups (see [Reference Roushon6]). Next, recall that in [Reference Allcock1] Allcock showed that ${\cal A}_{\widetilde B_n}$ is isomorphic to a subgroup of $\pi _1^{orb}(B_n(Z))$ , and hence $FICwF$ is true for ${\cal A}_{\widetilde B_n}$ by the hereditary property of $FICwF$ .