Hostname: page-component-f554764f5-nqxm9 Total loading time: 0 Render date: 2025-04-21T00:25:48.311Z Has data issue: false hasContentIssue false

Beyond brain injury: Examining the neuropsychological and psychosocial sequelae of post-traumatic epilepsy

Published online by Cambridge University Press:  30 September 2024

Yun-Hsuan Kuo
Affiliation:
Department of Psychology, Chung Shan Medical University, Taichung, Taiwan
Jinn-Rung Kuo
Affiliation:
Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
Tee-Tau Eric Nyam
Affiliation:
Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
Che-Chuan Wang
Affiliation:
Department of Neurosurgery, Chi Mei Medical Center, Tainan, Taiwan
Bei-Yi Su*
Affiliation:
Department of Psychology, Chung Shan Medical University, Taichung, Taiwan Clinical Psychological Room, Chung Shan Medical University Hospital, Taichung, Taiwan
*
Corresponding author: Bei-Yi Su; Email: [email protected]

Abstract

Objective:

This study investigates neuropsychological and psychosocial outcomes in patients with traumatic brain injury (TBI) and post-traumatic epilepsy (PTE) compared to a healthy control group.

Method:

Utilizing a quasi-experimental cross-sectional design, the research involved patients with TBI and PTE referred from a Taiwanese medical center. An age- and education-matched control group of healthy adults without traumatic injuries was also recruited. The study involved analyzing retrospective medical records and applying a comprehensive suite of neuropsychological tests and psychosocial questionnaires.

Results:

Executive function measures revealed significantly reduced performance in both the TBI and PTE groups compared to controls. Specifically, the MoCA scores were lowest in the PTE group, followed by the TBI group, and highest in the controls. Measures of subjective symptomatology showed comparably elevated levels in both the TBI and PTE groups relative to controls.

Conclusion:

The research suggests that PTE may intensify the difficulties faced by individuals with TBI, but its impact on overall recovery might not be significant, considering the trajectory of the brain injury itself. Notably, the MoCA results indicate that cognitive deficits are more pronounced in PTE patients compared to those with TBI, underscoring the necessity for targeted neuropsychological assessments. Further investigation is essential to explore PTE’s broader neuropsychological and psychosocial impacts. These findings advocate for tailored care strategies that address both neuropsychological and psychosocial needs, ensuring comprehensive management of TBI and PTE.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agrawal, A., Timothy, J., Pandit, L., & Manju, M. (2006). Post-traumatic epilepsy: An overview. Clinical Neurology and Neurosurgery, 108(5), 433439.CrossRefGoogle ScholarPubMed
Annegers, J. F., & Coan, S. P. (2000). The risks of epilepsy after traumatic brain injury. Seizure, 9(7), 453457.CrossRefGoogle ScholarPubMed
Asikainen, I., Kaste, M., & Sarna, S. (1998). Early and late posttraumatic seizures in traumatic brain injury rehabilitation patients: Brain injury factors causing late seizures and influence of seizures on long-term outcome. Epilepsia, 40(4), 584589.CrossRefGoogle Scholar
Boake, C. (2002). From the Binet-Simon to the Wechsler-Bellevue: Tracing the history of intelligence testing. Journal of Clinical and Experimental Neuropsychology, 24(3), 383405.CrossRefGoogle Scholar
Burke, J., Gugger, J., Ding, K., Kim, J. A., Foreman, B., Yue, J. K., Puccio, A. M., Yuh, E. L., Sun, X., Rabinowitz, M., Vassar, M. J., Taylor, S. R., Winkler, E. A., Deng, H., McCrea, M., Stein, M. B., Robertson, C. S., Levin, H. S., Dikmen, S., … Temkin, N. R. (2021). Association of posttraumatic epilepsy with 1-year outcomes after traumatic brain injury. JAMA Network Open, 4(12), e2140191e2140191. https://doi.org/10.1001/jamanetworkopen.2021.40191 CrossRefGoogle ScholarPubMed
Bushnik, T., Englander, J., & Duong, T. (2004). Medical and social issues related to posttraumatic seizures in persons with traumatic brain injury. The Journal of Head Trauma Rehabilitation, 19(4), 296304.CrossRefGoogle ScholarPubMed
Chen, H. T., Chen, S. I., Guo, N. W., Lin, J. H., Yeh, S. H., Chang, J. J., & Yu, P. W. (1999). Developing an assessment tool for determining degree of required care in long-term care. Ministry of Health and Welfare.Google Scholar
Christensen, J. (2015). The epidemiology of posttraumatic epilepsy. Seminars in Neurology, 35(3), 218222.Google ScholarPubMed
Cicerone, K. D., Goldin, Y., Ganci, K., Rosenbaum, A., Wethe, J. V., Langenbahn, D. M., Malec, J. F., Bergquist, T. F., Kingsley, K., Nagele, D., Trexler, L., Fraas, M., Bogdanova, Y., & Harley, J. P. (2019). Evidence-based cognitive rehabilitation: Systematic review of the literature from 2009 through 2014. Archives of Physical Medicine and Rehabilitation, 100(8), 15151533.CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Routledge Academic.Google Scholar
Dhandapani, S. S., Manju, D., Sharma, B. S., & Mahapatra, A. K. (2012). Prognostic significance of age in traumatic brain injury. Journal of Neurosciences in Rural Practice, 3(2), 131135.Google ScholarPubMed
Ferguson, P. L., Smith, G. M., Wannamaker, B. B., Thurman, D. J., Pickelsimer, E. E., & Selassie, A. W. (2010). A population-based study of risk of epilepsy after hospitalization for traumatic brain injury. Epilepsia, 51(5), 891898.CrossRefGoogle ScholarPubMed
Frey, L. C. (2003). Epidemiology of posttraumatic epilepsy: A critical review. Epilepsia, 44(s10), 1117.CrossRefGoogle ScholarPubMed
Gardner, R. C., Burke, J. F., Nettiksimmons, J., Kaup, A., Barnes, D. E., & Yaffe, K. (2014). Dementia risk after traumatic brain injury vs nonbrain trauma: The role of age and severity. JAMA Neurology, 71(12), 14901497.CrossRefGoogle ScholarPubMed
Gilad, R., Boaz, M., Sadeh, M., Eilam, A., Dabby, R., & Lampl, Y. (2013). Seizures after very mild head or spine trauma. Journal of Neurotrauma, 30(6), 469472.CrossRefGoogle ScholarPubMed
Golden, C. J. (1978). Stroop Color and Word Test, a manual for clinical and experimental uses. Stoelting.Google Scholar
Gómez-De-regil, L. (2020). Assessment of executive function in patients with traumatic brain injury with the wisconsin card-sorting test. Brain Sciences, 10(10), 118.CrossRefGoogle ScholarPubMed
Guo, N. W., Chou, W., Kuo, J. R., Liao, Y. C., Chuang, M. T., & Su, B. Y. (2023). The executive functions among patients with an initial Glasgow coma scale score of 15. Applied Neuropsychology: Adult, 25, 19.Google Scholar
Haltiner, A. M., Temkin, N. R., Winn, H. R., & Dikmen, S. S. (1996). The impact of posttraumatic seizures on 1-year neuropsychological and psychosocial outcome of head injury. Journal of the International Neuropsychological Society, 2(6), 494504.CrossRefGoogle ScholarPubMed
Heaton, R. K. (1993). WCST, Computer version 2 research edition manual. Psychological Assessment Resources.Google Scholar
Krikorian, R., Bartok, J., & Gay, N. (1994). Tower of London procedure: A standard method and developmental data. Journal of Clinical and Experimental Neuropsychology, 16(6), 840850.CrossRefGoogle Scholar
Kuo, J. R., & Su, B. Y. (2023). Neuropsychological impairments in patients with post-traumatic epilepsy: A scoping review. World Neurosurgery, 176, 8597.CrossRefGoogle ScholarPubMed
Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological assessment (5th edn). Oxford University Press.Google Scholar
Martin, T. A., Donders, J., & Thompson, E. (2000). Potential of and problems with new measures of psychometric intelligence after traumatic brain injury. Rehabilitation Psychology, 45(4), 402408.Google Scholar
Masel, B. E., & DeWitt, D. S. (2010). Traumatic brain injury: A disease process, not an event. Journal of Neurotrauma, 27, 15291540. https://doi.org/10.1089/neu.2010.1358 CrossRefGoogle ScholarPubMed
Mazzini, L., Cossa, F. M., Angelino, E., Campini, R., Pastore, I., & Monaco, F. (2003). Posttraumatic epilepsy: Neuroradiologic and neuropsychological assessment of long-term outcome. Epilepsia, 44(4), 569574.CrossRefGoogle ScholarPubMed
Millis, S. R., Rosenthal, M., Novack, T. A., Sherer, M., Nick, T. G., Kreutzer, J. S., High, W. M., & Ricker, J. H. (2001). Long-term neuropsychological outcome after traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(4), 343355.CrossRefGoogle ScholarPubMed
Mollayeva, T., Mollayeva, S., Pacheco, N., D’Souza, A., & Colantonio, A. (2019). The course and prognostic factors of cognitive outcomes after traumatic brain injury: A systematic review and meta-analysis. Neuroscience and Biobehavioral Reviews, 99(January), 198250.CrossRefGoogle ScholarPubMed
Ni, T. Lo, Huang, C. C., & Guo, N. W. (2011). Executive function deficit in preschool children born very low birth weight with normal early development. Early Human Development, 87(2), 137141.CrossRefGoogle ScholarPubMed
Partanen, E., Laari, S., Kantele, O., Kämppi, L., & Nybo, T. (2022). Associations between cognition and employment outcomes after epilepsy surgery. Epilepsy and Behavior, 131, 108709.CrossRefGoogle ScholarPubMed
Ponsford, J., Draper, K., & Schönberger, M. (2008). Functional outcome 10 years after traumatic brain injury: Its relationship with demographic, injury severity, and cognitive and emotional status. Journal of the International Neuropsychological Society, 14(2), 233242.CrossRefGoogle ScholarPubMed
Rabinowitz, A. R., & Levin, H. S. (2014). Cognitive sequelae of traumatic brain injury. Psychiatric Clinics of North America, 37(1), 111.CrossRefGoogle ScholarPubMed
Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385401.CrossRefGoogle Scholar
Raymont, V., Salazar, A. M., Lipsky, R., Goldman, D., Tasick, G., & Grafman, J. (2010). Correlates of posttraumatic epilepsy 35 years following combat brain injury. Neurology, 75(3), 224229.CrossRefGoogle ScholarPubMed
Roebuck-Spencer, T. M., Glen, T., Puente, A. E., Denney, R. L., Ruff, R. M., Hostetter, G., & Bianchini, K. J. (2017). Cognitive screening tests versus comprehensive neuropsychological test batteries: A national academy of neuropsychology education paper. Archives of Clinical Neuropsychology, 32(4), 491498.CrossRefGoogle ScholarPubMed
Rubiano, A. M., Carney, N., Chesnut, R., & Puyana, J. C. (2015). Global neurotrauma research challenges and opportunities. Nature, 527(7578), S193S197.CrossRefGoogle ScholarPubMed
Semple, B. D., Zamani, A., Rayner, G., Shultz, S. R., & Jones, N. C. (2019). Affective, neurocognitive and psychosocial disorders associated with traumatic brain injury and post-traumatic epilepsy. Neurobiology of Disease, 123, 2741.CrossRefGoogle ScholarPubMed
Sigurdardottir, S., Andelic, N., Røe, C., & Schanke, A. K. (2020). Trajectory of 10-year neurocognitive functioning after moderate-severe traumatic brain injury: Early associations and clinical application. Journal of the International Neuropsychological Society, 26(7), 654667.CrossRefGoogle ScholarPubMed
Stiekema, A. P. M., Winkens, I., Ponds, R., De Vugt, M. E., & Van Heugten, C. M. (2020). Finding a new balance in life: A qualitative study on perceived long-term needs of people with acquired brain injury and partners. Brain Injury, 34(3), 421429.CrossRefGoogle ScholarPubMed
Stuss, D. T. (2011). Functions of the frontal lobes: Relation to executive functions. Journal of the International Neuropsychological Society, 17(5), 759765. https://doi.org/10.1017/S1355617711000695 CrossRefGoogle ScholarPubMed
Till, C., Colella, B., Verwegen, J., & Green, R. E. (2008). Postrecovery cognitive decline in adults with traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 89(12 Suppl), S25S34. https://doi.org/10.1016/j.apmr.2008.07.004 CrossRefGoogle ScholarPubMed
Tsai, C. F., Lee, W. J., Wang, S. J., Shia, B. C., Nasreddine, Z., & Fuh, J. L. (2012). Psychometrics of the Montreal Cognitive Assessment (MoCA) and its subscales: Validation of the Taiwanese version of the MoCA and an item response theoryanalysis. International Psychogeriatrics, 24(4), 651658.CrossRefGoogle Scholar
Verdejo-García, A., Rivas-Pérez, C., López-Torrecillas, F., & Pérez-García, M. (2006). Differential impact of severity of drug use on frontal behavioral symptoms. Addictive Behaviors, 31(8), 13731382.CrossRefGoogle ScholarPubMed
Wang, H. C., Chang, W. N., Chang, H. W., Ho, J. T., Yang, T. M., Lin, W. C., & Lu, C. H. (2008). Factors predictive of outcome in posttraumatic seizures. Journal of Trauma and Acute Care Surgery, 64(4), 883888.CrossRefGoogle ScholarPubMed
Wang, T. C., Wu, Y. H., Guo, N. W., Huang, M. H., & Su, J. H. (2016). Comparing the application of assessment tests on patients with cerebrovascular accident: The mini-mental status examination-chinese test versus the luria-nebraska neuropsychological battery-screening test. Taiwan Journal of Physical Medicine and Rehabilitation, 44(1), 1927.Google Scholar
Wechsler, D. (2003). Wechsler intelligence scale for children-fourth edition (WISC-IV). Psychological Corporation.Google Scholar
Willment, K., Hill, M., Baslet, G., & Loring, D. W. (2015). Cognitive impairment and evaluation in psychogenic nonepileptic seizures: An integrated cognitive-emotional approach. Clinical EEG and Neuroscience, 46(1), 4253.CrossRefGoogle ScholarPubMed
Witt, J. A., Elger, C. E., & Helmstaedter, C. (2015). Adverse cognitive effects of antiepileptic pharmacotherapy: Each additional drug matters. European Neuropsychopharmacology, 25(11), 19541959.CrossRefGoogle ScholarPubMed
Witt, J. A., & Helmstaedter, C. (2013). Monitoring the cognitive effects of antiepileptic pharmacotherapy-approaching the individual patient. Epilepsy & Behavior, 26(3), 450456.CrossRefGoogle ScholarPubMed
Witt, J. A., & Helmstaedter, C. (2015). Cognition in the early stages of adult epilepsy. Seizure, 26, 6568.CrossRefGoogle ScholarPubMed
Wrightson, P., & Gronwall, D. (1999). Post-traumatic epilepsy. in: Mild head injury (pp. 7275). Oxford University Press.Google Scholar
Wu, Y. H., Yu, L., Chen, C., & Guo, N. W. (2009). Development of the Daily Executive Behaviors Scale: Five factor solution, reliability, and validity. Archives of Clinical Psychology, 4(2), 8694 Google Scholar
Yang, C. C., Tu, Y. K., Hua, M. S., & Huang, S. J. (2007). The association between the postconcussion symptoms and clinical outcomes for patients with mild traumatic brain injury. The Journal of Trauma: Injury, Infection, and Critical Care, 62(3), 657663.Google ScholarPubMed
Yao, G., Chung, C. W., Yu, C. F., & Wang, J. D. D. (2002). Dvelopment and verification of validity and reliability of the WHOQOL-BREF Taiwan version. Journal of the Formosan Medical Association, 101(5), 342351.Google Scholar
Yeh, C. C., Chen, T. L., Hu, C. J., Chiu, W. T., & Liao, C. C. (2013). Risk of epilepsy after traumatic brain injury: A retrospective population-based cohort study. Journal of Neurology, Neurosurgery & Psychiatry, 84, 441445. https://doi.org/10.1136/jnnp-2012-302547 CrossRefGoogle ScholarPubMed
Yousefzadeh-Chabok, S., Kapourchali, F. R., & Ramezani, S. (2021). Determinants of long- term health-related quality of life in adult patients with mild traumatic brain injury. European Journal of Trauma and Emergency Surgery: Official Publication of the European Trauma Society, 47(3), 839846.CrossRefGoogle ScholarPubMed