No CrossRef data available.
Article contents
The providential randomisation of genotypes
Published online by Cambridge University Press: 11 September 2023
Abstract
When building causal knowledge in behavioural genetics, the natural randomisation of genotypes at conception (approximately analogous to the artificial randomisation occurring in randomised controlled trials) facilitates the discovery of genetic causes. More importantly, the randomisation of genetic material within families also enables a better identification of (environmental) risk factors and aetiological pathways to diseases and behaviours.
- Type
- Open Peer Commentary
- Information
- Copyright
- Copyright © The Author(s), 2023. Published by Cambridge University Press
References
Davey Smith, G., Richmond, R., & Pingault, J.-B. (Eds.) (2021). Combining human genetics and causal inference to understand human disease and development. Cold Spring Harbor Laboratory Press.Google Scholar
Davey Smith, G. D., & Ebrahim, S. (2003). “Mendelian randomization”: Can genetic epidemiology contribute to understanding environmental determinants of disease? International Journal of Epidemiology, 32(1), 1–22.CrossRefGoogle Scholar
Fisher, R. (1952). Statistical methods in genetics. Heredity, 6, 1–12 (reprinted in 2010, Int. J. Epidemiol., 39: 329–335). https://doi.org/10.1093/ije/dyp379CrossRefGoogle Scholar
Frangoul, H., Altshuler, D., Cappellini, M. D., Chen, Y.-S., Domm, J., Eustace, B. K., … Corbacioglu, S. (2021). CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia. New England Journal of Medicine, 384(3), 252–260. https://doi.org/10.1056/NEJMoa2031054CrossRefGoogle ScholarPubMed
Hannon, E., Gorrie-Stone, T. J., Smart, M. C., Burrage, J., Hughes, A., Bao, Y., … Mill, J. (2018). Leveraging DNA-methylation quantitative-trait loci to characterize the relationship between methylomic variation, gene expression, and complex traits. American Journal of Human Genetics, 103(5), 654–665. https://doi.org/10.1016/j.ajhg.2018.09.007CrossRefGoogle ScholarPubMed
Howe, L. J., Nivard, M. G., Morris, T. T., Hansen, A. F., Rasheed, H., Cho, Y., … Davies, N. M. (2022a). Within-sibship genome-wide association analyses decrease bias in estimates of direct genetic effects. Nature Genetics, 54(5), 581–592. https://doi.org/10.1038/s41588-022-01062-7CrossRefGoogle ScholarPubMed
Howe, L. J., Rasheed, H., Jones, P. R., Boomsma, D. I., Evans, D. M., Giannelis, A., … Davies, N. M. (2022b). Educational attainment, health outcomes and mortality: A within-sibship Mendelian randomization study. medRxiv, 2022.01.11.22268884. https://doi.org/10.1101/2022.01.11.22268884Google Scholar
Hwang, L.-D., Davies, N. M., Warrington, N. M., & Evans, D. M. (2021). Integrating family-based and Mendelian randomization designs. Cold Spring Harbor Perspectives in Medicine, 11(3), a039503. https://doi.org/10.1101/cshperspect.a039503CrossRefGoogle ScholarPubMed
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science (New York, N.Y.), 337(6096), 816–821. https://doi.org/10.1126/science.1225829CrossRefGoogle ScholarPubMed
Lynch, K. E. (2021). The meaning of “cause” in genetics. Cold Spring Harbor Perspectives in Medicine, 11(9), a040519. https://doi.org/10.1101/cshperspect.a040519CrossRefGoogle Scholar
Nitsch, D., Molokhia, M., Smeeth, L., DeStavola, B. L., Whittaker, J. C., & Leon, D. A. (2006). Limits to causal inference based on Mendelian randomization: A comparison with randomized controlled trials. American Journal of Epidemiology, 163(5), 397–403. https://doi.org/10.1093/aje/kwj062CrossRefGoogle ScholarPubMed
Pingault, J.-B., O'Reilly, P. F., Schoeler, T., Ploubidis, G. B., Rijsdijk, F., & Dudbridge, F. (2018). Using genetic data to strengthen causal inference in observational research. Nature Reviews Genetics, 19, 566–580.CrossRefGoogle ScholarPubMed
Pingault, J.-B., Richmond, R., & Davey Smith, G. (2022). Causal inference with genetic data: Past, present, and future. Cold Spring Harbor Perspectives in Medicine, 12(3), a041271. https://doi.org/10.1101/cshperspect.a041271CrossRefGoogle ScholarPubMed
Porcu, E., Sjaarda, J., Lepik, K., Carmeli, C., Darrous, L., Sulc, J., … Kutalik, Z. (2021). Causal inference methods to integrate omics and complex traits. Cold Spring Harbor Perspectives in Medicine, 11(5), a040493. https://doi.org/10.1101/cshperspect.a040493CrossRefGoogle ScholarPubMed
Richmond, R. C., & Davey Smith, G. (2022). Mendelian randomization: Concepts and scope. Cold Spring Harbor Perspectives in Medicine, 12(1), a040501. https://doi.org/10.1101/cshperspect.a040501CrossRefGoogle ScholarPubMed
Sanderson, E., Glymour, M. M., Holmes, M. V., Kang, H., Morrison, J., Munafò, M. R., … Davey Smith, G. (2022). Mendelian randomization. Nature Reviews Methods Primers, 2(1), 1–21. https://doi.org/10.1038/s43586-021-00092-5CrossRefGoogle ScholarPubMed
Singh, T., Poterba, T., Curtis, D., Akil, H., Al Eissa, M., Barchas, J. D., … Daly, M. J. (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia. Nature, 604(7906), 509–516. https://doi.org/10.1038/s41586-022-04556-wCrossRefGoogle ScholarPubMed
Zhu, J., Eichler, F., Biffi, A., Duncan, C. N., Williams, D. A., & Majzoub, J. A. (2020). The changing face of adrenoleukodystrophy. Endocrine Reviews, 41(4), 577. https://doi.org/10.1210/endrev/bnaa013CrossRefGoogle ScholarPubMed
Target article
Building causal knowledge in behavior genetics
Related commentaries (23)
A disanalogy with RCTs and its implications for second-generation causal knowledge
Addressing genetic essentialism: Sharpening context in behavior genetics
All that glisters is not gold: Genetics and social science
Behavior genetics and randomized controlled trials: A misleading analogy
Behavior genetics: Causality as a dialectical pursuit
Benefits of hereditarian insights for mate choice and parenting
Building causal knowledge in behavior genetics without racial/ethnic diversity will result in weak causal knowledge
Causal dispositionalism in behaviour genetics
Drowning in shallow causality
Extensions of the causal framework to Mendelian randomisation and gene–environment interaction
Genes, genomes, and developmental process
Genetics can inform causation, but the concepts and language we use matters
Genome-wide association study and the randomized controlled trial: A false equivalence
Human genomic data have different statistical properties than the data of randomised controlled trials
Mechanistic understanding of individual outcomes: Challenges and alternatives to genetic designs
Meeting counterfactual causality criteria is not the problem
On the big list of causes
Polygene risk scores and randomized experiments
Shallow versus deep genetic causes
The providential randomisation of genotypes
Theory matters for identifying a causal role for genetic factors in socioeconomic outcomes
When local causes are more explanatorily useful
Where not to look for targets of social reforms and interventions, according to behavioral genetics
Author response
Causal complexity in human research: On the shared challenges of behavior genetics, medical genetics, and environmentally oriented social science