Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T05:46:43.908Z Has data issue: false hasContentIssue false

Photon-shielding properties of alkali- and acid-treated Philippine natural zeolite

Published online by Cambridge University Press:  11 September 2023

Mon Bryan Z. Gili*
Affiliation:
Philippine Nuclear Research Institute, Department of Science and Technology, Diliman, Quezon City, Philippines and Materials Science and Engineering Program, College of Science, University of the Philippines Diliman, Quezon City, Philippines

Abstract

The effects of chemical treatment on the radiation-shielding properties of Philippine natural zeolites were investigated using EpiXS following the EPICS2017 library. The zeolites were studied using X-ray diffraction and energy-dispersive X-ray spectroscopy. The acid treatment eliminated Fe and Ca, having a negative impact on the cross-section of the HCl-modified zeolite. The mass attenuation coefficients of the raw, NaOH- and HCl-modified zeolites at 1332 keV were 0.0545, 0.0544 and 0.0548 cm2 g–1, respectively. At 100–10,000 keV, the linear attenuation coefficient depends on the density and increases in the order HCl-modified > NaOH-modified > raw zeolite. In the energy range of 100–16,000 keV, the mean free path and half-value layer values are in the order of HCl-modified < NaOH-modified < raw zeolite. The raw and NaOH-modified zeolites have comparable effective atomic numbers, whereas the HCl-treated zeolite has significantly lower such values.

Type
Article
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of The Mineralogical Society of the United Kingdom and Ireland

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Editor: George Christidis

References

Akkurt, I., Akyildirim, H., Mavi, B., Kilincarslan, S. & Basyigit, C. (2010) Radiation shielding of concrete containing zeolite. Radiation Measurements, 45, 827830.CrossRefGoogle Scholar
Akman, F., Turan, V., Sayyed, M.I., Akdemir, F., Kaçal, M.R., Durak, R. & Zaid, M.H.M. (2019) Comprehensive study on evaluation of shielding parameters of selected soils by gamma and X-rays transmission in the range 13.94–88.04 keV using WinXCom and FFAST programs. Results in Physics, 15, 102751.CrossRefGoogle Scholar
Ates, A. & Akgül, G. (2016). Modification of natural zeolite with NaOH for removal of manganese in drinking water. Powder Technology, 287, 285291.CrossRefGoogle Scholar
Beyer, H.K. (2002) Dealumination techniques for zeolites. Pp. 203255 in: Post-Synthesis Modification I (Karge, H.G. & Weitkamp, J., editors). Springer, Berlin, Germany.CrossRefGoogle Scholar
Bilal, H., Yaqub, M., Ur Rehman, S.K., Abid, M., Alyousef, R., Alabduljabbar, H. & Aslam, F. (2019) Performance of foundry sand concrete under ambient and elevated temperatures. Materials, 12, 2645.CrossRefGoogle ScholarPubMed
Brown, D.A., Chadwick, M.B., Capote, R., Kahler, A.C., Trkov, A., Herman, M.W. et al. (2018) ENDF/B-VIII.0: the 8th major release of the Nuclear Reaction Data Library with CIELO-project cross sections, new standards and thermal scattering data. Nuclear Data Sheets, 148, 1142.CrossRefGoogle Scholar
Cay, V.V., Sutcu, M., Gencel, O. & Korkut, T. (2014) Neutron radiation tests about FeCr slag and natural zeolite loaded brick samples. Science and Technology of Nuclear Installations, 2014, 971490.CrossRefGoogle Scholar
Cullen, D. (2018) A Survey of Photon Cross Section Data for Use in EPICS2017, IAEA-NDS-225, rev. 1. International Atomic Energy Agency, Vienna, Austria, 61 pp.Google Scholar
Demir, F. (2010) Determination of mass attenuation coefficients of some boron ores at 59.54 keV by using scintillation detector. Applied Radiation and Isotopes, 68, 175179.CrossRefGoogle Scholar
Elsafi, M., Koraim, Y., Almurayshid, M., Almasoud, F.I., Sayyed, M.I. & Saleh, I.H. (2021) Investigation of photon radiation attenuation capability of different clay materials. Materials, 14, 6702.CrossRefGoogle ScholarPubMed
Gili, M.B.Z. & Hila, F.C. (2021a) Characterization and Radiation shielding properties of Philippine natural bentonite and zeolite. Philippine Journal of Science, 150, 14751488.CrossRefGoogle Scholar
Gili, M.B.Z. & Hila, F.C. (2021b) Investigation of gamma-ray shielding features of several clay materials using the EPICS2017 library. Philippine Journal of Science, 150, 10171026.CrossRefGoogle Scholar
Gili, M.B.Z. & Jecong, J.F.M. (2023) Radiation shielding properties of ZnO and other glass modifier oxides: BaO, MgO, Na2O, and TiO2, using EpiXS software. Arabian Journal for Science and Engineering, 48, 10211029.CrossRefGoogle Scholar
Gili, M.B.Z., Olegario-Sanchez, L. & Conato, M. (2019) Adsorption uptake of Philippine natural zeolite for Zn2+ ions in aqueous solution. Journal of Physics: Conference Series, 1191, 012042.Google Scholar
Gili, M.B.Z., Pares, F.A., Nery, A.L.G., Guillermo, N.R.D., Marquez, E.J. & Olegario, E.M. (2020) Changes in the structure, crystallinity, morphology and adsorption property of gamma-irradiated Philippine natural zeolites. Materials Research Express, 6, 125552.CrossRefGoogle Scholar
Hila, F.C., Asuncion-Astronomo, A., Dingle, C.A.M., Jecong, J.F.M., Javier-Hila, A.M.V., Gili, M.B.Z. et al. (2021a) EpiXS: a Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8). Radiation Physics and Chemistry, 182, 109331.CrossRefGoogle Scholar
Hila, F.C., Dicen, G.P., Javier-Hila, A.M.V., Asuncion-Astronomo, A., Guillermo, N.R.D., Rallos, R.V. et al. (2021b) Determination of photon shielding parameters for soils in mangrove forests. Philippine Journal of Science, 150, 245256.Google Scholar
Hussein, K.I., Alqahtani, M.S., Alzahrani, K.J., Alqahtani, F.F., Zahran, H.Y., Alshehri, A.M. et al. (2022) The effect of ZnO, MgO, TiO2, and Na2O modifiers on the physical, optical, and radiation shielding properties of a TeTaNb glass system. Materials, 15, 1844.CrossRefGoogle ScholarPubMed
Jozwiak-Niedzwiedzka, D., Glinicki, M.A., Gibas, K. & Baran, T. (2018) Alkali-silica reactivity of high density aggregates for radiation shielding concrete. Materials, 11, 2284.CrossRefGoogle ScholarPubMed
Korkut, T., Korkut, H., Karabulut, A., & Budak, G. (2011) A new radiation shielding material: amethyst ore. Annals of Nuclear Energy, 38, 5659.CrossRefGoogle Scholar
Korkut, T., Karabulut, A., Budak, G., Aygün, B., Gencel, O. & Hançerlioĝullari, A. (2012) Investigation of neutron shielding properties depending on number of boron atoms for colemanite, ulexite and tincal ores by experiments and FLUKA Monte Carlo simulations. Applied Radiation and Isotopes, 70, 341345.CrossRefGoogle ScholarPubMed
Kurudirek Murat, M., Özdemir, Y., Türkmen, I. & Levet, A. (2010) A study of chemical composition and radiation attenuation properties in clinoptilolite-rich natural zeolite from Turkey. Radiation Physics and Chemistry, 79, 11201126.CrossRefGoogle Scholar
Limkitjaroenporn, P., Kaewkhao, J., Limsuwan, P. & Chewpraditkul, W. (2011) Physical, optical, structural and gamma-ray shielding properties of lead sodium borate glasses. Journal of Physics and Chemistry of Solids, 72, 245251.CrossRefGoogle Scholar
Manohara, S.R., Hanagodimath, S.M., Thind, K.S. & Gerward, L. (2008) On the effective atomic number and electron density: a comprehensive set of formulas for all types of materials and energies above 1 keV. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 266, 39063912.CrossRefGoogle Scholar
Mansour, A., Sayyed, M.I., Mahmoud, K.A., Şakar, E. & Kovaleva, E.G. (2020) Modified halloysite minerals for radiation shielding purposes. Journal of Radiation Research and Applied Sciences, 13, 94101.CrossRefGoogle Scholar
Masoud, M.A., Kansouh, W.A., Shahien, M.G., Sakr, K., Rashad, A.M. & Zayed, A.M. (2020) An experimental investigation on the effects of barite/hematite on the radiation shielding properties of serpentine concretes. Progress in Nuclear Energy, 120, 103220.CrossRefGoogle Scholar
Miller, J., Taylor, L., Zeitlin, C., Heilbronn, L., Guetersloh, S., DiGiuseppe, M. et al. (2009) Lunar soil as shielding against space radiation. Radiation Measurements, 44, 163167.CrossRefGoogle Scholar
Olukotun, S.F., Gbenu, S.T., Ibitoye, F.I., Oladejo, O.F., Shittu, H.O., Fasasi, M.K. & Balogun, F.A. (2018) Investigation of gamma radiation shielding capability of two clay materials. Nuclear Engineering and Technology, 50, 957962.CrossRefGoogle Scholar
Oto, B., Yildiz, N., Akdemir, F. & Kavaz, E. (2015) Investigation of gamma radiation shielding properties of various ores. Progress in Nuclear Energy, 85, 391403.CrossRefGoogle Scholar
Oto, B., Madak, Z., Kavaz, E. & Yaltay, N. (2019) Nuclear radiation shielding and mechanical properties of colemanite mineral doped concretes. Radiation Effects and Defects in Solids, 174, 899914.CrossRefGoogle Scholar
Palubinskas, P., Puišo, J., Vaičiukynienė, D., Kielė, A., Baltušnikas, A. & Vaitkevičius, V. (2022) X-ray radiation shielding properties of zeolite blended cements. Pp. 444447 in: Radiation Interaction with Materials: Fundamentals and Applications: 5th International Conference “Radiation Interaction with Materials: Fundamentals and Applications 2014”: Program and Materials (Grigonis, A., editor). Technologija, Kaunas, Lithuania.Google Scholar
Philippine Statistics Authority (Mines and Geosciences Bureau) (2013) Mines and Minerals Philippine Yearbook 2013. Philippine Statistics Authority, Quezon City, Philippines, 25 pp.Google Scholar
Pires, L.F. (2022). Radiation shielding properties of weathered soils: influence of the chemical composition and granulometric fractions. Nuclear Engineering and Technology, 54, 34703477.CrossRefGoogle Scholar
Plando, F.R.P., Gili, M.B.Z. & Maquiling, J.T. (2023) Microstructural characterizations and radiation shielding quantities of rice husk ash-based self-compacting concrete and its precursors. Radiation Physics and Chemistry, 208, 110916.CrossRefGoogle Scholar
Puišo, J., Jakevičius, L., Vaičiukynienė, D., Vaitkevičius, V., Kantautas, A. & Baltušnikas, A. (2013) X-ray shielding zeolite containing lead. Medical Physics in the Baltic States, 1, 119123.Google Scholar
Ratel, L., Kuznik, F. & Johannes, K. (2022) Open sorption systems. Pp. 526541 in: Encyclopedia of Energy Storage, vol. 1 (Cabeza, L.F., editor). Elsevier, Amsterdam, The Netherlands.CrossRefGoogle Scholar
Sahadath, H., Mollah, A.S., Kabir, K.A. & Fazlul Huq, M. (2015) Calculation of the different shielding properties of locally developed ilmenite–magnetite (I–M) concrete. Radioprotection, 50, 203207.CrossRefGoogle Scholar
Sayyed, M.I., Tekin, H.O., Kılıcoglu, O., Agar, O. & Zaid, M.H.M. (2018) Shielding features of concrete types containing sepiolite mineral: comprehensive study on experimental, XCOM and MCNPX results. Results in Physics, 11, 4045.CrossRefGoogle Scholar
Sayyed, M.I., Akman, F., Turan, V. & Araz, A. (2019) Evaluation of radiation absorption capacity of some soil samples. Radiochimica Acta, 107, 8393.CrossRefGoogle Scholar
Toker, O., Bilmez, B., Akçalı, Ö., Özşahin Toker, M. & İçelli, O. (2021) Practical simulation method for determination of effective atomic number from Rayleigh to Compton scattering ratio by MCNP. Radiation Physics and Chemistry, 181, 109330.CrossRefGoogle Scholar
Türkmen, I., Özdemir, Y., Kurudirek, M., Demir, F., Simsek, Ö. & Demirboǧa, R. (2008) Calculation of radiation attenuation coefficients in Portland cements mixed with silica fume, blast furnace slag and natural zeolite. Annals of Nuclear Energy, 35, 19371943.CrossRefGoogle Scholar
Wang, Y., Yokoi, T., Namba, S. & Tatsumi, T. (2016) Effects of dealumination and desilication of beta zeolite on catalytic performance in n-hexane cracking. Catalysts, 6, 8.CrossRefGoogle Scholar
Wise, W.S. (2013) MINERALS | Zeolites. Reference Module in Earth Systems and Environmental Sciences. Retrieved from https://doi.org/10.1016/B978-0-12-409548-9.02906-7CrossRefGoogle Scholar
Yasaka, P., Pattanaboonmee, N., Kim, H.J., Limkitjaroenporn, P. & Kaewkhao, J. (2014) Gamma radiation shielding and optical properties measurements of zinc bismuth borate glasses. Annals of Nuclear Energy, 68, 49.CrossRefGoogle Scholar