Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T02:35:17.109Z Has data issue: false hasContentIssue false

Normalized difference vegetation index, ${\bf N} - {\bf NO}_3^ - $ and K+ in stem sap of potato plants (Group Andigenum) as affected by fertilization

Published online by Cambridge University Press:  28 February 2019

Manuel Iván Gómez
Affiliation:
Faculty of Agricultural Sciences, National University of Colombia, Bogotá 111321, Colombia
Andrea Barragán
Affiliation:
Faculty of Agricultural Sciences, National University of Colombia, Bogotá 111321, Colombia Ingeplant SAS, Bogotá 250040, Colombia
Stanislav Magnitskiy*
Affiliation:
Faculty of Agricultural Sciences, National University of Colombia, Bogotá 111321, Colombia
Luis Ernesto Rodríguez
Affiliation:
Faculty of Agricultural Sciences, National University of Colombia, Bogotá 111321, Colombia
*
*Corresponding author. Email: [email protected]

Abstract

Remote sensors permit forecasting the nutrient status and yields in crops of economic importance in Colombia. The objective of this study was to determine the relationships between normalized difference vegetation index (NDVI) and yield as well as concentrations of ${\rm {N - NO}}_3^ - $ and K+ in stem sap of potato cultivars Diacol Capiro and Pastusa Suprema (Solanum tuberosum L., Group Andigenum) in relation to different fertilizer rates. Increasing doses (0, 1450, 1900 and 2375 kg ha–1) of macro- and micronutrient fertilizers were applied to determine NDVI behavior at 55, 75, 100, 125 and 150 days after planting. For Capiro, significant differences in NDVI readings (0.84–0.88) were found between phenological stages. In both cultivars, NDVI correlated positively with yield and K+ concentrations in stem sap during tuber filling and maturation, while in Capiro no correlation was established between NDVI values and ${\rm {N - NO}}_3^ - $ concentrations in stem sap. The NDVI readings could be used to forecast productivity and K status in potato Group Andigenum.

Type
Research Article
Copyright
© Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

The original version of this article was published with the incorrect institutional affiliation. A notice detailing this has been published and the error rectified in the online and print PDF and HTML copies.

References

Alonso, M., Rosados, M., Ignacio, M., Rozas, V., Lamas, S., Chapela, D. and Fontúrbel, M. (2008). Nitrógeno foliar como estimador de clorofila en una población de Laurus nobilis del parque nacional de las islas atlánticas, Galicia (No España). Cuadernos de la Sociedad Española de Ciencias Forestales 25, 6166.Google Scholar
Bolton, D.K. and Friedl, M.A. (2013). Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology 173, 7484.CrossRefGoogle Scholar
Bongiovanni, R., Chartuni, E., Best, S. and Roel, A. (2006). Agricultura de Precisión: Integrando Conocimientos para una Agricultura Moderna y Sustentable. Bogotá: IICA.Google Scholar
Bowen, T.R., Hopkins, B.G., Ellsworth, J.W., Cook, A.G. and Funk, S.A. (2005). In-season variable rate N in potato and barley production using optical sensing instrumentation. Western Nutrient Management Conference 6, 141148.Google Scholar
Cadahía, C. (2008). La Savia como Índice de Fertilización, Cultivos Agroenergéticos, Hortícolas, Ornamentales y Frutales. Madrid: Mundi-Prensa.Google Scholar
Castellanos, M., Segura, A.M. and Ñústez, C.E. (2010). Análisis de crecimiento y relación fuente-demanda de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca, Colombia). Revista Facultad Nacional de Agronomía, Medellín 63, 52535266.Google Scholar
Castro, H. and Gómez, M.I. (2013). Fertilidad y fertilizantes. In Burbano, O.H. and Silva, M.F. (eds), Ciencia del Suelo. Principios Básicos. Bogotá: Sociedad Colombiana de la Ciencia del Suelo, pp. 217303.Google Scholar
Coraspe, H.M., Muraoka, T., Ide, F.V., Contreras, F.S. and Ocheuze, P. (2009). Absorción de formas de nitrógeno amoniacal y nítrica por plantas de papa en la producción de tubérculo-semilla. Agronomía Tropical 59, 4558.Google Scholar
Delgado, R., Núñez, M.C. and Velásquez, L. (2004). Acumulación de materia seca, absorción de nitrógeno, fósforo y potasio por el maíz en diferentes condiciones de manejo de la fertilización nitrogenada. Agronomía Tropical 54, 371390.Google Scholar
Dutta, S., Singh, S.K. and Panigrahy, S. (2014). Assessment of late blight induced diseased potato crops: A case study for West Bengal district using temporal AWiFS and MODIS data. Journal of the Indian Society of Remote Sensing 42, 353361.CrossRefGoogle Scholar
FAO (2009). Año Internacional de la Papa 2008: Nueva Luz sobre un Tesoro Enterrado. Roma: FAO.Google Scholar
FAOSTAT (2018). Food and Agriculture Data. http://faostat3.fao.org/download/Q/QC/S (Accessed 17 May 2018).Google Scholar
Feng, W., Yao, X., Zhu, Y., Tian, Y.C. and Cao, W.X. (2008). Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy 28, 394404.CrossRefGoogle Scholar
George, T.S., Taylor, M.A., Dodd, C. and White, P.J. (2018). Climate change and consequences for potato production: A review of tolerance to emerging abiotic stress. Potato Research 61, 130.Google Scholar
Giletto, C. and Echeverria, H. (2012). Predicción del Rendimiento en Papa Utilizando el Índice de Reflectancia del Canopeo NDVI. https://www.engormix.com/agricultura/articulos/prediccion-rendimiento-papa-utilizando-t31131.htm. Consulted May 18, 2018.Google Scholar
Giletto, C., Zamuner, E., Silva, S. and Cassino, M. (2013). Determinación de Deficiencias de Nitrógeno y Fósforo en Papa Utilizando el NDVI. https://www.engormix.com/agricultura/articulos/determinacion-deficiencias-nitrogeno-fosforo-t31130.htm (Accessed 18 May 2018).Google Scholar
Gómez, M. (2013). Absorción, Extracción y Manejo Nutricional Específico en el Cultivo de Papa en la Planicie Cundiboyacense. Bogotá: Fedepapa.Google Scholar
Gómez, M.I., Magnitskiy, S., Rodríguez, L.E. and Darghan, A.E. (2017). Acumulación de N, P y K en tubérculos de papa (Solanum tuberosum L. subsp. andigena) bajo suelos contrastantes en zona andina de Colombia. Agronomia Colombiana 35, 5967.CrossRefGoogle Scholar
Gómez, M.I. and Torres, P. (2012). Absorción, extracción y manejo nutricional del cultivo de papa. Revista Papa Fedepapa 26, 2025.Google Scholar
Govaerts, B., Verhulst, N. and Fuentes, P.M. (2010). Sensor Portátil GreenSeekerTM para la Medición del Índice Diferencial de Vegetación Normalizado (NDVI): Una Herramienta para la Evaluación Integral de las Prácticas Agronómicas. Parte A: Conceptos y Estudios de Caso. México: CIMMYT.Google Scholar
Graciano, C., Goya, J.F. and Caldiz, D.O. (2004). Acumulación y distribución de materia seca en Eucalyptus globulus (Labill.) plantado en macetas con tres tipos de suelo y fertilizado con fósforo. Ecología Austral 14, 5363.Google Scholar
Gutiérrez, M.V., Cadet, E., Rodríguez, W. and Araya, J.M. (2011). GreenSeeker™ and the diagnosis of crop health. Agronomía Mesoamericana 22, 397403.Google Scholar
Haddad, M., Bani-Hani, N.M., Al-Tabbal, J.A. and Al-Fraihat, A.H. (2016). Effect of different potassium nitrate levels on yield and quality of potato tubers. Journal of Food, Agriculture and Environment 14, 101107.Google Scholar
IDEAM (Instituto de Hidrología, Meteorología y Estudios Ambientales) (2017). Reportes Meteorológicos y Climáticos Estación Villa Inés (Facatativá) 2012-2016. Bogotá: IDEAM.Google Scholar
INIAP (2000). Herramientas de Aprendizaje para Facilitadores. Manejo Integrado del Cultivo de Papa. Quito: International Potato Center.Google Scholar
Manrique, E. (2003). Los pigmentos fotosintéticos, algo más que la captación de luz para la fotosíntesis. Ecosistemas 12, 111.Google Scholar
McCauley, A., Jones, C. and Jacobsen, J. (2009). Plant Nutrient Functions and Deficiency and Toxicity Symptoms. Bozeman, USA: Montana State University Extension.Google Scholar
Ñústez, C. (2011). Variedades Colombianas de Papa. Bogotá: Universidad Nacional de Colombia.Google Scholar
Ñústez, C., Santos, M. and Segura, A.M. (2009). Acumulación y distribución de materia seca de cuatro variedades de papa (Solanum tuberosum L.) en Zipaquirá, Cundinamarca (Colombia). Revista Facultad Nacional de Agronomía Medellín 62, 48234834.Google Scholar
Oliveira, J., Afif, E. and Mayor, M. (2006). Análisis de Suelos y Plantas y Recomendaciones de Abonado. Spain: The University of Oviedo.Google Scholar
Perrenoud, S. (1993). Fertilizing for High Yield Potato. Basel: International Potash Institute.Google Scholar
Peters, A.J., Walter, E.A., Ji, L., Viña, A., Hayes, M. and Svoboda, M.D. (2002). Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering and Remote Sensing 68, 7175.Google Scholar
Raun, W.R., Solie, J.B., Martin, K.L., Freeman, K.W., Stone, M.L., Johnson, G.V. and Mullen, R.W. (2005). Growth stage, development, and spatial variability in corn evaluated using optical sensor readings. Journal of Plant Nutrition 28, 173182.CrossRefGoogle Scholar
Ruíz, J.G., Tijerina, L., Mejia, E., Sandoval, M., Sánchez, P., Vaquera, H. and Colinas, M.T. (2011). Índices de vegetación para estimar el crecimiento de plantas de tomate (Lycopersicum esculentum Mill.) estresadas por deficiencia de agua y nitrógeno. Terra Latinoamericana 29, 4756.Google Scholar
Ruza, A., Skrabule, I. and Vaivode, A. (2013). Influence of nitrogen on potato productivity and nutrient use efficiency. Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences 67, 247253.CrossRefGoogle Scholar
SAS Institute (2014). Base SAS 9.4 Procedures Guide: Statistical Procedures. Cary: SAS Institute Inc.Google Scholar
Schafleitner, R., Gutierrez, R., Espino, R., Gaudin, A., Pérez, J., Martínez, M., Domínguez, A., Tincopa, L., Alvarado, C., Numberto, G. and Bonierbale, M. (2007). Field screening for variation of drought tolerance in Solanum tuberosum L. by agronomical, physiological and genetic analysis. Potato Research 50, 7185.CrossRefGoogle Scholar
Schepers, J.S., Blackmer, T.M., Wilhelm, W.W. and Resende, M. (1996). Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. Journal of Plant Physiology 148, 523529.CrossRefGoogle Scholar
Segura, M., Santos, M. and Ñústez, C. (2006). Desarrollo fenológico de cuatro variedades de papa (Solanum tuberosum L.) en el municipio de Zipaquirá (Cundinamarca). Fitotecnia Colombiana 6, 3343.Google Scholar
Spooner, D.M. and Bamberg, J.B. (1994). Potato genetic resources: sources of resistance and systematics. American Potato Journal 71, 325337.CrossRefGoogle Scholar
Tremblay, N., Wang, Z., Ma, B., Belec, C. and Vigneault, P. (2009). A comparison of crop data measured by two commercial sensors for variable-rate nitrogen application. Precision Agriculture 10, 145161.CrossRefGoogle Scholar
Valbuena, R., Roveda, G., Bolaños, A., Zapata, J., Medina, C., Almanza, P. and Porras, D. (2010). Escalas Fenológicas de las Variedades de Papa Parda Pastusa, Diacol Capiro y Criolla “Yema de Huevo” en las Zonas Productoras de Cundinamarca, Boyaca, Nariño y Antioquia. Bogota: Produmedios.Google Scholar
Verhulst, N. and Govaerts, B. (2010). The Normalized Difference Vegetation Index (NDVI) GreenSeekerTM Handheld Sensor: Toward the Integrated Evaluation of Crop Management. Part A: Concepts and Case Studies. Mexico: CIMMYT.Google Scholar
Waterer, D. (2000). Nitrogen Fertility Requirements and Testing Program for Potatoes in Saskatchewan. http://www.usask.ca/agriculture/plantsci/vegetable/resources/potato/SAP.pdf. (Accessed 10 February 2018).Google Scholar
Westermann, D., James, D., Tindall, T. and Hurst, R. (1994). Nitrogen and potassium fertilization of potatoes: sugars and starch. American Potato Journal 71, 433453.CrossRefGoogle Scholar
Zhou, Z., Jabloun, M., Plauborg, F. and Andersen, M.N. (2018). Using ground-based spectral reflectance sensors and photography to estimate shoot N concentration and dry matter of potato. Computers and Electronics in Agriculture 144, 154163.CrossRefGoogle Scholar
Supplementary material: File

Gómez et al. supplementary material

Figure S1

Download Gómez et al. supplementary material(File)
File 35.3 KB